/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2024, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file MakeLeftHandedProcess.cpp * @brief Implementation of the post processing step to convert all * imported data to a left-handed coordinate system. * * Face order & UV flip are also implemented here, for the sake of a * better location. */ #include "ConvertToLHProcess.h" #include #include #include using namespace Assimp; #ifndef ASSIMP_BUILD_NO_MAKELEFTHANDED_PROCESS namespace { template void flipUVs(aiMeshType *pMesh) { if (pMesh == nullptr) { return; } // mirror texture y coordinate for (unsigned int tcIdx = 0; tcIdx < AI_MAX_NUMBER_OF_TEXTURECOORDS; tcIdx++) { if (!pMesh->HasTextureCoords(tcIdx)) { break; } for (unsigned int vIdx = 0; vIdx < pMesh->mNumVertices; vIdx++) { pMesh->mTextureCoords[tcIdx][vIdx].y = 1.0f - pMesh->mTextureCoords[tcIdx][vIdx].y; } } } } // namespace // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool MakeLeftHandedProcess::IsActive(unsigned int pFlags) const { return 0 != (pFlags & aiProcess_MakeLeftHanded); } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void MakeLeftHandedProcess::Execute(aiScene *pScene) { // Check for an existent root node to proceed ai_assert(pScene->mRootNode != nullptr); ASSIMP_LOG_DEBUG("MakeLeftHandedProcess begin"); // recursively convert all the nodes ProcessNode(pScene->mRootNode, aiMatrix4x4()); // process the meshes accordingly for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) { ProcessMesh(pScene->mMeshes[a]); } // process the materials accordingly for (unsigned int a = 0; a < pScene->mNumMaterials; ++a) { ProcessMaterial(pScene->mMaterials[a]); } // transform all animation channels as well for (unsigned int a = 0; a < pScene->mNumAnimations; a++) { aiAnimation *anim = pScene->mAnimations[a]; for (unsigned int b = 0; b < anim->mNumChannels; b++) { aiNodeAnim *nodeAnim = anim->mChannels[b]; ProcessAnimation(nodeAnim); } } // process the cameras accordingly for( unsigned int a = 0; a < pScene->mNumCameras; ++a) { ProcessCamera(pScene->mCameras[a]); } ASSIMP_LOG_DEBUG("MakeLeftHandedProcess finished"); } // ------------------------------------------------------------------------------------------------ // Recursively converts a node, all of its children and all of its meshes void MakeLeftHandedProcess::ProcessNode(aiNode *pNode, const aiMatrix4x4 &pParentGlobalRotation) { // mirror all base vectors at the local Z axis pNode->mTransformation.c1 = -pNode->mTransformation.c1; pNode->mTransformation.c2 = -pNode->mTransformation.c2; pNode->mTransformation.c3 = -pNode->mTransformation.c3; pNode->mTransformation.c4 = -pNode->mTransformation.c4; // now invert the Z axis again to keep the matrix determinant positive. // The local meshes will be inverted accordingly so that the result should look just fine again. pNode->mTransformation.a3 = -pNode->mTransformation.a3; pNode->mTransformation.b3 = -pNode->mTransformation.b3; pNode->mTransformation.c3 = -pNode->mTransformation.c3; pNode->mTransformation.d3 = -pNode->mTransformation.d3; // useless, but anyways... // continue for all children for (size_t a = 0; a < pNode->mNumChildren; ++a) { ProcessNode(pNode->mChildren[a], pParentGlobalRotation * pNode->mTransformation); } } // ------------------------------------------------------------------------------------------------ // Converts a single mesh to left handed coordinates. void MakeLeftHandedProcess::ProcessMesh(aiMesh *pMesh) { if (nullptr == pMesh) { ASSIMP_LOG_ERROR("Nullptr to mesh found."); return; } // mirror positions, normals and stuff along the Z axis for (size_t a = 0; a < pMesh->mNumVertices; ++a) { pMesh->mVertices[a].z *= -1.0f; if (pMesh->HasNormals()) { pMesh->mNormals[a].z *= -1.0f; } if (pMesh->HasTangentsAndBitangents()) { pMesh->mTangents[a].z *= -1.0f; pMesh->mBitangents[a].z *= -1.0f; } } // mirror anim meshes positions, normals and stuff along the Z axis for (size_t m = 0; m < pMesh->mNumAnimMeshes; ++m) { for (size_t a = 0; a < pMesh->mAnimMeshes[m]->mNumVertices; ++a) { pMesh->mAnimMeshes[m]->mVertices[a].z *= -1.0f; if (pMesh->mAnimMeshes[m]->HasNormals()) { pMesh->mAnimMeshes[m]->mNormals[a].z *= -1.0f; } if (pMesh->mAnimMeshes[m]->HasTangentsAndBitangents()) { pMesh->mAnimMeshes[m]->mTangents[a].z *= -1.0f; pMesh->mAnimMeshes[m]->mBitangents[a].z *= -1.0f; } } } // mirror offset matrices of all bones for (size_t a = 0; a < pMesh->mNumBones; ++a) { aiBone *bone = pMesh->mBones[a]; bone->mOffsetMatrix.a3 = -bone->mOffsetMatrix.a3; bone->mOffsetMatrix.b3 = -bone->mOffsetMatrix.b3; bone->mOffsetMatrix.d3 = -bone->mOffsetMatrix.d3; bone->mOffsetMatrix.c1 = -bone->mOffsetMatrix.c1; bone->mOffsetMatrix.c2 = -bone->mOffsetMatrix.c2; bone->mOffsetMatrix.c4 = -bone->mOffsetMatrix.c4; } // mirror bitangents as well as they're derived from the texture coords if (pMesh->HasTangentsAndBitangents()) { for (unsigned int a = 0; a < pMesh->mNumVertices; a++) pMesh->mBitangents[a] *= -1.0f; } } // ------------------------------------------------------------------------------------------------ // Converts a single material to left handed coordinates. void MakeLeftHandedProcess::ProcessMaterial(aiMaterial *_mat) { if (nullptr == _mat) { ASSIMP_LOG_ERROR("Nullptr to aiMaterial found."); return; } aiMaterial *mat = (aiMaterial *)_mat; for (unsigned int a = 0; a < mat->mNumProperties; ++a) { aiMaterialProperty *prop = mat->mProperties[a]; // Mapping axis for UV mappings? if (!::strcmp(prop->mKey.data, "$tex.mapaxis")) { ai_assert(prop->mDataLength >= sizeof(aiVector3D)); // something is wrong with the validation if we end up here aiVector3D *pff = (aiVector3D *)prop->mData; pff->z *= -1.f; } } } // ------------------------------------------------------------------------------------------------ // Converts the given animation to LH coordinates. void MakeLeftHandedProcess::ProcessAnimation(aiNodeAnim *pAnim) { // position keys for (unsigned int a = 0; a < pAnim->mNumPositionKeys; a++) pAnim->mPositionKeys[a].mValue.z *= -1.0f; // rotation keys for (unsigned int a = 0; a < pAnim->mNumRotationKeys; a++) { pAnim->mRotationKeys[a].mValue.x *= -1.0f; pAnim->mRotationKeys[a].mValue.y *= -1.0f; } } // ------------------------------------------------------------------------------------------------ // Converts a single camera to left handed coordinates. void MakeLeftHandedProcess::ProcessCamera( aiCamera* pCam) { pCam->mLookAt = ai_real(2.0f) * pCam->mPosition - pCam->mLookAt; } #endif // !! ASSIMP_BUILD_NO_MAKELEFTHANDED_PROCESS #ifndef ASSIMP_BUILD_NO_FLIPUVS_PROCESS // # FlipUVsProcess // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer FlipUVsProcess::FlipUVsProcess() = default; // ------------------------------------------------------------------------------------------------ // Destructor, private as well FlipUVsProcess::~FlipUVsProcess() = default; // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool FlipUVsProcess::IsActive(unsigned int pFlags) const { return 0 != (pFlags & aiProcess_FlipUVs); } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void FlipUVsProcess::Execute(aiScene *pScene) { ASSIMP_LOG_DEBUG("FlipUVsProcess begin"); for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) ProcessMesh(pScene->mMeshes[i]); for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) ProcessMaterial(pScene->mMaterials[i]); ASSIMP_LOG_DEBUG("FlipUVsProcess finished"); } // ------------------------------------------------------------------------------------------------ // Converts a single material void FlipUVsProcess::ProcessMaterial(aiMaterial *_mat) { aiMaterial *mat = (aiMaterial *)_mat; for (unsigned int a = 0; a < mat->mNumProperties; ++a) { aiMaterialProperty *prop = mat->mProperties[a]; if (!prop) { ASSIMP_LOG_VERBOSE_DEBUG("Property is null"); continue; } // UV transformation key? if (!::strcmp(prop->mKey.data, "$tex.uvtrafo")) { ai_assert(prop->mDataLength >= sizeof(aiUVTransform)); // something is wrong with the validation if we end up here aiUVTransform *uv = (aiUVTransform *)prop->mData; // just flip it, that's everything uv->mTranslation.y *= -1.f; uv->mRotation *= -1.f; } } } // ------------------------------------------------------------------------------------------------ // Converts a single mesh void FlipUVsProcess::ProcessMesh(aiMesh *pMesh) { flipUVs(pMesh); for (unsigned int idx = 0; idx < pMesh->mNumAnimMeshes; idx++) { flipUVs(pMesh->mAnimMeshes[idx]); } } #endif // !ASSIMP_BUILD_NO_FLIPUVS_PROCESS #ifndef ASSIMP_BUILD_NO_FLIPWINDING_PROCESS // # FlipWindingOrderProcess // ------------------------------------------------------------------------------------------------ // Returns whether the processing step is present in the given flag field. bool FlipWindingOrderProcess::IsActive(unsigned int pFlags) const { return 0 != (pFlags & aiProcess_FlipWindingOrder); } // ------------------------------------------------------------------------------------------------ // Executes the post processing step on the given imported data. void FlipWindingOrderProcess::Execute(aiScene *pScene) { ASSIMP_LOG_DEBUG("FlipWindingOrderProcess begin"); for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) ProcessMesh(pScene->mMeshes[i]); ASSIMP_LOG_DEBUG("FlipWindingOrderProcess finished"); } // ------------------------------------------------------------------------------------------------ // Converts a single mesh void FlipWindingOrderProcess::ProcessMesh(aiMesh *pMesh) { // invert the order of all faces in this mesh for (unsigned int a = 0; a < pMesh->mNumFaces; a++) { aiFace &face = pMesh->mFaces[a]; for (unsigned int b = 0; b < face.mNumIndices / 2; b++) { std::swap(face.mIndices[b], face.mIndices[face.mNumIndices - 1 - b]); } } // invert the order of all components in this mesh anim meshes for (unsigned int m = 0; m < pMesh->mNumAnimMeshes; m++) { aiAnimMesh *animMesh = pMesh->mAnimMeshes[m]; unsigned int numVertices = animMesh->mNumVertices; if (animMesh->HasPositions()) { for (unsigned int a = 0; a < numVertices; a++) { std::swap(animMesh->mVertices[a], animMesh->mVertices[numVertices - 1 - a]); } } if (animMesh->HasNormals()) { for (unsigned int a = 0; a < numVertices; a++) { std::swap(animMesh->mNormals[a], animMesh->mNormals[numVertices - 1 - a]); } } for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; i++) { if (animMesh->HasTextureCoords(i)) { for (unsigned int a = 0; a < numVertices; a++) { std::swap(animMesh->mTextureCoords[i][a], animMesh->mTextureCoords[i][numVertices - 1 - a]); } } } if (animMesh->HasTangentsAndBitangents()) { for (unsigned int a = 0; a < numVertices; a++) { std::swap(animMesh->mTangents[a], animMesh->mTangents[numVertices - 1 - a]); std::swap(animMesh->mBitangents[a], animMesh->mBitangents[numVertices - 1 - a]); } } for (unsigned int v = 0; v < AI_MAX_NUMBER_OF_COLOR_SETS; v++) { if (animMesh->HasVertexColors(v)) { for (unsigned int a = 0; a < numVertices; a++) { std::swap(animMesh->mColors[v][a], animMesh->mColors[v][numVertices - 1 - a]); } } } } } #endif // !! ASSIMP_BUILD_NO_FLIPWINDING_PROCESS