/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Implementation of the MD5 importer class */ #include "AssimpPCH.h" // internal headers #include "MaterialSystem.h" #include "RemoveComments.h" #include "MD5Loader.h" #include "StringComparison.h" #include "fast_atof.h" using namespace Assimp; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer MD5Importer::MD5Importer() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Destructor, private as well MD5Importer::~MD5Importer() { // nothing to do here } // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool MD5Importer::CanRead( const std::string& pFile, IOSystem* pIOHandler) const { // simple check of file extension is enough for the moment std::string::size_type pos = pFile.find_last_of('.'); // no file extension - can't read if( pos == std::string::npos) return false; std::string extension = pFile.substr( pos); if (extension.length() < 4)return false; if (extension[0] != '.')return false; if (extension[1] != 'm' && extension[1] != 'M')return false; if (extension[2] != 'd' && extension[2] != 'D')return false; if (extension[3] != '5')return false; return true; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void MD5Importer::InternReadFile( const std::string& pFile, aiScene* pScene, IOSystem* pIOHandler) { // remove the file extension std::string::size_type pos = pFile.find_last_of('.'); this->mFile = pFile.substr(0,pos+1); this->pIOHandler = pIOHandler; this->pScene = pScene; bHadMD5Mesh = bHadMD5Anim = false; // load the animation keyframes this->LoadMD5AnimFile(); // load the mesh vertices and bones this->LoadMD5MeshFile(); // make sure we return no incomplete data if (!bHadMD5Mesh && !bHadMD5Anim) throw new ImportErrorException("Failed to read valid data from this MD5"); if (!bHadMD5Mesh)pScene->mFlags |= AI_SCENE_FLAGS_ANIM_SKELETON_ONLY; } // ------------------------------------------------------------------------------------------------ void MD5Importer::LoadFileIntoMemory (IOStream* file) { ai_assert(NULL != file); this->fileSize = (unsigned int)file->FileSize(); // allocate storage and copy the contents of the file to a memory buffer this->pScene = pScene; this->mBuffer = new char[this->fileSize+1]; file->Read( (void*)mBuffer, 1, this->fileSize); this->iLineNumber = 1; // append a terminal 0 this->mBuffer[this->fileSize] = '\0'; // now remove all line comments from the file CommentRemover::RemoveLineComments("//",this->mBuffer,' '); } // ------------------------------------------------------------------------------------------------ void MD5Importer::UnloadFileFromMemory () { // delete the file buffer delete[] this->mBuffer; this->mBuffer = NULL; this->fileSize = 0; } // ------------------------------------------------------------------------------------------------ void MakeDataUnique (MD5::MeshDesc& meshSrc) { std::vector abHad(meshSrc.mVertices.size(),false); // allocate enough storage to keep the output structures const unsigned int iNewNum = (unsigned int)meshSrc.mFaces.size()*3; unsigned int iNewIndex = (unsigned int)meshSrc.mVertices.size(); meshSrc.mVertices.resize(iNewNum); // try to guess how much storage we'll need for new weights const float fWeightsPerVert = meshSrc.mWeights.size() / (float)iNewIndex; const unsigned int guess = (unsigned int)(fWeightsPerVert*iNewNum); meshSrc.mWeights.reserve(guess + (guess >> 3)); // + 12.5% as buffer for (FaceList::const_iterator iter = meshSrc.mFaces.begin(),iterEnd = meshSrc.mFaces.end(); iter != iterEnd;++iter) { const aiFace& face = *iter; for (unsigned int i = 0; i < 3;++i) { if (abHad[face.mIndices[i]]) { // generate a new vertex meshSrc.mVertices[iNewIndex] = meshSrc.mVertices[face.mIndices[i]]; face.mIndices[i] = iNewIndex++; // FIX: removed this ... #if 0 // the algorithm in MD5Importer::LoadMD5MeshFile() doesn't work if // a weight is referenced by more than one vertex. This shouldn't // occur in MD5 files, but we must take care that we generate new // weights now, too. vertNew.mFirstWeight = (unsigned int)meshSrc.mWeights.size(); meshSrc.mWeights.resize(vertNew.mFirstWeight+vertNew.mNumWeights); for (unsigned int q = 0; q < vertNew.mNumWeights;++q) { meshSrc.mWeights[vertNew.mFirstWeight+q] = meshSrc.mWeights[vertOld.mFirstWeight+q]; } #endif } else abHad[face.mIndices[i]] = true; } } } // ------------------------------------------------------------------------------------------------ void AttachChilds(int iParentID,aiNode* piParent,BoneList& bones) { ai_assert(NULL != piParent && !piParent->mNumChildren); for (int i = 0; i < (int)bones.size();++i) { // (avoid infinite recursion) if (iParentID != i && bones[i].mParentIndex == iParentID) { // have it ... ++piParent->mNumChildren; } } if (piParent->mNumChildren) { piParent->mChildren = new aiNode*[piParent->mNumChildren]; for (int i = 0; i < (int)bones.size();++i) { // (avoid infinite recursion) if (iParentID != i && bones[i].mParentIndex == iParentID) { aiNode* pc; *piParent->mChildren++ = pc = new aiNode(); pc->mName = aiString(bones[i].mName); pc->mParent = piParent; // get the transformation matrix from rotation and translational components aiQuaternion quat = aiQuaternion ( bones[i].mRotationQuat ); //quat.w *= -1.0f; // DX to OGL pc->mTransformation = aiMatrix4x4 ( quat.GetMatrix()); aiMatrix4x4 mTranslate; mTranslate.a4 = bones[i].mPositionXYZ.x; mTranslate.b4 = bones[i].mPositionXYZ.y; mTranslate.c4 = bones[i].mPositionXYZ.z; pc->mTransformation = pc->mTransformation*mTranslate; // store it for later use bones[i].mTransform = bones[i].mInvTransform = pc->mTransformation; bones[i].mInvTransform.Inverse(); // the transformations for each bone are absolute, // so we need to multiply them with the inverse // of the absolut matrix of the parent if (-1 != iParentID) { pc->mTransformation = bones[iParentID].mInvTransform*pc->mTransformation; } // add children to this node, too AttachChilds( i, pc, bones); } } // undo our nice shift piParent->mChildren -= piParent->mNumChildren; } } // ------------------------------------------------------------------------------------------------ void MD5Importer::LoadMD5MeshFile () { std::string pFile = this->mFile + "MD5MESH"; boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) { DefaultLogger::get()->warn("Failed to read MD5 mesh file: " + pFile); return; } bHadMD5Mesh = true; // now load the file into memory this->LoadFileIntoMemory(file.get()); // now construct a parser and parse the file MD5::MD5Parser parser(mBuffer,fileSize); // load the mesh information from it MD5::MD5MeshParser meshParser(parser.mSections); // create the bone hierarchy - first the root node // and dummy nodes for all meshes pScene->mRootNode = new aiNode(); pScene->mRootNode->mNumChildren = 2; pScene->mRootNode->mChildren = new aiNode*[2]; // now create the hierarchy of animated bones aiNode* pcNode = pScene->mRootNode->mChildren[1] = new aiNode(); pcNode->mName.Set("MD5Anim"); pcNode->mParent = pScene->mRootNode; AttachChilds(-1,pcNode,meshParser.mJoints); pcNode = pScene->mRootNode->mChildren[0] = new aiNode(); pcNode->mName.Set("MD5Mesh"); pcNode->mParent = pScene->mRootNode; std::vector::const_iterator end = meshParser.mMeshes.end(); // FIX: MD5 files exported from Blender can have empty meshes for (std::vector::const_iterator it = meshParser.mMeshes.begin(), end = meshParser.mMeshes.end(); it != end;++it) { if (!(*it).mFaces.empty() && !(*it).mVertices.empty()) ++pScene->mNumMaterials; } // generate all meshes pScene->mNumMeshes = pScene->mNumMaterials; pScene->mMeshes = new aiMesh*[pScene->mNumMeshes]; pScene->mMaterials = new aiMaterial*[pScene->mNumMeshes]; // storage for node mesh indices pcNode->mNumMeshes = pScene->mNumMeshes; pcNode->mMeshes = new unsigned int[pcNode->mNumMeshes]; for (unsigned int m = 0; m < pcNode->mNumMeshes;++m) pcNode->mMeshes[m] = m; unsigned int n = 0; for (std::vector::iterator it = meshParser.mMeshes.begin(), end = meshParser.mMeshes.end(); it != end;++it) { MD5::MeshDesc& meshSrc = *it; if (meshSrc.mFaces.empty() || meshSrc.mVertices.empty()) continue; aiMesh* mesh = pScene->mMeshes[n] = new aiMesh(); mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE; // generate unique vertices in our internal verbose format MakeDataUnique(meshSrc); mesh->mNumVertices = (unsigned int) meshSrc.mVertices.size(); mesh->mVertices = new aiVector3D[mesh->mNumVertices]; mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices]; mesh->mNumUVComponents[0] = 2; // copy texture coordinates aiVector3D* pv = mesh->mTextureCoords[0]; for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin(); iter != meshSrc.mVertices.end();++iter,++pv) { pv->x = (*iter).mUV.x; pv->y = 1.0f-(*iter).mUV.y; // D3D to OpenGL pv->z = 0.0f; } // sort all bone weights - per bone unsigned int* piCount = new unsigned int[meshParser.mJoints.size()]; ::memset(piCount,0,sizeof(unsigned int)*meshParser.mJoints.size()); for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin(); iter != meshSrc.mVertices.end();++iter,++pv) { for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w) { MD5::WeightDesc& desc = meshSrc.mWeights[w]; ++piCount[desc.mBone]; } } // check how many we will need for (unsigned int p = 0; p < meshParser.mJoints.size();++p) if (piCount[p])mesh->mNumBones++; if (mesh->mNumBones) // just for safety { mesh->mBones = new aiBone*[mesh->mNumBones]; for (unsigned int q = 0,h = 0; q < meshParser.mJoints.size();++q) { if (!piCount[q])continue; aiBone* p = mesh->mBones[h] = new aiBone(); p->mNumWeights = piCount[q]; p->mWeights = new aiVertexWeight[p->mNumWeights]; p->mName = aiString(meshParser.mJoints[q].mName); // store the index for later use meshParser.mJoints[q].mMap = h++; } //unsigned int g = 0; pv = mesh->mVertices; for (MD5::VertexList::const_iterator iter = meshSrc.mVertices.begin(); iter != meshSrc.mVertices.end();++iter,++pv) { // compute the final vertex position from all single weights *pv = aiVector3D(); // there are models which have weights which don't sum to 1 ... // granite.md5mesh for example float fSum = 0.0f; for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w) fSum += meshSrc.mWeights[w].mWeight; if (!fSum)throw new ImportErrorException("The sum of all vertex bone weights is 0"); // process bone weights for (unsigned int jub = (*iter).mFirstWeight, w = jub; w < jub + (*iter).mNumWeights;++w) { MD5::WeightDesc& desc = meshSrc.mWeights[w]; float fNewWeight = desc.mWeight / fSum; // transform the local position into worldspace MD5::BoneDesc& boneSrc = meshParser.mJoints[desc.mBone]; aiVector3D v = desc.vOffsetPosition; aiQuaternion quat = aiQuaternion( boneSrc.mRotationQuat ); //quat.w *= -1.0f; v = quat.GetMatrix() * v; v += boneSrc.mPositionXYZ; // use the original weight to compute the vertex position // (some MD5s seem to depend on the invalid weight values ...) pv->operator +=(v * desc.mWeight); aiBone* bone = mesh->mBones[boneSrc.mMap]; *bone->mWeights++ = aiVertexWeight((unsigned int)(pv-mesh->mVertices),fNewWeight); } // convert from DOOM coordinate system to OGL std::swap((float&)pv->z,(float&)pv->y); } // undo our nice offset tricks ... for (unsigned int p = 0; p < mesh->mNumBones;++p) mesh->mBones[p]->mWeights -= mesh->mBones[p]->mNumWeights; } delete[] piCount; // now setup all faces - we can directly copy the list // (however, take care that the aiFace destructor doesn't delete the mIndices array) mesh->mNumFaces = (unsigned int)meshSrc.mFaces.size(); mesh->mFaces = new aiFace[mesh->mNumFaces]; for (unsigned int c = 0; c < mesh->mNumFaces;++c) { mesh->mFaces[c].mNumIndices = 3; mesh->mFaces[c].mIndices = meshSrc.mFaces[c].mIndices; meshSrc.mFaces[c].mIndices = NULL; } // generate a material for the mesh MaterialHelper* mat = new MaterialHelper(); pScene->mMaterials[n] = mat; mat->AddProperty(&meshSrc.mShader,AI_MATKEY_TEXTURE_DIFFUSE(0)); mesh->mMaterialIndex = n++; } // delete the file again this->UnloadFileFromMemory(); } // ------------------------------------------------------------------------------------------------ void MD5Importer::LoadMD5AnimFile () { std::string pFile = this->mFile + "MD5ANIM"; boost::scoped_ptr file( pIOHandler->Open( pFile, "rb")); // Check whether we can read from the file if( file.get() == NULL) { DefaultLogger::get()->warn("Failed to read MD5 anim file: " + pFile); return; } bHadMD5Anim = true; // now load the file into memory this->LoadFileIntoMemory(file.get()); // now construct a parser and parse the file MD5::MD5Parser parser(mBuffer,fileSize); // load the animation information from it MD5::MD5AnimParser animParser(parser.mSections); // generate and fill the output animation if (!animParser.mAnimatedBones.empty()) { pScene->mNumAnimations = 1; pScene->mAnimations = new aiAnimation*[1]; aiAnimation* anim = pScene->mAnimations[0] = new aiAnimation(); anim->mNumChannels = (unsigned int)animParser.mAnimatedBones.size(); anim->mChannels = new aiNodeAnim*[anim->mNumChannels]; for (unsigned int i = 0; i < anim->mNumChannels;++i) { aiNodeAnim* node = anim->mChannels[i] = new aiNodeAnim(); node->mNodeName = aiString( animParser.mAnimatedBones[i].mName ); // allocate storage for the keyframes node->mNumPositionKeys = node->mNumRotationKeys = (unsigned int)animParser.mFrames.size(); node->mPositionKeys = new aiVectorKey[node->mNumPositionKeys]; node->mRotationKeys = new aiQuatKey[node->mNumPositionKeys]; } // 1 tick == 1 frame anim->mTicksPerSecond = animParser.fFrameRate; for (FrameList::const_iterator iter = animParser.mFrames.begin(), iterEnd = animParser.mFrames.end();iter != iterEnd;++iter) { double dTime = (double)(*iter).iIndex; if (!(*iter).mValues.empty()) { // now process all values in there ... read all joints aiNodeAnim** pcAnimNode = anim->mChannels; MD5::BaseFrameDesc* pcBaseFrame = &animParser.mBaseFrames[0]; for (AnimBoneList::const_iterator iter2 = animParser.mAnimatedBones.begin(), iterEnd2 = animParser.mAnimatedBones.end(); iter2 != iterEnd2;++iter2,++pcAnimNode,++pcBaseFrame) { if((*iter2).iFirstKeyIndex >= (*iter).mValues.size()) { // TODO: add proper array checks for all cases here ... DefaultLogger::get()->error("Keyframe index is out of range. "); continue; } const float* fpCur = &(*iter).mValues[(*iter2).iFirstKeyIndex]; aiNodeAnim* pcCurAnimBone = *pcAnimNode; aiVectorKey* vKey = pcCurAnimBone->mPositionKeys++; // translation on the x axis if ((*iter2).iFlags & AI_MD5_ANIMATION_FLAG_TRANSLATE_X) vKey->mValue.x = *fpCur++; else vKey->mValue.x = pcBaseFrame->vPositionXYZ.x; // translation on the y axis if ((*iter2).iFlags & AI_MD5_ANIMATION_FLAG_TRANSLATE_Y) vKey->mValue.y = *fpCur++; else vKey->mValue.y = pcBaseFrame->vPositionXYZ.y; // translation on the z axis if ((*iter2).iFlags & AI_MD5_ANIMATION_FLAG_TRANSLATE_Z) vKey->mValue.z = *fpCur++; else vKey->mValue.z = pcBaseFrame->vPositionXYZ.z; // rotation quaternion, x component aiQuatKey* qKey = pcCurAnimBone->mRotationKeys++; aiVector3D vTemp; if ((*iter2).iFlags & AI_MD5_ANIMATION_FLAG_ROTQUAT_X) vTemp.x = *fpCur++; else vTemp.x = pcBaseFrame->vRotationQuat.x; // rotation quaternion, y component if ((*iter2).iFlags & AI_MD5_ANIMATION_FLAG_ROTQUAT_Y) vTemp.y = *fpCur++; else vTemp.y = pcBaseFrame->vRotationQuat.y; // rotation quaternion, z component if ((*iter2).iFlags & AI_MD5_ANIMATION_FLAG_ROTQUAT_Z) vTemp.z = *fpCur++; else vTemp.z = pcBaseFrame->vRotationQuat.z; // compute the w component of the quaternion - invert it (DX to OGL) qKey->mValue = aiQuaternion(vTemp); //qKey->mValue.w *= -1.0f; qKey->mTime = dTime; vKey->mTime = dTime; } } // compute the duration of the animation anim->mDuration = std::max(dTime,anim->mDuration); } // undo our offset computations for (unsigned int i = 0; i < anim->mNumChannels;++i) { aiNodeAnim* node = anim->mChannels[i]; node->mPositionKeys -= node->mNumPositionKeys; node->mRotationKeys -= node->mNumPositionKeys; } } // delete the file again this->UnloadFileFromMemory(); }