/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file LWOLoader.cpp * @brief Implementation of the LWO importer class */ #ifndef ASSIMP_BUILD_NO_LWO_IMPORTER // internal headers #include "AssetLib/LWO/LWOLoader.h" #include "PostProcessing/ConvertToLHProcess.h" #include "PostProcessing/ProcessHelper.h" #include #include #include #include #include #include #include #include #include using namespace Assimp; static const aiImporterDesc desc = { "LightWave/Modo Object Importer", "", "", "https://www.lightwave3d.com/lightwave_sdk/", aiImporterFlags_SupportTextFlavour, 0, 0, 0, 0, "lwo lxo" }; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer LWOImporter::LWOImporter() : mIsLWO2(), mIsLXOB(), mIsLWO3(), mLayers(), mCurLayer(), mTags(), mMapping(), mSurfaces(), mFileBuffer(), fileSize(), mScene(nullptr), configSpeedFlag(), configLayerIndex(), hasNamedLayer() { // empty } // ------------------------------------------------------------------------------------------------ // Destructor, private as well LWOImporter::~LWOImporter() = default; // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool LWOImporter::CanRead(const std::string &file, IOSystem *pIOHandler, bool /*checkSig*/) const { static const uint32_t tokens[] = { AI_LWO_FOURCC_LWOB, AI_LWO_FOURCC_LWO2, AI_LWO_FOURCC_LXOB }; return CheckMagicToken(pIOHandler, file, tokens, AI_COUNT_OF(tokens), 8); } // ------------------------------------------------------------------------------------------------ // Setup configuration properties void LWOImporter::SetupProperties(const Importer *pImp) { configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED, 0) ? true : false); configLayerIndex = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_LWO_ONE_LAYER_ONLY, UINT_MAX); configLayerName = pImp->GetPropertyString(AI_CONFIG_IMPORT_LWO_ONE_LAYER_ONLY, ""); } // ------------------------------------------------------------------------------------------------ // Get list of file extensions const aiImporterDesc *LWOImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void LWOImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { std::unique_ptr file(pIOHandler->Open(pFile, "rb")); // Check whether we can read from the file if (file == nullptr) { throw DeadlyImportError("Failed to open LWO file ", pFile, "."); } if ((this->fileSize = (unsigned int)file->FileSize()) < 12) { throw DeadlyImportError("LWO: The file is too small to contain the IFF header"); } // Allocate storage and copy the contents of the file to a memory buffer std::vector mBuffer(fileSize); file->Read(&mBuffer[0], 1, fileSize); mScene = pScene; // Determine the type of the file uint32_t fileType; const char *sz = IFF::ReadHeader(&mBuffer[0], fileType); if (sz) { throw DeadlyImportError(sz); } mFileBuffer = &mBuffer[0] + 12; fileSize -= 12; // Initialize some members with their default values hasNamedLayer = false; // Create temporary storage on the stack but store pointers to it in the class // instance. Therefore everything will be destructed properly if an exception // is thrown and we needn't take care of that. LayerList _mLayers; SurfaceList _mSurfaces; TagList _mTags; TagMappingTable _mMapping; mLayers = &_mLayers; mTags = &_mTags; mMapping = &_mMapping; mSurfaces = &_mSurfaces; // Allocate a default layer (layer indices are 1-based from now) mLayers->push_back(Layer()); mCurLayer = &mLayers->back(); mCurLayer->mName = ""; mCurLayer->mIndex = 1; // old lightwave file format (prior to v6) mIsLWO2 = false; mIsLWO3 = false; mIsLXOB = false; if (AI_LWO_FOURCC_LWOB == fileType) { ASSIMP_LOG_INFO("LWO file format: LWOB (<= LightWave 5.5)"); LoadLWOBFile(); } else if (AI_LWO_FOURCC_LWO2 == fileType) { // New lightwave format ASSIMP_LOG_INFO("LWO file format: LWO2 (>= LightWave 6)"); } else if ( AI_LWO_FOURCC_LWO3 == fileType ) { ASSIMP_LOG_INFO("LWO file format: LWO3 (>= LightWave 2018)"); } else if (AI_LWO_FOURCC_LXOB == fileType) { // MODO file format mIsLXOB = true; ASSIMP_LOG_INFO("LWO file format: LXOB (Modo)"); } else { char szBuff[5]; szBuff[0] = (char)(fileType >> 24u); szBuff[1] = (char)(fileType >> 16u); szBuff[2] = (char)(fileType >> 8u); szBuff[3] = (char)(fileType); szBuff[4] = '\0'; throw DeadlyImportError("Unknown LWO sub format: ", szBuff); } if (AI_LWO_FOURCC_LWOB != fileType) { // if( AI_LWO_FOURCC_LWO3 == fileType ) { mIsLWO3 = true; } else { mIsLWO2 = true; } LoadLWO2File(); // The newer lightwave format allows the user to configure the // loader that just one layer is used. If this is the case // we need to check now whether the requested layer has been found. if (UINT_MAX != configLayerIndex) { unsigned int layerCount = 0; for (std::list::iterator itLayers = mLayers->begin(); itLayers != mLayers->end(); ++itLayers) if (!itLayers->skip) layerCount++; if (layerCount != 2) throw DeadlyImportError("LWO2: The requested layer was not found"); } if (configLayerName.length() && !hasNamedLayer) { throw DeadlyImportError("LWO2: Unable to find the requested layer: ", configLayerName); } } // now, as we have loaded all data, we can resolve cross-referenced tags and clips ResolveTags(); ResolveClips(); // now process all layers and build meshes and nodes std::vector apcMeshes; std::map apcNodes; apcMeshes.reserve(mLayers->size() * std::min(((unsigned int)mSurfaces->size() / 2u), 1u)); unsigned int iDefaultSurface = UINT_MAX; // index of the default surface for (LWO::Layer &layer : *mLayers) { if (layer.skip) continue; // I don't know whether there could be dummy layers, but it would be possible const unsigned int meshStart = (unsigned int)apcMeshes.size(); if (!layer.mFaces.empty() && !layer.mTempPoints.empty()) { // now sort all faces by the surfaces assigned to them std::vector pSorted(mSurfaces->size() + 1); unsigned int i = 0; for (FaceList::iterator it = layer.mFaces.begin(), end = layer.mFaces.end(); it != end; ++it, ++i) { // Check whether we support this face's type if ((*it).type != AI_LWO_FACE && (*it).type != AI_LWO_PTCH && (*it).type != AI_LWO_BONE && (*it).type != AI_LWO_SUBD) { continue; } unsigned int idx = (*it).surfaceIndex; if (idx >= mTags->size()) { ASSIMP_LOG_WARN("LWO: Invalid face surface index"); idx = UINT_MAX; } if (UINT_MAX == idx || UINT_MAX == (idx = _mMapping[idx])) { if (UINT_MAX == iDefaultSurface) { iDefaultSurface = (unsigned int)mSurfaces->size(); mSurfaces->push_back(LWO::Surface()); LWO::Surface &surf = mSurfaces->back(); surf.mColor.r = surf.mColor.g = surf.mColor.b = 0.6f; surf.mName = "LWODefaultSurface"; } idx = iDefaultSurface; } pSorted[idx].push_back(i); } if (UINT_MAX == iDefaultSurface) { pSorted.erase(pSorted.end() - 1); } for (unsigned int j = 0; j < mSurfaces->size(); ++j) { SortedRep &sorted = pSorted[j]; if (sorted.empty()) continue; // generate the mesh aiMesh *mesh = new aiMesh(); apcMeshes.push_back(mesh); mesh->mNumFaces = (unsigned int)sorted.size(); // count the number of vertices SortedRep::const_iterator it = sorted.begin(), end = sorted.end(); for (; it != end; ++it) { mesh->mNumVertices += layer.mFaces[*it].mNumIndices; } aiVector3D *nrm = nullptr, *pv = mesh->mVertices = new aiVector3D[mesh->mNumVertices]; aiFace *pf = mesh->mFaces = new aiFace[mesh->mNumFaces]; mesh->mMaterialIndex = j; // find out which vertex color channels and which texture coordinate // channels are really required by the material attached to this mesh unsigned int vUVChannelIndices[AI_MAX_NUMBER_OF_TEXTURECOORDS]; unsigned int vVColorIndices[AI_MAX_NUMBER_OF_COLOR_SETS]; #ifdef ASSIMP_BUILD_DEBUG for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++mui) { vUVChannelIndices[mui] = UINT_MAX; } for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_COLOR_SETS; ++mui) { vVColorIndices[mui] = UINT_MAX; } #endif FindUVChannels(_mSurfaces[j], sorted, layer, vUVChannelIndices); FindVCChannels(_mSurfaces[j], sorted, layer, vVColorIndices); // allocate storage for UV and CV channels aiVector3D *pvUV[AI_MAX_NUMBER_OF_TEXTURECOORDS]; for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++mui) { if (UINT_MAX == vUVChannelIndices[mui]) { break; } pvUV[mui] = mesh->mTextureCoords[mui] = new aiVector3D[mesh->mNumVertices]; // LightWave doesn't support more than 2 UV components (?) mesh->mNumUVComponents[0] = 2; } if (layer.mNormals.name.length()) { nrm = mesh->mNormals = new aiVector3D[mesh->mNumVertices]; } aiColor4D *pvVC[AI_MAX_NUMBER_OF_COLOR_SETS]; for (unsigned int mui = 0; mui < AI_MAX_NUMBER_OF_COLOR_SETS; ++mui) { if (UINT_MAX == vVColorIndices[mui]) { break; } pvVC[mui] = mesh->mColors[mui] = new aiColor4D[mesh->mNumVertices]; } // we would not need this extra array, but the code is much cleaner if we use it std::vector &smoothingGroups = layer.mPointReferrers; smoothingGroups.erase(smoothingGroups.begin(), smoothingGroups.end()); smoothingGroups.resize(mesh->mNumFaces, 0); // now convert all faces unsigned int vert = 0; std::vector::iterator outIt = smoothingGroups.begin(); for (it = sorted.begin(); it != end; ++it, ++outIt) { const LWO::Face &face = layer.mFaces[*it]; *outIt = face.smoothGroup; // copy all vertices for (unsigned int q = 0; q < face.mNumIndices; ++q, ++vert) { unsigned int idx = face.mIndices[q]; *pv++ = layer.mTempPoints[idx] /*- layer.mPivot*/; // process UV coordinates for (unsigned int w = 0; w < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++w) { if (UINT_MAX == vUVChannelIndices[w]) { break; } aiVector3D *&pp = pvUV[w]; const aiVector2D &src = ((aiVector2D *)&layer.mUVChannels[vUVChannelIndices[w]].rawData[0])[idx]; pp->x = src.x; pp->y = src.y; pp++; } // process normals (MODO extension) if (nrm) { *nrm = ((aiVector3D *)&layer.mNormals.rawData[0])[idx]; nrm->z *= -1.f; ++nrm; } // process vertex colors for (unsigned int w = 0; w < AI_MAX_NUMBER_OF_COLOR_SETS; ++w) { if (UINT_MAX == vVColorIndices[w]) { break; } *pvVC[w] = ((aiColor4D *)&layer.mVColorChannels[vVColorIndices[w]].rawData[0])[idx]; // If a RGB color map is explicitly requested delete the // alpha channel - it could theoretically be != 1. if (_mSurfaces[j].mVCMapType == AI_LWO_RGB) pvVC[w]->a = 1.f; pvVC[w]++; } face.mIndices[q] = vert; } pf->mIndices = face.mIndices; pf->mNumIndices = face.mNumIndices; unsigned int **facePtr = (unsigned int **)&face.mIndices; *facePtr = nullptr; // HACK: make sure it won't be deleted pf++; } if (!mesh->mNormals) { // Compute normal vectors for the mesh - we can't use our GenSmoothNormal- // Step here since it wouldn't handle smoothing groups correctly for LWO. // So we use a separate implementation. ComputeNormals(mesh, smoothingGroups, _mSurfaces[j]); } else { ASSIMP_LOG_VERBOSE_DEBUG("LWO2: No need to compute normals, they're already there"); } } } // Generate nodes to render the mesh. Store the source layer in the mParent member of the nodes unsigned int num = static_cast(apcMeshes.size() - meshStart); if (layer.mName != "" || num > 0) { std::unique_ptr pcNode(new aiNode()); pcNode->mName.Set(layer.mName); pcNode->mParent = (aiNode *)&layer; pcNode->mNumMeshes = num; if (pcNode->mNumMeshes) { pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes]; for (unsigned int p = 0; p < pcNode->mNumMeshes; ++p) pcNode->mMeshes[p] = p + meshStart; } ASSIMP_LOG_DEBUG("insert apcNode for layer ", layer.mIndex, " \"", layer.mName, "\""); apcNodes[layer.mIndex] = pcNode.release(); } } if (apcNodes.empty() || apcMeshes.empty()) throw DeadlyImportError("LWO: No meshes loaded"); // The RemoveRedundantMaterials step will clean this up later pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials = (unsigned int)mSurfaces->size()]; for (unsigned int mat = 0; mat < pScene->mNumMaterials; ++mat) { aiMaterial *pcMat = new aiMaterial(); pScene->mMaterials[mat] = pcMat; ConvertMaterial((*mSurfaces)[mat], pcMat); } // copy the meshes to the output structure pScene->mMeshes = new aiMesh *[pScene->mNumMeshes = (unsigned int)apcMeshes.size()]; ::memcpy(pScene->mMeshes, &apcMeshes[0], pScene->mNumMeshes * sizeof(void *)); // generate the final node graph GenerateNodeGraph(apcNodes); } // ------------------------------------------------------------------------------------------------ void LWOImporter::ComputeNormals(aiMesh *mesh, const std::vector &smoothingGroups, const LWO::Surface &surface) { // Allocate output storage mesh->mNormals = new aiVector3D[mesh->mNumVertices]; // First generate per-face normals aiVector3D *out; std::vector faceNormals; // ... in some cases that's already enough if (!surface.mMaximumSmoothAngle) out = mesh->mNormals; else { faceNormals.resize(mesh->mNumVertices); out = &faceNormals[0]; } aiFace *begin = mesh->mFaces, *const end = mesh->mFaces + mesh->mNumFaces; for (; begin != end; ++begin) { aiFace &face = *begin; if (face.mNumIndices < 3) { continue; } // LWO doc: "the normal is defined as the cross product of the first and last edges" aiVector3D *pV1 = mesh->mVertices + face.mIndices[0]; aiVector3D *pV2 = mesh->mVertices + face.mIndices[1]; aiVector3D *pV3 = mesh->mVertices + face.mIndices[face.mNumIndices - 1]; aiVector3D vNor = ((*pV2 - *pV1) ^ (*pV3 - *pV1)).Normalize(); for (unsigned int i = 0; i < face.mNumIndices; ++i) out[face.mIndices[i]] = vNor; } if (!surface.mMaximumSmoothAngle) return; const float posEpsilon = ComputePositionEpsilon(mesh); // Now generate the spatial sort tree SGSpatialSort sSort; std::vector::const_iterator it = smoothingGroups.begin(); for (begin = mesh->mFaces; begin != end; ++begin, ++it) { aiFace &face = *begin; for (unsigned int i = 0; i < face.mNumIndices; ++i) { unsigned int tt = face.mIndices[i]; sSort.Add(mesh->mVertices[tt], tt, *it); } } // Sort everything - this takes O(nlogn) time sSort.Prepare(); std::vector poResult; poResult.reserve(20); // Generate vertex normals. We have O(logn) for the binary lookup, which we need // for n elements, thus the EXPECTED complexity is O(nlogn) if (surface.mMaximumSmoothAngle < 3.f && !configSpeedFlag) { const float fLimit = std::cos(surface.mMaximumSmoothAngle); for (begin = mesh->mFaces, it = smoothingGroups.begin(); begin != end; ++begin, ++it) { const aiFace &face = *begin; unsigned int *beginIdx = face.mIndices, *const endIdx = face.mIndices + face.mNumIndices; for (; beginIdx != endIdx; ++beginIdx) { unsigned int idx = *beginIdx; sSort.FindPositions(mesh->mVertices[idx], *it, posEpsilon, poResult, true); aiVector3D vNormals; for (std::vector::const_iterator a = poResult.begin(); a != poResult.end(); ++a) { const aiVector3D &v = faceNormals[*a]; if (v * faceNormals[idx] < fLimit) continue; vNormals += v; } mesh->mNormals[idx] = vNormals.Normalize(); } } } // faster code path in case there is no smooth angle else { std::vector vertexDone(mesh->mNumVertices, false); for (begin = mesh->mFaces, it = smoothingGroups.begin(); begin != end; ++begin, ++it) { const aiFace &face = *begin; unsigned int *beginIdx = face.mIndices, *const endIdx = face.mIndices + face.mNumIndices; for (; beginIdx != endIdx; ++beginIdx) { unsigned int idx = *beginIdx; if (vertexDone[idx]) continue; sSort.FindPositions(mesh->mVertices[idx], *it, posEpsilon, poResult, true); aiVector3D vNormals; for (std::vector::const_iterator a = poResult.begin(); a != poResult.end(); ++a) { const aiVector3D &v = faceNormals[*a]; vNormals += v; } vNormals.Normalize(); for (std::vector::const_iterator a = poResult.begin(); a != poResult.end(); ++a) { mesh->mNormals[*a] = vNormals; vertexDone[*a] = true; } } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::GenerateNodeGraph(std::map &apcNodes) { // now generate the final nodegraph - generate a root node and attach children aiNode *root = mScene->mRootNode = new aiNode(); root->mName.Set(""); ASSIMP_LOG_DEBUG("apcNodes initial size: ", apcNodes.size()); if (!apcNodes.empty()) { ASSIMP_LOG_DEBUG("first apcNode is: ", apcNodes.begin()->first, " \"", apcNodes.begin()->second->mName.C_Str(), "\""); } //Set parent of all children, inserting pivots { std::map mapPivot; for (auto itapcNodes = apcNodes.begin(); itapcNodes != apcNodes.end(); ++itapcNodes) { //Get the parent index LWO::Layer *nodeLayer = (LWO::Layer *)(itapcNodes->second->mParent); uint16_t parentIndex = nodeLayer->mParent; //Create pivot node, store it into the pivot map, and set the parent as the pivot std::unique_ptr pivotNode(new aiNode()); pivotNode->mName.Set("Pivot-" + std::string(itapcNodes->second->mName.data)); itapcNodes->second->mParent = pivotNode.get(); //Look for the parent node to attach the pivot to if (apcNodes.find(parentIndex) != apcNodes.end()) { pivotNode->mParent = apcNodes[parentIndex]; } else { //If not, attach to the root node pivotNode->mParent = root; } //Set the node and the pivot node transformation itapcNodes->second->mTransformation.a4 = -nodeLayer->mPivot.x; itapcNodes->second->mTransformation.b4 = -nodeLayer->mPivot.y; itapcNodes->second->mTransformation.c4 = -nodeLayer->mPivot.z; pivotNode->mTransformation.a4 = nodeLayer->mPivot.x; pivotNode->mTransformation.b4 = nodeLayer->mPivot.y; pivotNode->mTransformation.c4 = nodeLayer->mPivot.z; uint16_t pivotNodeId = static_cast(-(itapcNodes->first + 2)); ASSIMP_LOG_DEBUG("insert pivot node: ", pivotNodeId); auto oldNodeIt = mapPivot.find(pivotNodeId); if (oldNodeIt != mapPivot.end()) { ASSIMP_LOG_ERROR("attempted to insert pivot node which already exists in pivot map ", pivotNodeId, " \"", pivotNode->mName.C_Str(), "\""); } else { mapPivot.emplace(pivotNodeId, pivotNode.release()); } } ASSIMP_LOG_DEBUG("pivot nodes: ", mapPivot.size()); //Merge pivot map into node map for (auto itMapPivot = mapPivot.begin(); itMapPivot != mapPivot.end();) { uint16_t pivotNodeId = itMapPivot->first; auto oldApcNodeIt = apcNodes.find(pivotNodeId); if (oldApcNodeIt != apcNodes.end()) { ASSIMP_LOG_ERROR("attempted to insert pivot node which already exists in apc nodes ", pivotNodeId, " \"", itMapPivot->second->mName.C_Str(), "\""); } else { apcNodes.emplace(pivotNodeId, itMapPivot->second); } itMapPivot->second = nullptr; itMapPivot = mapPivot.erase(itMapPivot); } ASSIMP_LOG_DEBUG("total nodes: ", apcNodes.size()); } //Set children of all parents apcNodes[(uint16_t)-1] = root; for (auto itMapParentNodes = apcNodes.begin(); itMapParentNodes != apcNodes.end(); ++itMapParentNodes) { for (auto itMapChildNodes = apcNodes.begin(); itMapChildNodes != apcNodes.end(); ++itMapChildNodes) { if ((itMapParentNodes->first != itMapChildNodes->first) && (itMapParentNodes->second == itMapChildNodes->second->mParent)) { ++(itMapParentNodes->second->mNumChildren); } } if (itMapParentNodes->second->mNumChildren) { itMapParentNodes->second->mChildren = new aiNode *[itMapParentNodes->second->mNumChildren]; uint16_t p = 0; for (auto itMapChildNodes = apcNodes.begin(); itMapChildNodes != apcNodes.end(); ++itMapChildNodes) { if ((itMapParentNodes->first != itMapChildNodes->first) && (itMapParentNodes->second == itMapChildNodes->second->mParent)) { itMapParentNodes->second->mChildren[p++] = itMapChildNodes->second; } } } } if (!mScene->mRootNode->mNumChildren) { ASSIMP_LOG_DEBUG("All apcNodes:"); for (auto nodeIt = apcNodes.begin(); nodeIt != apcNodes.end(); ) { ASSIMP_LOG_DEBUG("Node ", nodeIt->first, " \"", nodeIt->second->mName.C_Str(), "\""); nodeIt->second = nullptr; nodeIt = apcNodes.erase(nodeIt); } throw DeadlyImportError("LWO: Unable to build a valid node graph"); } // Remove a single root node with no meshes assigned to it ... if (1 == mScene->mRootNode->mNumChildren) { aiNode *pc = mScene->mRootNode->mChildren[0]; pc->mParent = mScene->mRootNode->mChildren[0] = nullptr; delete mScene->mRootNode; mScene->mRootNode = pc; } // convert the whole stuff to RH with CCW winding MakeLeftHandedProcess maker; maker.Execute(mScene); FlipWindingOrderProcess flipper; flipper.Execute(mScene); } // ------------------------------------------------------------------------------------------------ void LWOImporter::ResolveTags() { // --- this function is used for both LWO2 and LWOB mMapping->resize(mTags->size(), UINT_MAX); for (unsigned int a = 0; a < mTags->size(); ++a) { const std::string &c = (*mTags)[a]; for (unsigned int i = 0; i < mSurfaces->size(); ++i) { const std::string &d = (*mSurfaces)[i].mName; if (!ASSIMP_stricmp(c, d)) { (*mMapping)[a] = i; break; } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::ResolveClips() { for (unsigned int i = 0; i < mClips.size(); ++i) { Clip &clip = mClips[i]; if (Clip::REF == clip.type) { if (clip.clipRef >= mClips.size()) { ASSIMP_LOG_ERROR("LWO2: Clip referrer index is out of range"); clip.clipRef = 0; } Clip &dest = mClips[clip.clipRef]; if (Clip::REF == dest.type) { ASSIMP_LOG_ERROR("LWO2: Clip references another clip reference"); clip.type = Clip::UNSUPPORTED; } else { clip.path = dest.path; clip.type = dest.type; } } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::AdjustTexturePath(std::string &out) { // --- this function is used for both LWO2 and LWOB if (!mIsLWO2 && !mIsLWO3 && ::strstr(out.c_str(), "(sequence)")) { // remove the (sequence) and append 000 ASSIMP_LOG_INFO("LWOB: Sequence of animated texture found. It will be ignored"); out = out.substr(0, out.length() - 10) + "000"; } // format: drive:path/file - we just need to insert a slash after the drive std::string::size_type n = out.find_first_of(':'); if (std::string::npos != n) { out.insert(n + 1, "/"); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWOTags(unsigned int size) { // --- this function is used for both LWO2 and LWOB const char *szCur = (const char *)mFileBuffer, *szLast = szCur; const char *const szEnd = szLast + size; while (szCur < szEnd) { if (!(*szCur)) { const size_t len = (size_t)(szCur - szLast); // FIX: skip empty-sized tags if (len) mTags->push_back(std::string(szLast, len)); szCur += (len & 0x1 ? 1 : 2); szLast = szCur; } szCur++; } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWOPoints(unsigned int length) { // --- this function is used for both LWO2 and LWOB but for // LWO2 we need to allocate 25% more storage - it could be we'll // need to duplicate some points later. const size_t vertexLen = 12; if ((length % vertexLen) != 0) { throw DeadlyImportError("LWO2: Points chunk length is not multiple of vertexLen (12)"); } unsigned int regularSize = (unsigned int)mCurLayer->mTempPoints.size() + length / 12; if (mIsLWO2 || mIsLWO3) { mCurLayer->mTempPoints.reserve(regularSize + (regularSize >> 2u)); mCurLayer->mTempPoints.resize(regularSize); // initialize all point referrers with the default values mCurLayer->mPointReferrers.reserve(regularSize + (regularSize >> 2u)); mCurLayer->mPointReferrers.resize(regularSize, UINT_MAX); } else mCurLayer->mTempPoints.resize(regularSize); // perform endianness conversions #ifndef AI_BUILD_BIG_ENDIAN for (unsigned int i = 0; i> 2; ++i) ByteSwap::Swap4(mFileBuffer + (i << 2)); #endif ::memcpy(&mCurLayer->mTempPoints[0], mFileBuffer, length); } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2Polygons(unsigned int length) { LE_NCONST uint16_t *const end = (LE_NCONST uint16_t *)(mFileBuffer + length); const uint32_t type = GetU4(); // Determine the type of the polygons switch (type) { // read unsupported stuff too (although we won't process it) case AI_LWO_MBAL: ASSIMP_LOG_WARN("LWO2: Encountered unsupported primitive chunk (METABALL)"); break; case AI_LWO_CURV: ASSIMP_LOG_WARN("LWO2: Encountered unsupported primitive chunk (SPLINE)"); ; break; // These are ok with no restrictions case AI_LWO_PTCH: case AI_LWO_FACE: case AI_LWO_BONE: case AI_LWO_SUBD: break; default: // hm!? wtf is this? ok ... ASSIMP_LOG_ERROR("LWO2: Ignoring unknown polygon type."); break; } // first find out how many faces and vertices we'll finally need uint16_t *cursor = (uint16_t *)mFileBuffer; unsigned int iNumFaces = 0, iNumVertices = 0; CountVertsAndFacesLWO2(iNumVertices, iNumFaces, cursor, end); // allocate the output array and copy face indices if (iNumFaces) { cursor = (uint16_t *)mFileBuffer; mCurLayer->mFaces.resize(iNumFaces, LWO::Face(type)); FaceList::iterator it = mCurLayer->mFaces.begin(); CopyFaceIndicesLWO2(it, cursor, end); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::CountVertsAndFacesLWO2(unsigned int &verts, unsigned int &faces, uint16_t *&cursor, const uint16_t *const end, unsigned int max) { while (cursor < end && max--) { uint16_t numIndices; ::memcpy(&numIndices, cursor++, 2); AI_LSWAP2(numIndices); numIndices &= 0x03FF; verts += numIndices; ++faces; for (uint16_t i = 0; i < numIndices; i++) { ReadVSizedIntLWO2((uint8_t *&)cursor); } } } // ------------------------------------------------------------------------------------------------ void LWOImporter::CopyFaceIndicesLWO2(FaceList::iterator &it, uint16_t *&cursor, const uint16_t *const end) { while (cursor < end) { LWO::Face &face = *it++; uint16_t numIndices; ::memcpy(&numIndices, cursor++, 2); AI_LSWAP2(numIndices); face.mNumIndices = numIndices & 0x03FF; if (face.mNumIndices) /* byte swapping has already been done */ { face.mIndices = new unsigned int[face.mNumIndices]; for (unsigned int i = 0; i < face.mNumIndices; i++) { face.mIndices[i] = ReadVSizedIntLWO2((uint8_t *&)cursor) + mCurLayer->mPointIDXOfs; if (face.mIndices[i] > mCurLayer->mTempPoints.size()) { ASSIMP_LOG_WARN("LWO2: Failure evaluating face record, index is out of range"); face.mIndices[i] = (unsigned int)mCurLayer->mTempPoints.size() - 1; } } } else throw DeadlyImportError("LWO2: Encountered invalid face record with zero indices"); } } // ------------------------------------------------------------------------------------------------ void LWOImporter::LoadLWO2PolygonTags(unsigned int length) { LE_NCONST uint8_t *const end = mFileBuffer + length; AI_LWO_VALIDATE_CHUNK_LENGTH(length, PTAG, 4); uint32_t type = GetU4(); if (type != AI_LWO_SURF && type != AI_LWO_SMGP) return; while (mFileBuffer < end) { unsigned int i = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mFaceIDXOfs; unsigned int j = GetU2(); if (i >= mCurLayer->mFaces.size()) { ASSIMP_LOG_WARN("LWO2: face index in PTAG is out of range"); continue; } switch (type) { case AI_LWO_SURF: mCurLayer->mFaces[i].surfaceIndex = j; break; case AI_LWO_SMGP: /* is that really used? */ mCurLayer->mFaces[i].smoothGroup = j; break; }; } } // ------------------------------------------------------------------------------------------------ template VMapEntry *FindEntry(std::vector &list, const std::string &name, bool perPoly) { for (auto &elem : list) { if (elem.name == name) { if (!perPoly) { ASSIMP_LOG_WARN("LWO2: Found two VMAP sections with equal names"); } return &elem; } } list.push_back(T()); VMapEntry *p = &list.back(); p->name = name; return p; } // ------------------------------------------------------------------------------------------------ template inline void CreateNewEntry(T &chan, unsigned int srcIdx) { if (!chan.name.length()) return; chan.abAssigned[srcIdx] = true; chan.abAssigned.resize(chan.abAssigned.size() + 1, false); for (unsigned int a = 0; a < chan.dims; ++a) chan.rawData.push_back(chan.rawData[srcIdx * chan.dims + a]); } // ------------------------------------------------------------------------------------------------ template inline void CreateNewEntry(std::vector &list, unsigned int srcIdx) { for (auto &elem : list) { CreateNewEntry(elem, srcIdx); } } // ------------------------------------------------------------------------------------------------ inline void LWOImporter::DoRecursiveVMAPAssignment(VMapEntry *base, unsigned int numRead, unsigned int idx, float *data) { ai_assert(nullptr != data); LWO::ReferrerList &refList = mCurLayer->mPointReferrers; unsigned int i; if (idx >= base->abAssigned.size()) { throw DeadlyImportError("Bad index"); } base->abAssigned[idx] = true; for (i = 0; i < numRead; ++i) { base->rawData[idx * base->dims + i] = data[i]; } if (UINT_MAX != (i = refList[idx])) { DoRecursiveVMAPAssignment(base, numRead, i, data); } } // ------------------------------------------------------------------------------------------------ inline void AddToSingleLinkedList(ReferrerList &refList, unsigned int srcIdx, unsigned int destIdx) { if (UINT_MAX == refList[srcIdx]) { refList[srcIdx] = destIdx; return; } AddToSingleLinkedList(refList, refList[srcIdx], destIdx); } // ------------------------------------------------------------------------------------------------ // Load LWO2 vertex map void LWOImporter::LoadLWO2VertexMap(unsigned int length, bool perPoly) { LE_NCONST uint8_t *const end = mFileBuffer + length; AI_LWO_VALIDATE_CHUNK_LENGTH(length, VMAP, 6); unsigned int type = GetU4(); unsigned int dims = GetU2(); VMapEntry *base; // read the name of the vertex map std::string name; GetS0(name, length); switch (type) { case AI_LWO_TXUV: if (dims != 2) { ASSIMP_LOG_WARN("LWO2: Skipping UV channel \'", name, "\' with !2 components"); return; } base = FindEntry(mCurLayer->mUVChannels, name, perPoly); break; case AI_LWO_WGHT: case AI_LWO_MNVW: if (dims != 1) { ASSIMP_LOG_WARN("LWO2: Skipping Weight Channel \'", name, "\' with !1 components"); return; } base = FindEntry((type == AI_LWO_WGHT ? mCurLayer->mWeightChannels : mCurLayer->mSWeightChannels), name, perPoly); break; case AI_LWO_RGB: case AI_LWO_RGBA: if (dims != 3 && dims != 4) { ASSIMP_LOG_WARN("LWO2: Skipping Color Map \'", name, "\' with a dimension > 4 or < 3"); return; } base = FindEntry(mCurLayer->mVColorChannels, name, perPoly); break; case AI_LWO_MODO_NORM: /* This is a non-standard extension chunk used by Luxology's MODO. * It stores per-vertex normals. This VMAP exists just once, has * 3 dimensions and is btw extremely beautiful. */ if (name != "vert_normals" || dims != 3 || mCurLayer->mNormals.name.length()) return; ASSIMP_LOG_INFO("Processing non-standard extension: MODO VMAP.NORM.vert_normals"); mCurLayer->mNormals.name = name; base = &mCurLayer->mNormals; break; case AI_LWO_PICK: /* these VMAPs are just silently dropped */ case AI_LWO_MORF: case AI_LWO_SPOT: return; default: if (name == "APS.Level") { // XXX handle this (seems to be subdivision-related). } ASSIMP_LOG_WARN("LWO2: Skipping unknown VMAP/VMAD channel \'", name, "\'"); return; }; base->Allocate((unsigned int)mCurLayer->mTempPoints.size()); // now read all entries in the map type = std::min(dims, base->dims); const unsigned int diff = (dims - type) << 2u; LWO::FaceList &list = mCurLayer->mFaces; LWO::PointList &pointList = mCurLayer->mTempPoints; LWO::ReferrerList &refList = mCurLayer->mPointReferrers; const unsigned int numPoints = (unsigned int)pointList.size(); const unsigned int numFaces = (unsigned int)list.size(); while (mFileBuffer < end) { unsigned int idx = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mPointIDXOfs; if (idx >= numPoints) { ASSIMP_LOG_WARN("LWO2: Failure evaluating VMAP/VMAD entry \'", name, "\', vertex index is out of range"); mFileBuffer += base->dims << 2u; continue; } if (perPoly) { unsigned int polyIdx = ReadVSizedIntLWO2(mFileBuffer) + mCurLayer->mFaceIDXOfs; if (base->abAssigned[idx]) { // we have already a VMAP entry for this vertex - thus // we need to duplicate the corresponding polygon. if (polyIdx >= numFaces) { ASSIMP_LOG_WARN("LWO2: Failure evaluating VMAD entry \'", name, "\', polygon index is out of range"); mFileBuffer += base->dims << 2u; continue; } LWO::Face &src = list[polyIdx]; // generate a new unique vertex for the corresponding index - but only // if we can find the index in the face bool had = false; for (unsigned int i = 0; i < src.mNumIndices; ++i) { unsigned int srcIdx = src.mIndices[i], tmp = idx; do { if (tmp == srcIdx) break; } while ((tmp = refList[tmp]) != UINT_MAX); if (tmp == UINT_MAX) { continue; } had = true; refList.resize(refList.size() + 1, UINT_MAX); idx = (unsigned int)pointList.size(); src.mIndices[i] = (unsigned int)pointList.size(); // store the index of the new vertex in the old vertex // so we get a single linked list we can traverse in // only one direction AddToSingleLinkedList(refList, srcIdx, src.mIndices[i]); pointList.push_back(pointList[srcIdx]); CreateNewEntry(mCurLayer->mVColorChannels, srcIdx); CreateNewEntry(mCurLayer->mUVChannels, srcIdx); CreateNewEntry(mCurLayer->mWeightChannels, srcIdx); CreateNewEntry(mCurLayer->mSWeightChannels, srcIdx); CreateNewEntry(mCurLayer->mNormals, srcIdx); } if (!had) { ASSIMP_LOG_WARN("LWO2: Failure evaluating VMAD entry \'", name, "\', vertex index wasn't found in that polygon"); ai_assert(had); } } } std::unique_ptr temp(new float[type]); for (unsigned int l = 0; l < type; ++l) temp[l] = GetF4(); DoRecursiveVMAPAssignment(base, type, idx, temp.get()); mFileBuffer += diff; } } // ------------------------------------------------------------------------------------------------ // Load LWO2 clip void LWOImporter::LoadLWO2Clip(unsigned int length) { AI_LWO_VALIDATE_CHUNK_LENGTH(length, CLIP, 10); mClips.emplace_back(); LWO::Clip &clip = mClips.back(); // first - get the index of the clip clip.idx = GetU4(); IFF::SubChunkHeader head = IFF::LoadSubChunk(mFileBuffer); switch (head.type) { case AI_LWO_STIL: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, STIL, 1); // "Normal" texture GetS0(clip.path, head.length); clip.type = Clip::STILL; break; case AI_LWO_ISEQ: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, ISEQ, 16); // Image sequence. We'll later take the first. { uint8_t digits = GetU1(); mFileBuffer++; int16_t offset = GetU2(); mFileBuffer += 4; int16_t start = GetU2(); mFileBuffer += 4; std::string s; std::ostringstream ss; GetS0(s, head.length); head.length -= (uint16_t)s.length() + 1; ss << s; ss << std::setw(digits) << offset + start; GetS0(s, head.length); ss << s; clip.path = ss.str(); clip.type = Clip::SEQ; } break; case AI_LWO_STCC: ASSIMP_LOG_WARN("LWO2: Color shifted images are not supported"); break; case AI_LWO_ANIM: ASSIMP_LOG_WARN("LWO2: Animated textures are not supported"); break; case AI_LWO_XREF: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, XREF, 4); // Just a cross-reference to another CLIp clip.type = Clip::REF; clip.clipRef = GetU4(); break; case AI_LWO_NEGA: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, NEGA, 2); clip.negate = (0 != GetU2()); break; default: ASSIMP_LOG_WARN("LWO2: Encountered unknown CLIP sub-chunk"); } } void LWOImporter::LoadLWO3Clip(unsigned int length) { AI_LWO_VALIDATE_CHUNK_LENGTH(length, CLIP, 12); mClips.emplace_back(); LWO::Clip &clip = mClips.back(); // first - get the index of the clip clip.idx = GetU4(); IFF::ChunkHeader head = IFF::LoadChunk(mFileBuffer); switch (head.type) { case AI_LWO_STIL: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, STIL, 1); // "Normal" texture GetS0(clip.path, head.length); clip.type = Clip::STILL; break; case AI_LWO_ISEQ: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, ISEQ, 16); // Image sequence. We'll later take the first. { uint8_t digits = GetU1(); mFileBuffer++; int16_t offset = GetU2(); mFileBuffer += 4; int16_t start = GetU2(); mFileBuffer += 4; std::string s; std::ostringstream ss; GetS0(s, head.length); head.length -= (uint16_t)s.length() + 1; ss << s; ss << std::setw(digits) << offset + start; GetS0(s, head.length); ss << s; clip.path = ss.str(); clip.type = Clip::SEQ; } break; case AI_LWO_STCC: ASSIMP_LOG_WARN("LWO3: Color shifted images are not supported"); break; case AI_LWO_ANIM: ASSIMP_LOG_WARN("LWO3: Animated textures are not supported"); break; case AI_LWO_XREF: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, XREF, 4); // Just a cross-reference to another CLIp clip.type = Clip::REF; clip.clipRef = GetU4(); break; case AI_LWO_NEGA: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, NEGA, 2); clip.negate = (0 != GetU2()); break; default: ASSIMP_LOG_WARN("LWO3: Encountered unknown CLIP sub-chunk"); } } // ------------------------------------------------------------------------------------------------ // Load envelope description void LWOImporter::LoadLWO2Envelope(unsigned int length) { LE_NCONST uint8_t *const end = mFileBuffer + length; AI_LWO_VALIDATE_CHUNK_LENGTH(length, ENVL, 4); mEnvelopes.emplace_back(); LWO::Envelope &envelope = mEnvelopes.back(); // Get the index of the envelope envelope.index = ReadVSizedIntLWO2(mFileBuffer); // It looks like there might be an extra U4 right after the index, // at least in modo (LXOB) files: we'll ignore it if it's zero, // otherwise it represents the start of a subchunk, so we backtrack. if (mIsLXOB) { uint32_t extra = GetU4(); if (extra) { mFileBuffer -= 4; } } // ... and read all subchunks while (true) { if (mFileBuffer + 6 >= end) break; LE_NCONST IFF::SubChunkHeader head = IFF::LoadSubChunk(mFileBuffer); if (mFileBuffer + head.length > end) throw DeadlyImportError("LWO2: Invalid envelope chunk length"); uint8_t *const next = mFileBuffer + head.length; switch (head.type) { // Type & representation of the envelope case AI_LWO_TYPE: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, TYPE, 2); mFileBuffer++; // skip user format // Determine type of envelope envelope.type = (LWO::EnvelopeType)*mFileBuffer; ++mFileBuffer; break; // precondition case AI_LWO_PRE: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, PRE, 2); envelope.pre = (LWO::PrePostBehaviour)GetU2(); break; // postcondition case AI_LWO_POST: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, POST, 2); envelope.post = (LWO::PrePostBehaviour)GetU2(); break; // keyframe case AI_LWO_KEY: { AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, KEY, 8); envelope.keys.emplace_back(); LWO::Key &key = envelope.keys.back(); key.time = GetF4(); key.value = GetF4(); break; } // interval interpolation case AI_LWO_SPAN: { AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, SPAN, 4); if (envelope.keys.size() < 2) ASSIMP_LOG_WARN("LWO2: Unexpected SPAN chunk"); else { LWO::Key &key = envelope.keys.back(); switch (GetU4()) { case AI_LWO_STEP: key.inter = LWO::IT_STEP; break; case AI_LWO_LINE: key.inter = LWO::IT_LINE; break; case AI_LWO_TCB: key.inter = LWO::IT_TCB; break; case AI_LWO_HERM: key.inter = LWO::IT_HERM; break; case AI_LWO_BEZI: key.inter = LWO::IT_BEZI; break; case AI_LWO_BEZ2: key.inter = LWO::IT_BEZ2; break; default: ASSIMP_LOG_WARN("LWO2: Unknown interval interpolation mode"); }; // todo ... read params } break; } default: ASSIMP_LOG_WARN("LWO2: Encountered unknown ENVL subchunk"); break; } // regardless how much we did actually read, go to the next chunk mFileBuffer = next; } } void LWOImporter::LoadLWO3Envelope(unsigned int length) { LE_NCONST uint8_t *const end = mFileBuffer + length; AI_LWO_VALIDATE_CHUNK_LENGTH(length, ENVL, 4); mEnvelopes.emplace_back(); LWO::Envelope &envelope = mEnvelopes.back(); // Get the index of the envelope envelope.index = ReadVSizedIntLWO2(mFileBuffer); // ... and read all blocks while (true) { if (mFileBuffer + 8 >= end) break; LE_NCONST IFF::ChunkHeader head = IFF::LoadChunk(mFileBuffer); if (mFileBuffer + head.length > end) throw DeadlyImportError("LWO3: Invalid envelope chunk length"); uint8_t *const next = mFileBuffer + head.length; switch (head.type) { // Type & representation of the envelope case AI_LWO_TYPE: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, TYPE, 4); mFileBuffer++; // skip user format // Determine type of envelope envelope.type = (LWO::EnvelopeType)*mFileBuffer; ++mFileBuffer; break; // precondition case AI_LWO_PRE: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, PRE, 4); envelope.pre = (LWO::PrePostBehaviour)GetU2(); break; // postcondition case AI_LWO_POST: AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, POST, 4); envelope.post = (LWO::PrePostBehaviour)GetU2(); break; // keyframe case AI_LWO_KEY: { AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, KEY, 10); envelope.keys.emplace_back(); LWO::Key &key = envelope.keys.back(); key.time = GetF4(); key.value = GetF4(); break; } // interval interpolation case AI_LWO_SPAN: { AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, SPAN, 6); if (envelope.keys.size() < 2) ASSIMP_LOG_WARN("LWO3: Unexpected SPAN chunk"); else { LWO::Key &key = envelope.keys.back(); switch (GetU4()) { case AI_LWO_STEP: key.inter = LWO::IT_STEP; break; case AI_LWO_LINE: key.inter = LWO::IT_LINE; break; case AI_LWO_TCB: key.inter = LWO::IT_TCB; break; case AI_LWO_HERM: key.inter = LWO::IT_HERM; break; case AI_LWO_BEZI: key.inter = LWO::IT_BEZI; break; case AI_LWO_BEZ2: key.inter = LWO::IT_BEZ2; break; default: ASSIMP_LOG_WARN("LWO3: Unknown interval interpolation mode"); }; // todo ... read params } break; } default: ASSIMP_LOG_WARN("LWO3: Encountered unknown ENVL subchunk"); break; } // regardless how much we did actually read, go to the next chunk mFileBuffer = next; } } // ------------------------------------------------------------------------------------------------ // Load file - master function void LWOImporter::LoadLWO2File() { bool skip = false; LE_NCONST uint8_t *const end = mFileBuffer + fileSize; unsigned int iUnnamed = 0; while (true) { if (mFileBuffer + sizeof(IFF::ChunkHeader) > end) break; IFF::ChunkHeader head = IFF::LoadChunk(mFileBuffer); int bufOffset = 0; if( head.type == AI_IFF_FOURCC_FORM ) { // not chunk, it's a form mFileBuffer -= 8; head = IFF::LoadForm(mFileBuffer); bufOffset = 4; } if (mFileBuffer + head.length > end) { throw DeadlyImportError("LWO2: Chunk length points behind the file"); } uint8_t *const next = mFileBuffer + head.length; mFileBuffer += bufOffset; if (!head.length) { mFileBuffer = next; continue; } switch (head.type) { // new layer case AI_LWO_LAYR: { // add a new layer to the list .... mLayers->push_back(LWO::Layer()); LWO::Layer &layer = mLayers->back(); mCurLayer = &layer; AI_LWO_VALIDATE_CHUNK_LENGTH(head.length, LAYR, 16); // layer index. layer.mIndex = GetU2(); // Continue loading this layer or ignore it? Check the layer index property if (UINT_MAX != configLayerIndex && (configLayerIndex - 1) != layer.mIndex) { skip = true; } else skip = false; // pivot point mFileBuffer += 2; /* unknown */ mCurLayer->mPivot.x = GetF4(); mCurLayer->mPivot.y = GetF4(); mCurLayer->mPivot.z = GetF4(); GetS0(layer.mName, head.length - 16); // if the name is empty, generate a default name if (layer.mName.empty()) { char buffer[128]; // should be sufficiently large ::ai_snprintf(buffer, 128, "Layer_%i", iUnnamed++); layer.mName = buffer; } // load this layer or ignore it? Check the layer name property if (configLayerName.length() && configLayerName != layer.mName) { skip = true; } else hasNamedLayer = true; // optional: parent of this layer if (mFileBuffer + 2 <= next) layer.mParent = GetU2(); else layer.mParent = (uint16_t) -1; // Set layer skip parameter layer.skip = skip; break; } // vertex list case AI_LWO_PNTS: { if (skip) break; unsigned int old = (unsigned int)mCurLayer->mTempPoints.size(); LoadLWOPoints(head.length); mCurLayer->mPointIDXOfs = old; break; } // vertex tags case AI_LWO_VMAD: if (mCurLayer->mFaces.empty()) { ASSIMP_LOG_WARN("LWO2: Unexpected VMAD chunk"); break; } // --- intentionally no break here // fallthrough case AI_LWO_VMAP: { if (skip) break; if (mCurLayer->mTempPoints.empty()) ASSIMP_LOG_WARN("LWO2: Unexpected VMAP chunk"); else LoadLWO2VertexMap(head.length, head.type == AI_LWO_VMAD); break; } // face list case AI_LWO_POLS: { if (skip) break; unsigned int old = (unsigned int)mCurLayer->mFaces.size(); LoadLWO2Polygons(head.length); mCurLayer->mFaceIDXOfs = old; break; } // polygon tags case AI_LWO_PTAG: { if (skip) break; if (mCurLayer->mFaces.empty()) { ASSIMP_LOG_WARN("LWO2: Unexpected PTAG"); } else { LoadLWO2PolygonTags(head.length); } break; } // list of tags case AI_LWO_TAGS: { if (!mTags->empty()) { ASSIMP_LOG_WARN("LWO2: SRFS chunk encountered twice"); } else { LoadLWOTags(head.length); } break; } // surface chunk case AI_LWO_SURF: { if( mIsLWO3 ) LoadLWO3Surface(head.length); else LoadLWO2Surface(head.length); break; } // clip chunk case AI_LWO_CLIP: { if( mIsLWO3 ) LoadLWO3Clip(head.length); else LoadLWO2Clip(head.length); break; } // envelope chunk case AI_LWO_ENVL: { if( mIsLWO3 ) LoadLWO3Envelope(head.length); else LoadLWO2Envelope(head.length); break; } } mFileBuffer = next; } } #endif // !! ASSIMP_BUILD_NO_LWO_IMPORTER