/* Open Asset Import Library (assimp) ---------------------------------------------------------------------- Copyright (c) 2006-2012, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file AssxmlExporter.cpp * ASSXML exporter main code */ #include #include "AssimpPCH.h" #include "./../include/assimp/version.h" #include "ProcessHelper.h" #ifdef ASSIMP_BUILD_NO_OWN_ZLIB # include #else # include "../contrib/zlib/zlib.h" #endif #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_ASSXML_EXPORTER using namespace Assimp; namespace Assimp { namespace AssxmlExport { int ioprintf( IOStream * io, const char * format, ... ) { char sz[4096]; va_list va; va_start( va, format ); int nSize = vsnprintf( sz, 4096, format, va ); ai_assert( nSize < 4096 ); va_end( va ); io->Write( sz, sizeof(char), nSize ); return nSize; } // ----------------------------------------------------------------------------------- // Convert a name to standard XML format void ConvertName(aiString& out, const aiString& in) { out.length = 0; for (unsigned int i = 0; i < in.length; ++i) { switch (in.data[i]) { case '<': out.Append("<");break; case '>': out.Append(">");break; case '&': out.Append("&");break; case '\"': out.Append(""");break; case '\'': out.Append("'");break; default: out.data[out.length++] = in.data[i]; } } out.data[out.length] = 0; } // ----------------------------------------------------------------------------------- // Write a single node as text dump void WriteNode(const aiNode* node, IOStream * io, unsigned int depth) { char prefix[512]; for (unsigned int i = 0; i < depth;++i) prefix[i] = '\t'; prefix[depth] = '\0'; const aiMatrix4x4& m = node->mTransformation; aiString name; ConvertName(name,node->mName); ioprintf(io,"%s \n" "%s\t \n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t \n", prefix,name.data,prefix, prefix,m.a1,m.a2,m.a3,m.a4, prefix,m.b1,m.b2,m.b3,m.b4, prefix,m.c1,m.c2,m.c3,m.c4, prefix,m.d1,m.d2,m.d3,m.d4,prefix); if (node->mNumMeshes) { ioprintf(io, "%s\t\n%s\t", prefix,node->mNumMeshes,prefix); for (unsigned int i = 0; i < node->mNumMeshes;++i) { ioprintf(io,"%i ",node->mMeshes[i]); } ioprintf(io,"\n%s\t\n",prefix); } if (node->mNumChildren) { ioprintf(io,"%s\t\n", prefix,node->mNumChildren); for (unsigned int i = 0; i < node->mNumChildren;++i) { WriteNode(node->mChildren[i],io,depth+2); } ioprintf(io,"%s\t\n",prefix); } ioprintf(io,"%s\n",prefix); } // ----------------------------------------------------------------------------------- // Some chuncks of text will need to be encoded for XML // http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377 static std::string encodeXML(const std::string& data) { std::string buffer; buffer.reserve(data.size()); for(size_t pos = 0; pos != data.size(); ++pos) { switch(data[pos]) { case '&': buffer.append("&"); break; case '\"': buffer.append("""); break; case '\'': buffer.append("'"); break; case '<': buffer.append("<"); break; case '>': buffer.append(">"); break; default: buffer.append(&data[pos], 1); break; } } return buffer; } // ----------------------------------------------------------------------------------- // Write a text model dump void WriteDump(const aiScene* scene, IOStream* io, bool shortened) { time_t tt = ::time(NULL); tm* p = ::gmtime(&tt); aiString name; // write header ioprintf(io, "\n" "\n\n" "" " \n\n" "\n", aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),asctime(p), scene->mFlags, 0 /*globalImporter->GetEffectivePostProcessing()*/); // write the node graph WriteNode(scene->mRootNode, io, 0); #if 0 // write cameras for (unsigned int i = 0; i < scene->mNumCameras;++i) { aiCamera* cam = scene->mCameras[i]; ConvertName(name,cam->mName); // camera header ioprintf(io,"\t\n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n" "\t\n", name.data, cam->mUp.x,cam->mUp.y,cam->mUp.z, cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z, cam->mPosition.x,cam->mPosition.y,cam->mPosition.z, cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i); } // write lights for (unsigned int i = 0; i < scene->mNumLights;++i) { aiLight* l = scene->mLights[i]; ConvertName(name,l->mName); // light header ioprintf(io,"\t type=\"%s\"\n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n", name.data, (l->mType == aiLightSource_DIRECTIONAL ? "directional" : (l->mType == aiLightSource_POINT ? "point" : "spot" )), l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b, l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b, l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b); if (l->mType != aiLightSource_DIRECTIONAL) { ioprintf(io, "\t\t %0 8f %0 8f %0 8f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n", l->mPosition.x,l->mPosition.y,l->mPosition.z, l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic); } if (l->mType != aiLightSource_POINT) { ioprintf(io, "\t\t %0 8f %0 8f %0 8f \n", l->mDirection.x,l->mDirection.y,l->mDirection.z); } if (l->mType == aiLightSource_SPOT) { ioprintf(io, "\t\t %f \n" "\t\t %f \n", l->mAngleOuterCone,l->mAngleInnerCone); } ioprintf(io,"\t\n"); } #endif // write textures if (scene->mNumTextures) { ioprintf(io,"\n",scene->mNumTextures); for (unsigned int i = 0; i < scene->mNumTextures;++i) { aiTexture* tex = scene->mTextures[i]; bool compressed = (tex->mHeight == 0); // mesh header ioprintf(io,"\t \n", (compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight), (compressed ? "true" : "false")); if (compressed) { ioprintf(io,"\t\t \n",tex->mWidth); if (!shortened) { for (unsigned int n = 0; n < tex->mWidth;++n) { ioprintf(io,"\t\t\t%2x",reinterpret_cast(tex->pcData)[n]); if (n && !(n % 50)) { ioprintf(io,"\n"); } } } } else if (!shortened){ ioprintf(io,"\t\t \n",tex->mWidth*tex->mHeight*4); // const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1; for (unsigned int y = 0; y < tex->mHeight;++y) { for (unsigned int x = 0; x < tex->mWidth;++x) { aiTexel* tx = tex->pcData + y*tex->mWidth+x; unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a; ioprintf(io,"\t\t\t%2x %2x %2x %2x",r,g,b,a); // group by four for readibility if (0 == (x+y*tex->mWidth) % 4) ioprintf(io,"\n"); } } } ioprintf(io,"\t\t\n\t\n"); } ioprintf(io,"\n"); } // write materials if (scene->mNumMaterials) { ioprintf(io,"\n",scene->mNumMaterials); for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { const aiMaterial* mat = scene->mMaterials[i]; ioprintf(io,"\t\n"); ioprintf(io,"\t\t\n",mat->mNumProperties); for (unsigned int n = 0; n < mat->mNumProperties;++n) { const aiMaterialProperty* prop = mat->mProperties[n]; const char* sz = ""; if (prop->mType == aiPTI_Float) { sz = "float"; } else if (prop->mType == aiPTI_Integer) { sz = "integer"; } else if (prop->mType == aiPTI_String) { sz = "string"; } else if (prop->mType == aiPTI_Buffer) { sz = "binary_buffer"; } ioprintf(io,"\t\t\tmKey.data, sz, ::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex); if (prop->mType == aiPTI_Float) { ioprintf(io," size=\"%i\">\n\t\t\t\t", static_cast(prop->mDataLength/sizeof(float))); for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) { ioprintf(io,"%f ",*((float*)(prop->mData+p*sizeof(float)))); } } else if (prop->mType == aiPTI_Integer) { ioprintf(io," size=\"%i\">\n\t\t\t\t", static_cast(prop->mDataLength/sizeof(int))); for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) { ioprintf(io,"%i ",*((int*)(prop->mData+p*sizeof(int)))); } } else if (prop->mType == aiPTI_Buffer) { ioprintf(io," size=\"%i\">\n\t\t\t\t", static_cast(prop->mDataLength)); for (unsigned int p = 0; p < prop->mDataLength;++p) { ioprintf(io,"%2x ",prop->mData[p]); if (p && 0 == p%30) { ioprintf(io,"\n\t\t\t\t"); } } } else if (prop->mType == aiPTI_String) { ioprintf(io,">\n\t\t\t\t\"%s\"",encodeXML(prop->mData+4).c_str() /* skip length */); } ioprintf(io,"\n\t\t\t\n"); } ioprintf(io,"\t\t\n"); ioprintf(io,"\t\n"); } ioprintf(io,"\n"); } // write animations if (scene->mNumAnimations) { ioprintf(io,"\n",scene->mNumAnimations); for (unsigned int i = 0; i < scene->mNumAnimations;++i) { aiAnimation* anim = scene->mAnimations[i]; // anim header ConvertName(name,anim->mName); ioprintf(io,"\t\n", name.data, anim->mDuration, anim->mTicksPerSecond); // write bone animation channels if (anim->mNumChannels) { ioprintf(io,"\t\t\n",anim->mNumChannels); for (unsigned int n = 0; n < anim->mNumChannels;++n) { aiNodeAnim* nd = anim->mChannels[n]; // node anim header ConvertName(name,nd->mNodeName); ioprintf(io,"\t\t\t\n",name.data); if (!shortened) { // write position keys if (nd->mNumPositionKeys) { ioprintf(io,"\t\t\t\t\n",nd->mNumPositionKeys); for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) { aiVectorKey* vc = nd->mPositionKeys+a; ioprintf(io,"\t\t\t\t\t\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z); } ioprintf(io,"\t\t\t\t\n"); } // write scaling keys if (nd->mNumScalingKeys) { ioprintf(io,"\t\t\t\t\n",nd->mNumScalingKeys); for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) { aiVectorKey* vc = nd->mScalingKeys+a; ioprintf(io,"\t\t\t\t\t\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z); } ioprintf(io,"\t\t\t\t\n"); } // write rotation keys if (nd->mNumRotationKeys) { ioprintf(io,"\t\t\t\t\n",nd->mNumRotationKeys); for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) { aiQuatKey* vc = nd->mRotationKeys+a; ioprintf(io,"\t\t\t\t\t\n" "\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w); } ioprintf(io,"\t\t\t\t\n"); } } ioprintf(io,"\t\t\t\n"); } ioprintf(io,"\t\t\n"); } ioprintf(io,"\t\n"); } ioprintf(io,"\n"); } // write meshes if (scene->mNumMeshes) { ioprintf(io,"\n",scene->mNumMeshes); for (unsigned int i = 0; i < scene->mNumMeshes;++i) { aiMesh* mesh = scene->mMeshes[i]; // const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1; // mesh header ioprintf(io,"\t\n", (mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""), mesh->mMaterialIndex); // bones if (mesh->mNumBones) { ioprintf(io,"\t\t\n",mesh->mNumBones); for (unsigned int n = 0; n < mesh->mNumBones;++n) { aiBone* bone = mesh->mBones[n]; ConvertName(name,bone->mName); // bone header ioprintf(io,"\t\t\t\n" "\t\t\t\t \n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t \n", name.data, bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4, bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4, bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4, bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4); if (!shortened && bone->mNumWeights) { ioprintf(io,"\t\t\t\t\n",bone->mNumWeights); // bone weights for (unsigned int a = 0; a < bone->mNumWeights;++a) { aiVertexWeight* wght = bone->mWeights+a; ioprintf(io,"\t\t\t\t\t\n\t\t\t\t\t\t%f\n\t\t\t\t\t\n", wght->mVertexId,wght->mWeight); } ioprintf(io,"\t\t\t\t\n"); } ioprintf(io,"\t\t\t\n"); } ioprintf(io,"\t\t\n"); } // faces if (!shortened && mesh->mNumFaces) { ioprintf(io,"\t\t\n",mesh->mNumFaces); for (unsigned int n = 0; n < mesh->mNumFaces; ++n) { aiFace& f = mesh->mFaces[n]; ioprintf(io,"\t\t\t\n" "\t\t\t\t",f.mNumIndices); for (unsigned int j = 0; j < f.mNumIndices;++j) ioprintf(io,"%i ",f.mIndices[j]); ioprintf(io,"\n\t\t\t\n"); } ioprintf(io,"\t\t\n"); } // vertex positions if (mesh->HasPositions()) { ioprintf(io,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mVertices[n].x, mesh->mVertices[n].y, mesh->mVertices[n].z); } } ioprintf(io,"\t\t\n"); } // vertex normals if (mesh->HasNormals()) { ioprintf(io,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mNormals[n].x, mesh->mNormals[n].y, mesh->mNormals[n].z); } } else { } ioprintf(io,"\t\t\n"); } // vertex tangents and bitangents if (mesh->HasTangentsAndBitangents()) { ioprintf(io,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTangents[n].x, mesh->mTangents[n].y, mesh->mTangents[n].z); } } ioprintf(io,"\t\t\n"); ioprintf(io,"\t\t \n",mesh->mNumVertices); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mBitangents[n].x, mesh->mBitangents[n].y, mesh->mBitangents[n].z); } } ioprintf(io,"\t\t\n"); } // texture coordinates for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (!mesh->mTextureCoords[a]) break; ioprintf(io,"\t\t \n",mesh->mNumVertices, a,mesh->mNumUVComponents[a]); if (!shortened) { if (mesh->mNumUVComponents[a] == 3) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y, mesh->mTextureCoords[a][n].z); } } else { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y); } } } ioprintf(io,"\t\t\n"); } // vertex colors for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (!mesh->mColors[a]) break; ioprintf(io,"\t\t \n",mesh->mNumVertices,a); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ioprintf(io,"\t\t%0 8f %0 8f %0 8f %0 8f\n", mesh->mColors[a][n].r, mesh->mColors[a][n].g, mesh->mColors[a][n].b, mesh->mColors[a][n].a); } } ioprintf(io,"\t\t\n"); } ioprintf(io,"\t\n"); } ioprintf(io,"\n"); } ioprintf(io,"\n"); } } // end of namespace AssxmlExport void ExportSceneAssxml(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene) { IOStream * out = pIOSystem->Open( pFile, "wt" ); if (!out) return; bool shortened = false; AssxmlExport::WriteDump( pScene, out, shortened ); pIOSystem->Close( out ); } } // end of namespace Assimp #endif // ASSIMP_BUILD_NO_ASSXML_EXPORTER #endif // ASSIMP_BUILD_NO_EXPORT