/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2020, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_COLLADA_EXPORTER #include "ColladaExporter.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace Assimp; namespace Assimp { // ------------------------------------------------------------------------------------------------ // Worker function for exporting a scene to Collada. Prototyped and registered in Exporter.cpp void ExportSceneCollada(const char *pFile, IOSystem *pIOSystem, const aiScene *pScene, const ExportProperties * /*pProperties*/) { std::string path = DefaultIOSystem::absolutePath(std::string(pFile)); std::string file = DefaultIOSystem::completeBaseName(std::string(pFile)); // invoke the exporter ColladaExporter iDoTheExportThing(pScene, pIOSystem, path, file); if (iDoTheExportThing.mOutput.fail()) { throw DeadlyExportError("output data creation failed. Most likely the file became too large: " + std::string(pFile)); } // we're still here - export successfully completed. Write result to the given IOSYstem std::unique_ptr outfile(pIOSystem->Open(pFile, "wt")); if (outfile == NULL) { throw DeadlyExportError("could not open output .dae file: " + std::string(pFile)); } // XXX maybe use a small wrapper around IOStream that behaves like std::stringstream in order to avoid the extra copy. outfile->Write(iDoTheExportThing.mOutput.str().c_str(), static_cast(iDoTheExportThing.mOutput.tellp()), 1); } } // end of namespace Assimp // ------------------------------------------------------------------------------------------------ // Encodes a string into a valid XML ID using the xsd:ID schema qualifications. static const std::string XMLIDEncode(const std::string &name) { const char XML_ID_CHARS[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_-."; const unsigned int XML_ID_CHARS_COUNT = sizeof(XML_ID_CHARS) / sizeof(char); if (name.length() == 0) { return name; } std::stringstream idEncoded; // xsd:ID must start with letter or underscore if (!((name[0] >= 'A' && name[0] <= 'z') || name[0] == '_')) { idEncoded << '_'; } for (std::string::const_iterator it = name.begin(); it != name.end(); ++it) { // xsd:ID can only contain letters, digits, underscores, hyphens and periods if (strchr(XML_ID_CHARS, *it) != nullptr) { idEncoded << *it; } else { // Select placeholder character based on invalid character to prevent name collisions idEncoded << XML_ID_CHARS[(*it) % XML_ID_CHARS_COUNT]; } } return idEncoded.str(); } // ------------------------------------------------------------------------------------------------ // Constructor for a specific scene to export ColladaExporter::ColladaExporter(const aiScene *pScene, IOSystem *pIOSystem, const std::string &path, const std::string &file) : mIOSystem(pIOSystem), mPath(path), mFile(file) { // make sure that all formatting happens using the standard, C locale and not the user's current locale mOutput.imbue(std::locale("C")); mOutput.precision(ASSIMP_AI_REAL_TEXT_PRECISION); mScene = pScene; mSceneOwned = false; // set up strings endstr = "\n"; // start writing the file WriteFile(); } // ------------------------------------------------------------------------------------------------ // Destructor ColladaExporter::~ColladaExporter() { if (mSceneOwned) { delete mScene; } } // ------------------------------------------------------------------------------------------------ // Starts writing the contents void ColladaExporter::WriteFile() { // write the DTD mOutput << "" << endstr; // COLLADA element start mOutput << "" << endstr; PushTag(); WriteTextures(); WriteHeader(); WriteCamerasLibrary(); WriteLightsLibrary(); WriteMaterials(); WriteGeometryLibrary(); WriteControllerLibrary(); WriteSceneLibrary(); // customized, Writes the animation library WriteAnimationsLibrary(); // useless Collada fu at the end, just in case we haven't had enough indirections, yet. mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "mRootNode->mName.C_Str()) + "\" />" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the asset header void ColladaExporter::WriteHeader() { static const ai_real epsilon = Math::getEpsilon(); static const aiQuaternion x_rot(aiMatrix3x3( 0, -1, 0, 1, 0, 0, 0, 0, 1)); static const aiQuaternion y_rot(aiMatrix3x3( 1, 0, 0, 0, 1, 0, 0, 0, 1)); static const aiQuaternion z_rot(aiMatrix3x3( 1, 0, 0, 0, 0, 1, 0, -1, 0)); static const unsigned int date_nb_chars = 20; char date_str[date_nb_chars]; std::time_t date = std::time(NULL); std::strftime(date_str, date_nb_chars, "%Y-%m-%dT%H:%M:%S", std::localtime(&date)); aiVector3D scaling; aiQuaternion rotation; aiVector3D position; mScene->mRootNode->mTransformation.Decompose(scaling, rotation, position); rotation.Normalize(); bool add_root_node = false; ai_real scale = 1.0; if (std::abs(scaling.x - scaling.y) <= epsilon && std::abs(scaling.x - scaling.z) <= epsilon && std::abs(scaling.y - scaling.z) <= epsilon) { scale = (ai_real)((((double)scaling.x) + ((double)scaling.y) + ((double)scaling.z)) / 3.0); } else { add_root_node = true; } std::string up_axis = "Y_UP"; if (rotation.Equal(x_rot, epsilon)) { up_axis = "X_UP"; } else if (rotation.Equal(y_rot, epsilon)) { up_axis = "Y_UP"; } else if (rotation.Equal(z_rot, epsilon)) { up_axis = "Z_UP"; } else { add_root_node = true; } if (!position.Equal(aiVector3D(0, 0, 0))) { add_root_node = true; } if (mScene->mRootNode->mNumChildren == 0) { add_root_node = true; } if (add_root_node) { aiScene *scene; SceneCombiner::CopyScene(&scene, mScene); aiNode *root = new aiNode("Scene"); root->mNumChildren = 1; root->mChildren = new aiNode *[root->mNumChildren]; root->mChildren[0] = scene->mRootNode; scene->mRootNode->mParent = root; scene->mRootNode = root; mScene = scene; mSceneOwned = true; up_axis = "Y_UP"; scale = 1.0; } mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); // If no Scene metadata, use root node metadata aiMetadata *meta = mScene->mMetaData; if (nullptr == meta) { meta = mScene->mRootNode->mMetaData; } aiString value; if (!meta || !meta->Get("Author", value)) { mOutput << startstr << "" << "Assimp" << "" << endstr; } else { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (nullptr == meta || !meta->Get(AI_METADATA_SOURCE_GENERATOR, value)) { mOutput << startstr << "" << "Assimp Exporter" << "" << endstr; } else { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (meta) { if (meta->Get("Comments", value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (meta->Get(AI_METADATA_SOURCE_COPYRIGHT, value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (meta->Get("SourceData", value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } } PopTag(); mOutput << startstr << "" << endstr; if (nullptr == meta || !meta->Get("Created", value)) { mOutput << startstr << "" << date_str << "" << endstr; } else { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } // Modified date is always the date saved mOutput << startstr << "" << date_str << "" << endstr; if (meta) { if (meta->Get("Keywords", value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (meta->Get("Revision", value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (meta->Get("Subject", value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } if (meta->Get("Title", value)) { mOutput << startstr << "" << XMLEscape(value.C_Str()) << "" << endstr; } } mOutput << startstr << "" << endstr; mOutput << startstr << "" << up_axis << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Write the embedded textures void ColladaExporter::WriteTextures() { static const unsigned int buffer_size = 1024; char str[buffer_size]; if (mScene->HasTextures()) { for (unsigned int i = 0; i < mScene->mNumTextures; i++) { // It would be great to be able to create a directory in portable standard C++, but it's not the case, // so we just write the textures in the current directory. aiTexture *texture = mScene->mTextures[i]; if (nullptr == texture) { continue; } ASSIMP_itoa10(str, buffer_size, i + 1); std::string name = mFile + "_texture_" + (i < 1000 ? "0" : "") + (i < 100 ? "0" : "") + (i < 10 ? "0" : "") + str + "." + ((const char *)texture->achFormatHint); std::unique_ptr outfile(mIOSystem->Open(mPath + mIOSystem->getOsSeparator() + name, "wb")); if (outfile == NULL) { throw DeadlyExportError("could not open output texture file: " + mPath + name); } if (texture->mHeight == 0) { outfile->Write((void *)texture->pcData, texture->mWidth, 1); } else { Bitmap::Save(texture, outfile.get()); } outfile->Flush(); textures.insert(std::make_pair(i, name)); } } } // ------------------------------------------------------------------------------------------------ // Write the embedded textures void ColladaExporter::WriteCamerasLibrary() { if (mScene->HasCameras()) { mOutput << startstr << "" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumCameras; ++a) WriteCamera(a); PopTag(); mOutput << startstr << "" << endstr; } } void ColladaExporter::WriteCamera(size_t pIndex) { const aiCamera *cam = mScene->mCameras[pIndex]; const std::string cameraName = XMLEscape(cam->mName.C_Str()); const std::string cameraId = XMLIDEncode(cam->mName.C_Str()); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); //assimp doesn't support the import of orthographic cameras! se we write //always perspective mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << AI_RAD_TO_DEG(cam->mHorizontalFOV) << "" << endstr; mOutput << startstr << "" << cam->mAspect << "" << endstr; mOutput << startstr << "" << cam->mClipPlaneNear << "" << endstr; mOutput << startstr << "" << cam->mClipPlaneFar << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Write the embedded textures void ColladaExporter::WriteLightsLibrary() { if (mScene->HasLights()) { mOutput << startstr << "" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumLights; ++a) WriteLight(a); PopTag(); mOutput << startstr << "" << endstr; } } void ColladaExporter::WriteLight(size_t pIndex) { const aiLight *light = mScene->mLights[pIndex]; const std::string lightName = XMLEscape(light->mName.C_Str()); const std::string lightId = XMLIDEncode(light->mName.C_Str()); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); switch (light->mType) { case aiLightSource_AMBIENT: WriteAmbienttLight(light); break; case aiLightSource_DIRECTIONAL: WriteDirectionalLight(light); break; case aiLightSource_POINT: WritePointLight(light); break; case aiLightSource_SPOT: WriteSpotLight(light); break; case aiLightSource_AREA: case aiLightSource_UNDEFINED: case _aiLightSource_Force32Bit: break; } PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } void ColladaExporter::WritePointLight(const aiLight *const light) { const aiColor3D &color = light->mColorDiffuse; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << color.r << " " << color.g << " " << color.b << "" << endstr; mOutput << startstr << "" << light->mAttenuationConstant << "" << endstr; mOutput << startstr << "" << light->mAttenuationLinear << "" << endstr; mOutput << startstr << "" << light->mAttenuationQuadratic << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } void ColladaExporter::WriteDirectionalLight(const aiLight *const light) { const aiColor3D &color = light->mColorDiffuse; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << color.r << " " << color.g << " " << color.b << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } void ColladaExporter::WriteSpotLight(const aiLight *const light) { const aiColor3D &color = light->mColorDiffuse; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << color.r << " " << color.g << " " << color.b << "" << endstr; mOutput << startstr << "" << light->mAttenuationConstant << "" << endstr; mOutput << startstr << "" << light->mAttenuationLinear << "" << endstr; mOutput << startstr << "" << light->mAttenuationQuadratic << "" << endstr; /* out->mAngleOuterCone = AI_DEG_TO_RAD (std::acos(std::pow(0.1f,1.f/srcLight->mFalloffExponent))+ srcLight->mFalloffAngle); */ const ai_real fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone); mOutput << startstr << "" << fallOffAngle << "" << endstr; double temp = light->mAngleOuterCone - light->mAngleInnerCone; temp = std::cos(temp); temp = std::log(temp) / std::log(0.1); temp = 1 / temp; mOutput << startstr << "" << temp << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } void ColladaExporter::WriteAmbienttLight(const aiLight *const light) { const aiColor3D &color = light->mColorAmbient; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << color.r << " " << color.g << " " << color.b << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Reads a single surface entry from the given material keys void ColladaExporter::ReadMaterialSurface(Surface &poSurface, const aiMaterial *pSrcMat, aiTextureType pTexture, const char *pKey, size_t pType, size_t pIndex) { if (pSrcMat->GetTextureCount(pTexture) > 0) { aiString texfile; unsigned int uvChannel = 0; pSrcMat->GetTexture(pTexture, 0, &texfile, NULL, &uvChannel); std::string index_str(texfile.C_Str()); if (index_str.size() != 0 && index_str[0] == '*') { unsigned int index; index_str = index_str.substr(1, std::string::npos); try { index = (unsigned int)strtoul10_64(index_str.c_str()); } catch (std::exception &error) { throw DeadlyExportError(error.what()); } std::map::const_iterator name = textures.find(index); if (name != textures.end()) { poSurface.texture = name->second; } else { throw DeadlyExportError("could not find embedded texture at index " + index_str); } } else { poSurface.texture = texfile.C_Str(); } poSurface.channel = uvChannel; poSurface.exist = true; } else { if (pKey) poSurface.exist = pSrcMat->Get(pKey, static_cast(pType), static_cast(pIndex), poSurface.color) == aiReturn_SUCCESS; } } // ------------------------------------------------------------------------------------------------ // Reimplementation of isalnum(,C locale), because AppVeyor does not see standard version. static bool isalnum_C(char c) { return (nullptr != strchr("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz", c)); } // ------------------------------------------------------------------------------------------------ // Writes an image entry for the given surface void ColladaExporter::WriteImageEntry(const Surface &pSurface, const std::string &pNameAdd) { if (!pSurface.texture.empty()) { mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << ""; // URL encode image file name first, then XML encode on top std::stringstream imageUrlEncoded; for (std::string::const_iterator it = pSurface.texture.begin(); it != pSurface.texture.end(); ++it) { if (isalnum_C((unsigned char)*it) || *it == ':' || *it == '_' || *it == '-' || *it == '.' || *it == '/' || *it == '\\') imageUrlEncoded << *it; else imageUrlEncoded << '%' << std::hex << size_t((unsigned char)*it) << std::dec; } mOutput << XMLEscape(imageUrlEncoded.str()); mOutput << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes a color-or-texture entry into an effect definition void ColladaExporter::WriteTextureColorEntry(const Surface &pSurface, const std::string &pTypeName, const std::string &pImageName) { if (pSurface.exist) { mOutput << startstr << "<" << pTypeName << ">" << endstr; PushTag(); if (pSurface.texture.empty()) { mOutput << startstr << "" << pSurface.color.r << " " << pSurface.color.g << " " << pSurface.color.b << " " << pSurface.color.a << "" << endstr; } else { mOutput << startstr << "" << endstr; } PopTag(); mOutput << startstr << "" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the two parameters necessary for referencing a texture in an effect entry void ColladaExporter::WriteTextureParamEntry(const Surface &pSurface, const std::string &pTypeName, const std::string &pMatName) { // if surface is a texture, write out the sampler and the surface parameters necessary to reference the texture if (!pSurface.texture.empty()) { mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << XMLIDEncode(pMatName) << "-" << pTypeName << "-image" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << XMLIDEncode(pMatName) << "-" << pTypeName << "-surface" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes a scalar property void ColladaExporter::WriteFloatEntry(const Property &pProperty, const std::string &pTypeName) { if (pProperty.exist) { mOutput << startstr << "<" << pTypeName << ">" << endstr; PushTag(); mOutput << startstr << "" << pProperty.value << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the material setup void ColladaExporter::WriteMaterials() { materials.resize(mScene->mNumMaterials); /// collect all materials from the scene size_t numTextures = 0; for (size_t a = 0; a < mScene->mNumMaterials; ++a) { const aiMaterial *mat = mScene->mMaterials[a]; aiString name; if (mat->Get(AI_MATKEY_NAME, name) != aiReturn_SUCCESS) { name = "mat"; materials[a].name = std::string("m") + to_string(a) + name.C_Str(); } else { // try to use the material's name if no other material has already taken it, else append # std::string testName = name.C_Str(); size_t materialCountWithThisName = 0; for (size_t i = 0; i < a; i++) { if (materials[i].name == testName) { materialCountWithThisName++; } } if (materialCountWithThisName == 0) { materials[a].name = name.C_Str(); } else { materials[a].name = std::string(name.C_Str()) + to_string(materialCountWithThisName); } } aiShadingMode shading = aiShadingMode_Flat; materials[a].shading_model = "phong"; if (mat->Get(AI_MATKEY_SHADING_MODEL, shading) == aiReturn_SUCCESS) { if (shading == aiShadingMode_Phong) { materials[a].shading_model = "phong"; } else if (shading == aiShadingMode_Blinn) { materials[a].shading_model = "blinn"; } else if (shading == aiShadingMode_NoShading) { materials[a].shading_model = "constant"; } else if (shading == aiShadingMode_Gouraud) { materials[a].shading_model = "lambert"; } } ReadMaterialSurface(materials[a].ambient, mat, aiTextureType_AMBIENT, AI_MATKEY_COLOR_AMBIENT); if (!materials[a].ambient.texture.empty()) numTextures++; ReadMaterialSurface(materials[a].diffuse, mat, aiTextureType_DIFFUSE, AI_MATKEY_COLOR_DIFFUSE); if (!materials[a].diffuse.texture.empty()) numTextures++; ReadMaterialSurface(materials[a].specular, mat, aiTextureType_SPECULAR, AI_MATKEY_COLOR_SPECULAR); if (!materials[a].specular.texture.empty()) numTextures++; ReadMaterialSurface(materials[a].emissive, mat, aiTextureType_EMISSIVE, AI_MATKEY_COLOR_EMISSIVE); if (!materials[a].emissive.texture.empty()) numTextures++; ReadMaterialSurface(materials[a].reflective, mat, aiTextureType_REFLECTION, AI_MATKEY_COLOR_REFLECTIVE); if (!materials[a].reflective.texture.empty()) numTextures++; ReadMaterialSurface(materials[a].transparent, mat, aiTextureType_OPACITY, AI_MATKEY_COLOR_TRANSPARENT); if (!materials[a].transparent.texture.empty()) numTextures++; ReadMaterialSurface(materials[a].normal, mat, aiTextureType_NORMALS, NULL, 0, 0); if (!materials[a].normal.texture.empty()) numTextures++; materials[a].shininess.exist = mat->Get(AI_MATKEY_SHININESS, materials[a].shininess.value) == aiReturn_SUCCESS; materials[a].transparency.exist = mat->Get(AI_MATKEY_OPACITY, materials[a].transparency.value) == aiReturn_SUCCESS; materials[a].index_refraction.exist = mat->Get(AI_MATKEY_REFRACTI, materials[a].index_refraction.value) == aiReturn_SUCCESS; } // output textures if present if (numTextures > 0) { mOutput << startstr << "" << endstr; PushTag(); for (std::vector::const_iterator it = materials.begin(); it != materials.end(); ++it) { const Material &mat = *it; WriteImageEntry(mat.ambient, mat.name + "-ambient-image"); WriteImageEntry(mat.diffuse, mat.name + "-diffuse-image"); WriteImageEntry(mat.specular, mat.name + "-specular-image"); WriteImageEntry(mat.emissive, mat.name + "-emission-image"); WriteImageEntry(mat.reflective, mat.name + "-reflective-image"); WriteImageEntry(mat.transparent, mat.name + "-transparent-image"); WriteImageEntry(mat.normal, mat.name + "-normal-image"); } PopTag(); mOutput << startstr << "" << endstr; } // output effects - those are the actual carriers of information if (!materials.empty()) { mOutput << startstr << "" << endstr; PushTag(); for (std::vector::const_iterator it = materials.begin(); it != materials.end(); ++it) { const Material &mat = *it; // this is so ridiculous it must be right mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); // write sampler- and surface params for the texture entries WriteTextureParamEntry(mat.emissive, "emission", mat.name); WriteTextureParamEntry(mat.ambient, "ambient", mat.name); WriteTextureParamEntry(mat.diffuse, "diffuse", mat.name); WriteTextureParamEntry(mat.specular, "specular", mat.name); WriteTextureParamEntry(mat.reflective, "reflective", mat.name); WriteTextureParamEntry(mat.transparent, "transparent", mat.name); WriteTextureParamEntry(mat.normal, "normal", mat.name); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "<" << mat.shading_model << ">" << endstr; PushTag(); WriteTextureColorEntry(mat.emissive, "emission", mat.name + "-emission-sampler"); WriteTextureColorEntry(mat.ambient, "ambient", mat.name + "-ambient-sampler"); WriteTextureColorEntry(mat.diffuse, "diffuse", mat.name + "-diffuse-sampler"); WriteTextureColorEntry(mat.specular, "specular", mat.name + "-specular-sampler"); WriteFloatEntry(mat.shininess, "shininess"); WriteTextureColorEntry(mat.reflective, "reflective", mat.name + "-reflective-sampler"); WriteTextureColorEntry(mat.transparent, "transparent", mat.name + "-transparent-sampler"); WriteFloatEntry(mat.transparency, "transparency"); WriteFloatEntry(mat.index_refraction, "index_of_refraction"); if (!mat.normal.texture.empty()) { WriteTextureColorEntry(mat.normal, "bump", mat.name + "-normal-sampler"); } PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } PopTag(); mOutput << startstr << "" << endstr; // write materials - they're just effect references mOutput << startstr << "" << endstr; PushTag(); for (std::vector::const_iterator it = materials.begin(); it != materials.end(); ++it) { const Material &mat = *it; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } PopTag(); mOutput << startstr << "" << endstr; } } // ------------------------------------------------------------------------------------------------ // Writes the controller library void ColladaExporter::WriteControllerLibrary() { mOutput << startstr << "" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumMeshes; ++a) { WriteController(a); } PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes a skin controller of the given mesh void ColladaExporter::WriteController(size_t pIndex) { const aiMesh *mesh = mScene->mMeshes[pIndex]; const std::string idstr = mesh->mName.length == 0 ? GetMeshId(pIndex) : mesh->mName.C_Str(); const std::string idstrEscaped = XMLIDEncode(idstr); if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0) return; if (mesh->mNumBones == 0) return; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); // bind pose matrix mOutput << startstr << "" << endstr; PushTag(); // I think it is identity in general cases. aiMatrix4x4 mat; mOutput << startstr << mat.a1 << " " << mat.a2 << " " << mat.a3 << " " << mat.a4 << endstr; mOutput << startstr << mat.b1 << " " << mat.b2 << " " << mat.b3 << " " << mat.b4 << endstr; mOutput << startstr << mat.c1 << " " << mat.c2 << " " << mat.c3 << " " << mat.c4 << endstr; mOutput << startstr << mat.d1 << " " << mat.d2 << " " << mat.d3 << " " << mat.d4 << endstr; PopTag(); mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "mNumBones << "\">"; for (size_t i = 0; i < mesh->mNumBones; ++i) mOutput << XMLIDEncode(mesh->mBones[i]->mName.C_Str()) << " "; mOutput << "" << endstr; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "mNumBones << "\" stride=\"" << 1 << "\">" << endstr; PushTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; std::vector bind_poses; bind_poses.reserve(mesh->mNumBones * 16); for (unsigned int i = 0; i < mesh->mNumBones; ++i) for (unsigned int j = 0; j < 4; ++j) bind_poses.insert(bind_poses.end(), mesh->mBones[i]->mOffsetMatrix[j], mesh->mBones[i]->mOffsetMatrix[j] + 4); WriteFloatArray(idstr + "-skin-bind_poses", FloatType_Mat4x4, (const ai_real *)bind_poses.data(), bind_poses.size() / 16); bind_poses.clear(); std::vector skin_weights; skin_weights.reserve(mesh->mNumVertices * mesh->mNumBones); for (size_t i = 0; i < mesh->mNumBones; ++i) for (size_t j = 0; j < mesh->mBones[i]->mNumWeights; ++j) skin_weights.push_back(mesh->mBones[i]->mWeights[j].mWeight); WriteFloatArray(idstr + "-skin-weights", FloatType_Weight, (const ai_real *)skin_weights.data(), skin_weights.size()); skin_weights.clear(); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; mOutput << startstr << "mNumVertices << "\">" << endstr; PushTag(); mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; mOutput << startstr << ""; std::vector num_influences(mesh->mNumVertices, (ai_uint)0); for (size_t i = 0; i < mesh->mNumBones; ++i) for (size_t j = 0; j < mesh->mBones[i]->mNumWeights; ++j) ++num_influences[mesh->mBones[i]->mWeights[j].mVertexId]; for (size_t i = 0; i < mesh->mNumVertices; ++i) mOutput << num_influences[i] << " "; mOutput << "" << endstr; mOutput << startstr << ""; ai_uint joint_weight_indices_length = 0; std::vector accum_influences; accum_influences.reserve(num_influences.size()); for (size_t i = 0; i < num_influences.size(); ++i) { accum_influences.push_back(joint_weight_indices_length); joint_weight_indices_length += num_influences[i]; } ai_uint weight_index = 0; std::vector joint_weight_indices(2 * joint_weight_indices_length, (ai_int)-1); for (unsigned int i = 0; i < mesh->mNumBones; ++i) for (unsigned j = 0; j < mesh->mBones[i]->mNumWeights; ++j) { unsigned int vId = mesh->mBones[i]->mWeights[j].mVertexId; for (ai_uint k = 0; k < num_influences[vId]; ++k) { if (joint_weight_indices[2 * (accum_influences[vId] + k)] == -1) { joint_weight_indices[2 * (accum_influences[vId] + k)] = i; joint_weight_indices[2 * (accum_influences[vId] + k) + 1] = weight_index; break; } } ++weight_index; } for (size_t i = 0; i < joint_weight_indices.size(); ++i) mOutput << joint_weight_indices[i] << " "; num_influences.clear(); accum_influences.clear(); joint_weight_indices.clear(); mOutput << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the geometry library void ColladaExporter::WriteGeometryLibrary() { mOutput << startstr << "" << endstr; PushTag(); for (size_t a = 0; a < mScene->mNumMeshes; ++a) WriteGeometry(a); PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the given mesh void ColladaExporter::WriteGeometry(size_t pIndex) { const aiMesh *mesh = mScene->mMeshes[pIndex]; const std::string idstr = mesh->mName.length == 0 ? GetMeshId(pIndex) : mesh->mName.C_Str(); const std::string geometryName = XMLEscape(idstr); const std::string geometryId = XMLIDEncode(idstr); if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0) return; // opening tag mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); // Positions WriteFloatArray(idstr + "-positions", FloatType_Vector, (ai_real *)mesh->mVertices, mesh->mNumVertices); // Normals, if any if (mesh->HasNormals()) WriteFloatArray(idstr + "-normals", FloatType_Vector, (ai_real *)mesh->mNormals, mesh->mNumVertices); // texture coords for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasTextureCoords(static_cast(a))) { WriteFloatArray(idstr + "-tex" + to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2, (ai_real *)mesh->mTextureCoords[a], mesh->mNumVertices); } } // vertex colors for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasVertexColors(static_cast(a))) WriteFloatArray(idstr + "-color" + to_string(a), FloatType_Color, (ai_real *)mesh->mColors[a], mesh->mNumVertices); } // assemble vertex structure // Only write input for POSITION since we will write other as shared inputs in polygon definition mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; // count the number of lines, triangles and polygon meshes int countLines = 0; int countPoly = 0; for (size_t a = 0; a < mesh->mNumFaces; ++a) { if (mesh->mFaces[a].mNumIndices == 2) countLines++; else if (mesh->mFaces[a].mNumIndices >= 3) countPoly++; } // lines if (countLines) { mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; if (mesh->HasNormals()) mOutput << startstr << "" << endstr; for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasTextureCoords(static_cast(a))) mOutput << startstr << "" << endstr; } for (size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (mesh->HasVertexColors(static_cast(a))) mOutput << startstr << "" << endstr; } mOutput << startstr << "

"; for (size_t a = 0; a < mesh->mNumFaces; ++a) { const aiFace &face = mesh->mFaces[a]; if (face.mNumIndices != 2) continue; for (size_t b = 0; b < face.mNumIndices; ++b) mOutput << face.mIndices[b] << " "; } mOutput << "

" << endstr; PopTag(); mOutput << startstr << "
" << endstr; } // triangle - don't use it, because compatibility problems // polygons if (countPoly) { mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; if (mesh->HasNormals()) mOutput << startstr << "" << endstr; for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (mesh->HasTextureCoords(static_cast(a))) mOutput << startstr << "" << endstr; } for (size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (mesh->HasVertexColors(static_cast(a))) mOutput << startstr << "" << endstr; } mOutput << startstr << ""; for (size_t a = 0; a < mesh->mNumFaces; ++a) { if (mesh->mFaces[a].mNumIndices < 3) continue; mOutput << mesh->mFaces[a].mNumIndices << " "; } mOutput << "" << endstr; mOutput << startstr << "

"; for (size_t a = 0; a < mesh->mNumFaces; ++a) { const aiFace &face = mesh->mFaces[a]; if (face.mNumIndices < 3) continue; for (size_t b = 0; b < face.mNumIndices; ++b) mOutput << face.mIndices[b] << " "; } mOutput << "

" << endstr; PopTag(); mOutput << startstr << "
" << endstr; } // closing tags PopTag(); mOutput << startstr << "
" << endstr; PopTag(); mOutput << startstr << "
" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes a float array of the given type void ColladaExporter::WriteFloatArray(const std::string &pIdString, FloatDataType pType, const ai_real *pData, size_t pElementCount) { size_t floatsPerElement = 0; switch (pType) { case FloatType_Vector: floatsPerElement = 3; break; case FloatType_TexCoord2: floatsPerElement = 2; break; case FloatType_TexCoord3: floatsPerElement = 3; break; case FloatType_Color: floatsPerElement = 3; break; case FloatType_Mat4x4: floatsPerElement = 16; break; case FloatType_Weight: floatsPerElement = 1; break; case FloatType_Time: floatsPerElement = 1; break; default: return; } std::string arrayId = XMLIDEncode(pIdString) + "-array"; mOutput << startstr << "" << endstr; PushTag(); // source array mOutput << startstr << " "; PushTag(); if (pType == FloatType_TexCoord2) { for (size_t a = 0; a < pElementCount; ++a) { mOutput << pData[a * 3 + 0] << " "; mOutput << pData[a * 3 + 1] << " "; } } else if (pType == FloatType_Color) { for (size_t a = 0; a < pElementCount; ++a) { mOutput << pData[a * 4 + 0] << " "; mOutput << pData[a * 4 + 1] << " "; mOutput << pData[a * 4 + 2] << " "; } } else { for (size_t a = 0; a < pElementCount * floatsPerElement; ++a) mOutput << pData[a] << " "; } mOutput << "" << endstr; PopTag(); // the usual Collada fun. Let's bloat it even more! mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); switch (pType) { case FloatType_Vector: mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; break; case FloatType_TexCoord2: mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; break; case FloatType_TexCoord3: mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; break; case FloatType_Color: mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; mOutput << startstr << "" << endstr; break; case FloatType_Mat4x4: mOutput << startstr << "" << endstr; break; case FloatType_Weight: mOutput << startstr << "" << endstr; break; // customized, add animation related case FloatType_Time: mOutput << startstr << "" << endstr; break; } PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ // Writes the scene library void ColladaExporter::WriteSceneLibrary() { const std::string sceneName = XMLEscape(mScene->mRootNode->mName.C_Str()); const std::string sceneId = XMLIDEncode(mScene->mRootNode->mName.C_Str()); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); // start recursive write at the root node for (size_t a = 0; a < mScene->mRootNode->mNumChildren; ++a) WriteNode(mScene, mScene->mRootNode->mChildren[a]); PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ void ColladaExporter::WriteAnimationLibrary(size_t pIndex) { const aiAnimation *anim = mScene->mAnimations[pIndex]; if (anim->mNumChannels == 0 && anim->mNumMeshChannels == 0 && anim->mNumMorphMeshChannels == 0) return; const std::string animation_name_escaped = XMLEscape(anim->mName.C_Str()); std::string idstr = anim->mName.C_Str(); std::string ending = std::string("AnimId") + to_string(pIndex); if (idstr.length() >= ending.length()) { if (0 != idstr.compare(idstr.length() - ending.length(), ending.length(), ending)) { idstr = idstr + ending; } } else { idstr = idstr + ending; } const std::string idstrEscaped = XMLIDEncode(idstr); mOutput << startstr << "" << endstr; PushTag(); std::string cur_node_idstr; for (size_t a = 0; a < anim->mNumChannels; ++a) { const aiNodeAnim *nodeAnim = anim->mChannels[a]; // sanity check if (nodeAnim->mNumPositionKeys != nodeAnim->mNumScalingKeys || nodeAnim->mNumPositionKeys != nodeAnim->mNumRotationKeys) { continue; } { cur_node_idstr.clear(); cur_node_idstr += nodeAnim->mNodeName.data; cur_node_idstr += std::string("_matrix-input"); std::vector frames; for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { frames.push_back(static_cast(nodeAnim->mPositionKeys[i].mTime)); } WriteFloatArray(cur_node_idstr, FloatType_Time, (const ai_real *)frames.data(), frames.size()); frames.clear(); } { cur_node_idstr.clear(); cur_node_idstr += nodeAnim->mNodeName.data; cur_node_idstr += std::string("_matrix-output"); std::vector keyframes; keyframes.reserve(nodeAnim->mNumPositionKeys * 16); for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { aiVector3D Scaling = nodeAnim->mScalingKeys[i].mValue; aiMatrix4x4 ScalingM; // identity ScalingM[0][0] = Scaling.x; ScalingM[1][1] = Scaling.y; ScalingM[2][2] = Scaling.z; aiQuaternion RotationQ = nodeAnim->mRotationKeys[i].mValue; aiMatrix4x4 s = aiMatrix4x4(RotationQ.GetMatrix()); aiMatrix4x4 RotationM(s.a1, s.a2, s.a3, 0, s.b1, s.b2, s.b3, 0, s.c1, s.c2, s.c3, 0, 0, 0, 0, 1); aiVector3D Translation = nodeAnim->mPositionKeys[i].mValue; aiMatrix4x4 TranslationM; // identity TranslationM[0][3] = Translation.x; TranslationM[1][3] = Translation.y; TranslationM[2][3] = Translation.z; // Combine the above transformations aiMatrix4x4 mat = TranslationM * RotationM * ScalingM; for (unsigned int j = 0; j < 4; ++j) { keyframes.insert(keyframes.end(), mat[j], mat[j] + 4); } } WriteFloatArray(cur_node_idstr, FloatType_Mat4x4, (const ai_real *)keyframes.data(), keyframes.size() / 16); } { std::vector names; for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { if (nodeAnim->mPreState == aiAnimBehaviour_DEFAULT || nodeAnim->mPreState == aiAnimBehaviour_LINEAR || nodeAnim->mPreState == aiAnimBehaviour_REPEAT) { names.push_back("LINEAR"); } else if (nodeAnim->mPostState == aiAnimBehaviour_CONSTANT) { names.push_back("STEP"); } } const std::string cur_node_idstr2 = nodeAnim->mNodeName.data + std::string("_matrix-interpolation"); std::string arrayId = XMLIDEncode(cur_node_idstr2) + "-array"; mOutput << startstr << "" << endstr; PushTag(); // source array mOutput << startstr << " "; for (size_t aa = 0; aa < names.size(); ++aa) { mOutput << names[aa] << " "; } mOutput << "" << endstr; mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; } } for (size_t a = 0; a < anim->mNumChannels; ++a) { const aiNodeAnim *nodeAnim = anim->mChannels[a]; { // samplers const std::string node_idstr = nodeAnim->mNodeName.data + std::string("_matrix-sampler"); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "mNodeName.data + std::string("_matrix-input")) << "\"/>" << endstr; mOutput << startstr << "mNodeName.data + std::string("_matrix-output")) << "\"/>" << endstr; mOutput << startstr << "mNodeName.data + std::string("_matrix-interpolation")) << "\"/>" << endstr; PopTag(); mOutput << startstr << "" << endstr; } } for (size_t a = 0; a < anim->mNumChannels; ++a) { const aiNodeAnim *nodeAnim = anim->mChannels[a]; { // channels mOutput << startstr << "mNodeName.data + std::string("_matrix-sampler")) << "\" target=\"" << XMLIDEncode(nodeAnim->mNodeName.data) << "/matrix\"/>" << endstr; } } PopTag(); mOutput << startstr << "" << endstr; } // ------------------------------------------------------------------------------------------------ void ColladaExporter::WriteAnimationsLibrary() { if (mScene->mNumAnimations > 0) { mOutput << startstr << "" << endstr; PushTag(); // start recursive write at the root node for (size_t a = 0; a < mScene->mNumAnimations; ++a) WriteAnimationLibrary(a); PopTag(); mOutput << startstr << "" << endstr; } } // ------------------------------------------------------------------------------------------------ // Helper to find a bone by name in the scene aiBone *findBone(const aiScene *scene, const char *name) { for (size_t m = 0; m < scene->mNumMeshes; m++) { aiMesh *mesh = scene->mMeshes[m]; for (size_t b = 0; b < mesh->mNumBones; b++) { aiBone *bone = mesh->mBones[b]; if (0 == strcmp(name, bone->mName.C_Str())) { return bone; } } } return NULL; } // ------------------------------------------------------------------------------------------------ const aiNode *findBoneNode(const aiNode *aNode, const aiBone *bone) { if (aNode && bone && aNode->mName == bone->mName) { return aNode; } if (aNode && bone) { for (unsigned int i = 0; i < aNode->mNumChildren; ++i) { aiNode *aChild = aNode->mChildren[i]; const aiNode *foundFromChild = 0; if (aChild) { foundFromChild = findBoneNode(aChild, bone); if (foundFromChild) return foundFromChild; } } } return NULL; } const aiNode *findSkeletonRootNode(const aiScene *scene, const aiMesh *mesh) { std::set topParentBoneNodes; if (mesh && mesh->mNumBones > 0) { for (unsigned int i = 0; i < mesh->mNumBones; ++i) { aiBone *bone = mesh->mBones[i]; const aiNode *node = findBoneNode(scene->mRootNode, bone); if (node) { while (node->mParent && findBone(scene, node->mParent->mName.C_Str()) != 0) { node = node->mParent; } topParentBoneNodes.insert(node); } } } if (!topParentBoneNodes.empty()) { const aiNode *parentBoneNode = *topParentBoneNodes.begin(); if (topParentBoneNodes.size() == 1) { return parentBoneNode; } else { for (auto it : topParentBoneNodes) { if (it->mParent) return it->mParent; } return parentBoneNode; } } return NULL; } // ------------------------------------------------------------------------------------------------ // Recursively writes the given node void ColladaExporter::WriteNode(const aiScene *pScene, aiNode *pNode) { // the node must have a name if (pNode->mName.length == 0) { std::stringstream ss; ss << "Node_" << pNode; pNode->mName.Set(ss.str()); } // If the node is associated with a bone, it is a joint node (JOINT) // otherwise it is a normal node (NODE) const char *node_type; bool is_joint, is_skeleton_root = false; if (nullptr == findBone(pScene, pNode->mName.C_Str())) { node_type = "NODE"; is_joint = false; } else { node_type = "JOINT"; is_joint = true; if (!pNode->mParent || nullptr == findBone(pScene, pNode->mParent->mName.C_Str())) { is_skeleton_root = true; } } const std::string node_id = XMLIDEncode(pNode->mName.data); const std::string node_name = XMLEscape(pNode->mName.data); mOutput << startstr << "" << endstr; PushTag(); // write transformation - we can directly put the matrix there // TODO: (thom) decompose into scale - rot - quad to allow addressing it by animations afterwards aiMatrix4x4 mat = pNode->mTransformation; // If this node is a Camera node, the camera coordinate system needs to be multiplied in. // When importing from Collada, the mLookAt is set to 0, 0, -1, and the node transform is unchanged. // When importing from a different format, mLookAt is set to 0, 0, 1. Therefore, the local camera // coordinate system must be changed to matche the Collada specification. for (size_t i = 0; i < mScene->mNumCameras; i++) { if (mScene->mCameras[i]->mName == pNode->mName) { aiMatrix4x4 sourceView; mScene->mCameras[i]->GetCameraMatrix(sourceView); aiMatrix4x4 colladaView; colladaView.a1 = colladaView.c3 = -1; // move into -z space. mat *= (sourceView * colladaView); break; } } // customized, sid should be 'matrix' to match with loader code. //mOutput << startstr << ""; mOutput << startstr << ""; mOutput << mat.a1 << " " << mat.a2 << " " << mat.a3 << " " << mat.a4 << " "; mOutput << mat.b1 << " " << mat.b2 << " " << mat.b3 << " " << mat.b4 << " "; mOutput << mat.c1 << " " << mat.c2 << " " << mat.c3 << " " << mat.c4 << " "; mOutput << mat.d1 << " " << mat.d2 << " " << mat.d3 << " " << mat.d4; mOutput << "" << endstr; if (pNode->mNumMeshes == 0) { //check if it is a camera node for (size_t i = 0; i < mScene->mNumCameras; i++) { if (mScene->mCameras[i]->mName == pNode->mName) { mOutput << startstr << "" << endstr; break; } } //check if it is a light node for (size_t i = 0; i < mScene->mNumLights; i++) { if (mScene->mLights[i]->mName == pNode->mName) { mOutput << startstr << "" << endstr; break; } } } else // instance every geometry for (size_t a = 0; a < pNode->mNumMeshes; ++a) { const aiMesh *mesh = mScene->mMeshes[pNode->mMeshes[a]]; // do not instantiate mesh if empty. I wonder how this could happen if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0) continue; const std::string meshName = mesh->mName.length == 0 ? GetMeshId(pNode->mMeshes[a]) : mesh->mName.C_Str(); if (mesh->mNumBones == 0) { mOutput << startstr << "" << endstr; PushTag(); } else { mOutput << startstr << "" << endstr; PushTag(); // note! this mFoundSkeletonRootNodeID some how affects animation, it makes the mesh attaches to armature skeleton root node. // use the first bone to find skeleton root const aiNode *skeletonRootBoneNode = findSkeletonRootNode(pScene, mesh); if (skeletonRootBoneNode) { mFoundSkeletonRootNodeID = XMLIDEncode(skeletonRootBoneNode->mName.C_Str()); } mOutput << startstr << "#" << mFoundSkeletonRootNodeID << "" << endstr; } mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "" << endstr; PushTag(); mOutput << startstr << "mMaterialIndex].name) << "\">" << endstr; PushTag(); for (size_t aa = 0; aa < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++aa) { if (mesh->HasTextureCoords(static_cast(aa))) // semantic as in // input_semantic as in // input_set as in mOutput << startstr << "" << endstr; } PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); mOutput << startstr << "" << endstr; PopTag(); if (mesh->mNumBones == 0) mOutput << startstr << "" << endstr; else mOutput << startstr << "" << endstr; } // recurse into subnodes for (size_t a = 0; a < pNode->mNumChildren; ++a) WriteNode(pScene, pNode->mChildren[a]); PopTag(); mOutput << startstr << "" << endstr; } #endif #endif