/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------

Copyright (c) 2006-2024, assimp team

All rights reserved.

Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:

* Redistributions of source code must retain the above
  copyright notice, this list of conditions and the
  following disclaimer.

* Redistributions in binary form must reproduce the above
  copyright notice, this list of conditions and the
  following disclaimer in the documentation and/or other
  materials provided with the distribution.

* Neither the name of the assimp team, nor the names of its
  contributors may be used to endorse or promote products
  derived from this software without specific prior
  written permission of the assimp team.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/

/** @file  IRRLoader.cpp
 *  @brief Implementation of the Irr importer class
 */

#include "assimp/Exceptional.h"
#include "assimp/StringComparison.h"
#ifndef ASSIMP_BUILD_NO_IRR_IMPORTER

#include "AssetLib/Irr/IRRLoader.h"
#include "Common/Importer.h"

#include <assimp/GenericProperty.h>
#include <assimp/MathFunctions.h>
#include <assimp/ParsingUtils.h>
#include <assimp/SceneCombiner.h>
#include <assimp/StandardShapes.h>
#include <assimp/fast_atof.h>
#include <assimp/importerdesc.h>
#include <assimp/material.h>
#include <assimp/mesh.h>
#include <assimp/postprocess.h>
#include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp>
#include <assimp/IOSystem.hpp>

using namespace Assimp;

static constexpr aiImporterDesc desc = {
    "Irrlicht Scene Reader",
    "",
    "",
    "http://irrlicht.sourceforge.net/",
    aiImporterFlags_SupportTextFlavour,
    0,
    0,
    0,
    0,
    "irr xml"
};

// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
IRRImporter::IRRImporter() :
        fps(), configSpeedFlag() {
    // empty
}

// ------------------------------------------------------------------------------------------------
// Destructor, private as well
IRRImporter::~IRRImporter() = default;

// ------------------------------------------------------------------------------------------------
// Returns whether the class can handle the format of the given file.
bool IRRImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const {
    static const char *tokens[] = { "irr_scene" };
    return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens));
}

// ------------------------------------------------------------------------------------------------
const aiImporterDesc *IRRImporter::GetInfo() const {
    return &desc;
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::SetupProperties(const Importer *pImp) {
    // read the output frame rate of all node animation channels
    fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS, 100);
    if (fps < 10.) {
        ASSIMP_LOG_ERROR("IRR: Invalid FPS configuration");
        fps = 100;
    }

    // AI_CONFIG_FAVOUR_SPEED
    configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED, 0));
}

// ------------------------------------------------------------------------------------------------
// Build a mesh that consists of a single squad (a side of a skybox)
aiMesh *IRRImporter::BuildSingleQuadMesh(const SkyboxVertex &v1,
        const SkyboxVertex &v2,
        const SkyboxVertex &v3,
        const SkyboxVertex &v4) {
    // allocate and prepare the mesh
    aiMesh *out = new aiMesh();

    out->mPrimitiveTypes = aiPrimitiveType_POLYGON;
    out->mNumFaces = 1;

    // build the face
    out->mFaces = new aiFace[1];
    aiFace &face = out->mFaces[0];

    face.mNumIndices = 4;
    face.mIndices = new unsigned int[4];
    for (unsigned int i = 0; i < 4; ++i)
        face.mIndices[i] = i;

    out->mNumVertices = 4;

    // copy vertex positions
    aiVector3D *vec = out->mVertices = new aiVector3D[4];
    *vec++ = v1.position;
    *vec++ = v2.position;
    *vec++ = v3.position;
    *vec = v4.position;

    // copy vertex normals
    vec = out->mNormals = new aiVector3D[4];
    *vec++ = v1.normal;
    *vec++ = v2.normal;
    *vec++ = v3.normal;
    *vec = v4.normal;

    // copy texture coordinates
    vec = out->mTextureCoords[0] = new aiVector3D[4];
    *vec++ = v1.uv;
    *vec++ = v2.uv;
    *vec++ = v3.uv;
    *vec = v4.uv;
    return out;
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::BuildSkybox(std::vector<aiMesh *> &meshes, std::vector<aiMaterial *> materials) {
    // Update the material of the skybox - replace the name and disable shading for skyboxes.
    for (unsigned int i = 0; i < 6; ++i) {
        aiMaterial *out = (aiMaterial *)(*(materials.end() - (6 - i)));

        aiString s;
        s.length = ::ai_snprintf(s.data, MAXLEN, "SkyboxSide_%u", i);
        out->AddProperty(&s, AI_MATKEY_NAME);

        int shading = aiShadingMode_NoShading;
        out->AddProperty(&shading, 1, AI_MATKEY_SHADING_MODEL);
    }

    // Skyboxes are much more difficult. They are represented
    // by six single planes with different textures, so we'll
    // need to build six meshes.

    const ai_real l = 10.0; // the size used by Irrlicht

    // FRONT SIDE
    meshes.push_back(BuildSingleQuadMesh(
            SkyboxVertex(-l, -l, -l, 0, 0, 1, 1.0, 1.0),
            SkyboxVertex(l, -l, -l, 0, 0, 1, 0.0, 1.0),
            SkyboxVertex(l, l, -l, 0, 0, 1, 0.0, 0.0),
            SkyboxVertex(-l, l, -l, 0, 0, 1, 1.0, 0.0)));
    meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 6u);

    // LEFT SIDE
    meshes.push_back(BuildSingleQuadMesh(
            SkyboxVertex(l, -l, -l, -1, 0, 0, 1.0, 1.0),
            SkyboxVertex(l, -l, l, -1, 0, 0, 0.0, 1.0),
            SkyboxVertex(l, l, l, -1, 0, 0, 0.0, 0.0),
            SkyboxVertex(l, l, -l, -1, 0, 0, 1.0, 0.0)));
    meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 5u);

    // BACK SIDE
    meshes.push_back(BuildSingleQuadMesh(
            SkyboxVertex(l, -l, l, 0, 0, -1, 1.0, 1.0),
            SkyboxVertex(-l, -l, l, 0, 0, -1, 0.0, 1.0),
            SkyboxVertex(-l, l, l, 0, 0, -1, 0.0, 0.0),
            SkyboxVertex(l, l, l, 0, 0, -1, 1.0, 0.0)));
    meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 4u);

    // RIGHT SIDE
    meshes.push_back(BuildSingleQuadMesh(
            SkyboxVertex(-l, -l, l, 1, 0, 0, 1.0, 1.0),
            SkyboxVertex(-l, -l, -l, 1, 0, 0, 0.0, 1.0),
            SkyboxVertex(-l, l, -l, 1, 0, 0, 0.0, 0.0),
            SkyboxVertex(-l, l, l, 1, 0, 0, 1.0, 0.0)));
    meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 3u);

    // TOP SIDE
    meshes.push_back(BuildSingleQuadMesh(
            SkyboxVertex(l, l, -l, 0, -1, 0, 1.0, 1.0),
            SkyboxVertex(l, l, l, 0, -1, 0, 0.0, 1.0),
            SkyboxVertex(-l, l, l, 0, -1, 0, 0.0, 0.0),
            SkyboxVertex(-l, l, -l, 0, -1, 0, 1.0, 0.0)));
    meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 2u);

    // BOTTOM SIDE
    meshes.push_back(BuildSingleQuadMesh(
            SkyboxVertex(l, -l, l, 0, 1, 0, 0.0, 0.0),
            SkyboxVertex(l, -l, -l, 0, 1, 0, 1.0, 0.0),
            SkyboxVertex(-l, -l, -l, 0, 1, 0, 1.0, 1.0),
            SkyboxVertex(-l, -l, l, 0, 1, 0, 0.0, 1.0)));
    meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 1u);
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::CopyMaterial(std::vector<aiMaterial *> &materials,
        std::vector<std::pair<aiMaterial *, unsigned int>> &inmaterials,
        unsigned int &defMatIdx,
        aiMesh *mesh) {
    if (inmaterials.empty()) {
        // Do we have a default material? If not we need to create one
        if (UINT_MAX == defMatIdx) {
            defMatIdx = (unsigned int)materials.size();
            // TODO: add this materials to someone?
            /*aiMaterial* mat = new aiMaterial();

            aiString s;
            s.Set(AI_DEFAULT_MATERIAL_NAME);
            mat->AddProperty(&s,AI_MATKEY_NAME);

            aiColor3D c(0.6f,0.6f,0.6f);
            mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);*/
        }
        mesh->mMaterialIndex = defMatIdx;
        return;
    } else if (inmaterials.size() > 1) {
        ASSIMP_LOG_INFO("IRR: Skipping additional materials");
    }

    mesh->mMaterialIndex = (unsigned int)materials.size();
    materials.push_back(inmaterials[0].first);
}

// ------------------------------------------------------------------------------------------------
inline int ClampSpline(int idx, int size) {
    return (idx < 0 ? size + idx : (idx >= size ? idx - size : idx));
}

// ------------------------------------------------------------------------------------------------
inline void FindSuitableMultiple(int &angle) {
    if (angle < 3)
        angle = 3;
    else if (angle < 10)
        angle = 10;
    else if (angle < 20)
        angle = 20;
    else if (angle < 30)
        angle = 30;
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::ComputeAnimations(Node *root, aiNode *real, std::vector<aiNodeAnim *> &anims) {
    ai_assert(nullptr != root && nullptr != real);

    // XXX totally WIP - doesn't produce proper results, need to evaluate
    // whether there's any use for Irrlicht's proprietary scene format
    // outside Irrlicht ...
    // This also applies to the above function of FindSuitableMultiple and ClampSpline which are
    // solely used in this function

    if (root->animators.empty()) {
        return;
    }
    unsigned int total(0);
    for (std::list<Animator>::iterator it = root->animators.begin(); it != root->animators.end(); ++it) {
        if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) {
            ASSIMP_LOG_WARN("IRR: Skipping unknown or unsupported animator");
            continue;
        }
        ++total;
    }
    if (!total) {
        return;
    } else if (1 == total) {
        ASSIMP_LOG_WARN("IRR: Adding dummy nodes to simulate multiple animators");
    }

    // NOTE: 1 tick == i millisecond

    unsigned int cur = 0;
    for (std::list<Animator>::iterator it = root->animators.begin();
            it != root->animators.end(); ++it) {
        if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) continue;

        Animator &in = *it;
        aiNodeAnim *anim = new aiNodeAnim();

        if (cur != total - 1) {
            // Build a new name - a prefix instead of a suffix because it is
            // easier to check against
            anim->mNodeName.length = ::ai_snprintf(anim->mNodeName.data, MAXLEN,
                    "$INST_DUMMY_%i_%s", total - 1,
                    (root->name.length() ? root->name.c_str() : ""));

            // we'll also need to insert a dummy in the node hierarchy.
            aiNode *dummy = new aiNode();

            for (unsigned int i = 0; i < real->mParent->mNumChildren; ++i)
                if (real->mParent->mChildren[i] == real)
                    real->mParent->mChildren[i] = dummy;

            dummy->mParent = real->mParent;
            dummy->mName = anim->mNodeName;

            dummy->mNumChildren = 1;
            dummy->mChildren = new aiNode *[dummy->mNumChildren];
            dummy->mChildren[0] = real;

            // the transformation matrix of the dummy node is the identity

            real->mParent = dummy;
        } else
            anim->mNodeName.Set(root->name);
        ++cur;

        switch (in.type) {
        case Animator::ROTATION: {
            // -----------------------------------------------------
            // find out how long a full rotation will take
            // This is the least common multiple of 360.f and all
            // three euler angles. Although we'll surely find a
            // possible multiple (haha) it could be somewhat large
            // for our purposes. So we need to modify the angles
            // here in order to get good results.
            // -----------------------------------------------------
            int angles[3];
            angles[0] = (int)(in.direction.x * 100);
            angles[1] = (int)(in.direction.y * 100);
            angles[2] = (int)(in.direction.z * 100);

            angles[0] %= 360;
            angles[1] %= 360;
            angles[2] %= 360;

            if ((angles[0] * angles[1]) != 0 && (angles[1] * angles[2]) != 0) {
                FindSuitableMultiple(angles[0]);
                FindSuitableMultiple(angles[1]);
                FindSuitableMultiple(angles[2]);
            }

            int lcm = 360;

            if (angles[0])
                lcm = Math::lcm(lcm, angles[0]);

            if (angles[1])
                lcm = Math::lcm(lcm, angles[1]);

            if (angles[2])
                lcm = Math::lcm(lcm, angles[2]);

            if (360 == lcm)
                break;

            // find out how many time units we'll need for the finest
            // track (in seconds) - this defines the number of output
            // keys (fps * seconds)
            float max = 0.f;
            if (angles[0])
                max = (float)lcm / angles[0];
            if (angles[1])
                max = std::max(max, (float)lcm / angles[1]);
            if (angles[2])
                max = std::max(max, (float)lcm / angles[2]);

            anim->mNumRotationKeys = (unsigned int)(max * fps);
            anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];

            // begin with a zero angle
            aiVector3D angle;
            for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
                // build the quaternion for the given euler angles
                aiQuatKey &q = anim->mRotationKeys[i];

                q.mValue = aiQuaternion(angle.x, angle.y, angle.z);
                q.mTime = (double)i;

                // increase the angle
                angle += in.direction;
            }

            // This animation is repeated and repeated ...
            anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
        } break;

        case Animator::FLY_CIRCLE: {
            // -----------------------------------------------------
            // Find out how much time we'll need to perform a
            // full circle.
            // -----------------------------------------------------
            const double seconds = (1. / in.speed) / 1000.;
            const double tdelta = 1000. / fps;

            anim->mNumPositionKeys = (unsigned int)(fps * seconds);
            anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

            // from Irrlicht, what else should we do than copying it?
            aiVector3D vecU, vecV;
            if (in.direction.y) {
                vecV = aiVector3D(50, 0, 0) ^ in.direction;
            } else
                vecV = aiVector3D(0, 50, 00) ^ in.direction;
            vecV.Normalize();
            vecU = (vecV ^ in.direction).Normalize();

            // build the output keys
            for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
                aiVectorKey &key = anim->mPositionKeys[i];
                key.mTime = i * tdelta;

                const ai_real t = (ai_real)(in.speed * key.mTime);
                key.mValue = in.circleCenter + in.circleRadius * ((vecU * std::cos(t)) + (vecV * std::sin(t)));
            }

            // This animation is repeated and repeated ...
            anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
        } break;

        case Animator::FLY_STRAIGHT: {
            anim->mPostState = anim->mPreState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT);
            const double seconds = in.timeForWay / 1000.;
            const double tdelta = 1000. / fps;

            anim->mNumPositionKeys = (unsigned int)(fps * seconds);
            anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

            aiVector3D diff = in.direction - in.circleCenter;
            const ai_real lengthOfWay = diff.Length();
            diff.Normalize();

            const double timeFactor = lengthOfWay / in.timeForWay;

            // build the output keys
            for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
                aiVectorKey &key = anim->mPositionKeys[i];
                key.mTime = i * tdelta;
                key.mValue = in.circleCenter + diff * ai_real(timeFactor * key.mTime);
            }
        } break;

        case Animator::FOLLOW_SPLINE: {
            // repeat outside the defined time range
            anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
            const int size = (int)in.splineKeys.size();
            if (!size) {
                // We have no point in the spline. That's bad. Really bad.
                ASSIMP_LOG_WARN("IRR: Spline animators with no points defined");

                delete anim;
                anim = nullptr;
                break;
            } else if (size == 1) {
                // We have just one point in the spline so we don't need the full calculation
                anim->mNumPositionKeys = 1;
                anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

                anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue;
                anim->mPositionKeys[0].mTime = 0.f;
                break;
            }

            unsigned int ticksPerFull = 15;
            anim->mNumPositionKeys = (unsigned int)(ticksPerFull * fps);
            anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];

            for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
                aiVectorKey &key = anim->mPositionKeys[i];

                const ai_real dt = (i * in.speed * ai_real(0.001));
                const ai_real u = dt - std::floor(dt);
                const int idx = (int)std::floor(dt) % size;

                // get the 4 current points to evaluate the spline
                const aiVector3D &p0 = in.splineKeys[ClampSpline(idx - 1, size)].mValue;
                const aiVector3D &p1 = in.splineKeys[ClampSpline(idx + 0, size)].mValue;
                const aiVector3D &p2 = in.splineKeys[ClampSpline(idx + 1, size)].mValue;
                const aiVector3D &p3 = in.splineKeys[ClampSpline(idx + 2, size)].mValue;

                // compute polynomials
                const ai_real u2 = u * u;
                const ai_real u3 = u2 * 2;

                const ai_real h1 = ai_real(2.0) * u3 - ai_real(3.0) * u2 + ai_real(1.0);
                const ai_real h2 = ai_real(-2.0) * u3 + ai_real(3.0) * u3;
                const ai_real h3 = u3 - ai_real(2.0) * u3;
                const ai_real h4 = u3 - u2;

                // compute the spline tangents
                const aiVector3D t1 = (p2 - p0) * in.tightness;
                aiVector3D t2 = (p3 - p1) * in.tightness;

                // and use them to get the interpolated point
                t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2);

                // build a simple translation matrix from it
                key.mValue = t2;
                key.mTime = (double)i;
            }
        } break;
        default:
            // UNKNOWN , OTHER
            break;
        };
        if (anim) {
            anims.push_back(anim);
            ++total;
        }
    }
}

// ------------------------------------------------------------------------------------------------
// This function is maybe more generic than we'd need it here
void SetupMapping(aiMaterial *mat, aiTextureMapping mode, const aiVector3D &axis = aiVector3D(0.f, 0.f, -1.f)) {
    if (nullptr == mat) {
        return;
    }

    // Check whether there are texture properties defined - setup
    // the desired texture mapping mode for all of them and ignore
    // all UV settings we might encounter. WE HAVE NO UVS!

    std::vector<aiMaterialProperty *> p;
    p.reserve(mat->mNumProperties + 1);

    for (unsigned int i = 0; i < mat->mNumProperties; ++i) {
        aiMaterialProperty *prop = mat->mProperties[i];
        if (!::strcmp(prop->mKey.data, "$tex.file")) {
            // Setup the mapping key
            aiMaterialProperty *m = new aiMaterialProperty();
            m->mKey.Set("$tex.mapping");
            m->mIndex = prop->mIndex;
            m->mSemantic = prop->mSemantic;
            m->mType = aiPTI_Integer;

            m->mDataLength = 4;
            m->mData = new char[4];
            *((int *)m->mData) = mode;

            p.push_back(prop);
            p.push_back(m);

            // Setup the mapping axis
            if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE || mode == aiTextureMapping_SPHERE) {
                m = new aiMaterialProperty();
                m->mKey.Set("$tex.mapaxis");
                m->mIndex = prop->mIndex;
                m->mSemantic = prop->mSemantic;
                m->mType = aiPTI_Float;

                m->mDataLength = sizeof(aiVector3D);
                m->mData = new char[m->mDataLength];
                *((aiVector3D *)m->mData) = axis;
                p.push_back(m);
            }
        } else if (!::strcmp(prop->mKey.data, "$tex.uvwsrc")) {
            delete mat->mProperties[i];
        } else
            p.push_back(prop);
    }

    if (p.empty()) return;

    // rebuild the output array
    if (p.size() > mat->mNumAllocated) {
        delete[] mat->mProperties;
        mat->mProperties = new aiMaterialProperty *[p.size() * 2];

        mat->mNumAllocated = static_cast<unsigned int>(p.size() * 2);
    }
    mat->mNumProperties = (unsigned int)p.size();
    ::memcpy(mat->mProperties, &p[0], sizeof(void *) * mat->mNumProperties);
}

// ------------------------------------------------------------------------------------------------
void IRRImporter::GenerateGraph(Node *root, aiNode *rootOut, aiScene *scene,
        BatchLoader &batch,
        std::vector<aiMesh *> &meshes,
        std::vector<aiNodeAnim *> &anims,
        std::vector<AttachmentInfo> &attach,
        std::vector<aiMaterial *> &materials,
        unsigned int &defMatIdx) {
    unsigned int oldMeshSize = (unsigned int)meshes.size();
    // unsigned int meshTrafoAssign = 0;

    // Now determine the type of the node
    switch (root->type) {
    case Node::ANIMMESH:
    case Node::MESH: {
        if (!root->meshPath.length())
            break;

        // Get the loaded mesh from the scene and add it to
        // the list of all scenes to be attached to the
        // graph we're currently building
        aiScene *localScene = batch.GetImport(root->id);
        if (!localScene) {
            ASSIMP_LOG_ERROR("IRR: Unable to load external file: ", root->meshPath);
            break;
        }
        attach.emplace_back(localScene, rootOut);

        // Now combine the material we've loaded for this mesh
        // with the real materials we got from the file. As we
        // don't execute any pp-steps on the file, the numbers
        // should be equal. If they are not, we can impossibly
        // do this  ...
        if (root->materials.size() != (unsigned int)localScene->mNumMaterials) {
            ASSIMP_LOG_WARN("IRR: Failed to match imported materials "
                            "with the materials found in the IRR scene file");

            break;
        }
        for (unsigned int i = 0; i < localScene->mNumMaterials; ++i) {
            // Delete the old material, we don't need it anymore
            delete localScene->mMaterials[i];

            std::pair<aiMaterial *, unsigned int> &src = root->materials[i];
            localScene->mMaterials[i] = src.first;
        }

        // NOTE: Each mesh should have exactly one material assigned,
        // but we do it in a separate loop if this behavior changes
        // in future.
        for (unsigned int i = 0; i < localScene->mNumMeshes; ++i) {
            // Process material flags
            aiMesh *mesh = localScene->mMeshes[i];

            // If "trans_vertex_alpha" mode is enabled, search all vertex colors
            // and check whether they have a common alpha value. This is quite
            // often the case so we can simply extract it to a shared oacity
            // value.
            std::pair<aiMaterial *, unsigned int> &src = root->materials[mesh->mMaterialIndex];
            aiMaterial *mat = (aiMaterial *)src.first;

            if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha) {
                bool bdo = true;
                for (unsigned int a = 1; a < mesh->mNumVertices; ++a) {

                    if (mesh->mColors[0][a].a != mesh->mColors[0][a - 1].a) {
                        bdo = false;
                        break;
                    }
                }
                if (bdo) {
                    ASSIMP_LOG_INFO("IRR: Replacing mesh vertex alpha with common opacity");

                    for (unsigned int a = 0; a < mesh->mNumVertices; ++a)
                        mesh->mColors[0][a].a = 1.f;

                    mat->AddProperty(&mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY);
                }
            }

            // If we have a second texture coordinate set and a second texture
            // (either light-map, normal-map, 2layered material) we need to
            // setup the correct UV index for it. The texture can either
            // be diffuse (light-map & 2layer) or a normal map (normal & parallax)
            if (mesh->HasTextureCoords(1)) {

                int idx = 1;
                if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) {
                    mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_DIFFUSE(0));
                } else if (src.second & AI_IRRMESH_MAT_normalmap_solid) {
                    mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_NORMALS(0));
                }
            }
        }
    } break;

    case Node::LIGHT:
    case Node::CAMERA:

        // We're already finished with lights and cameras
        break;

    case Node::SPHERE: {
        // Generate the sphere model. Our input parameter to
        // the sphere generation algorithm is the number of
        // subdivisions of each triangle - but here we have
        // the number of polygons on a specific axis. Just
        // use some hard-coded limits to approximate this ...
        unsigned int mul = root->spherePolyCountX * root->spherePolyCountY;
        if (mul < 100)
            mul = 2;
        else if (mul < 300)
            mul = 3;
        else
            mul = 4;

        meshes.push_back(StandardShapes::MakeMesh(mul,
                &StandardShapes::MakeSphere));

        // Adjust scaling
        root->scaling *= root->sphereRadius / 2;

        // Copy one output material
        CopyMaterial(materials, root->materials, defMatIdx, meshes.back());

        // Now adjust this output material - if there is a first texture
        // set, setup spherical UV mapping around the Y axis.
        SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_SPHERE);
    } break;

    case Node::CUBE: {
        // Generate an unit cube first
        meshes.push_back(StandardShapes::MakeMesh(
                &StandardShapes::MakeHexahedron));

        // Adjust scaling
        root->scaling *= root->sphereRadius;

        // Copy one output material
        CopyMaterial(materials, root->materials, defMatIdx, meshes.back());

        // Now adjust this output material - if there is a first texture
        // set, setup cubic UV mapping
        SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_BOX);
    } break;

    case Node::SKYBOX: {
        // A sky-box is defined by six materials
        if (root->materials.size() < 6) {
            ASSIMP_LOG_ERROR("IRR: There should be six materials for a skybox");
            break;
        }

        // copy those materials and generate 6 meshes for our new sky-box
        materials.reserve(materials.size() + 6);
        for (unsigned int i = 0; i < 6; ++i)
            materials.insert(materials.end(), root->materials[i].first);

        BuildSkybox(meshes, materials);

        // *************************************************************
        // Skyboxes will require a different code path for rendering,
        // so there must be a way for the user to add special support
        // for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node.
        // *************************************************************
        root->name = "IRR.SkyBox_" + root->name;
        ASSIMP_LOG_INFO("IRR: Loading skybox, this will "
                        "require special handling to be displayed correctly");
    } break;

    case Node::TERRAIN: {
        // to support terrains, we'd need to have a texture decoder
        ASSIMP_LOG_ERROR("IRR: Unsupported node - TERRAIN");
    } break;
    default:
        // DUMMY
        break;
    };

    // Check whether we added a mesh (or more than one ...). In this case
    // we'll also need to attach it to the node
    if (oldMeshSize != (unsigned int)meshes.size()) {

        rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize;
        rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes];

        for (unsigned int a = 0; a < rootOut->mNumMeshes; ++a) {
            rootOut->mMeshes[a] = oldMeshSize + a;
        }
    }

    // Setup the name of this node
    rootOut->mName.Set(root->name);

    // Now compute the final local transformation matrix of the
    // node from the given translation, rotation and scaling values.
    // (the rotation is given in Euler angles, XYZ order)
    // std::swap((float&)root->rotation.z,(float&)root->rotation.y);
    rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation));

    // apply scaling
    aiMatrix4x4 &mat = rootOut->mTransformation;
    mat.a1 *= root->scaling.x;
    mat.b1 *= root->scaling.x;
    mat.c1 *= root->scaling.x;
    mat.a2 *= root->scaling.y;
    mat.b2 *= root->scaling.y;
    mat.c2 *= root->scaling.y;
    mat.a3 *= root->scaling.z;
    mat.b3 *= root->scaling.z;
    mat.c3 *= root->scaling.z;

    // apply translation
    mat.a4 += root->position.x;
    mat.b4 += root->position.y;
    mat.c4 += root->position.z;

    // now compute animations for the node
    ComputeAnimations(root, rootOut, anims);

    // Add all children recursively. First allocate enough storage
    // for them, then call us again
    rootOut->mNumChildren = (unsigned int)root->children.size();
    if (rootOut->mNumChildren) {

        rootOut->mChildren = new aiNode *[rootOut->mNumChildren];
        for (unsigned int i = 0; i < rootOut->mNumChildren; ++i) {

            aiNode *node = rootOut->mChildren[i] = new aiNode();
            node->mParent = rootOut;
            GenerateGraph(root->children[i], node, scene, batch, meshes,
                    anims, attach, materials, defMatIdx);
        }
    }
}

void IRRImporter::ParseNodeAttributes(pugi::xml_node &attributesNode, IRRImporter::Node *nd, BatchLoader &batch) {
    ai_assert(!ASSIMP_stricmp(attributesNode.name(), "attributes")); // Node must be <attributes>
    ai_assert(nd != nullptr); // dude

    // Big switch statement that tests for various tags inside <attributes>
    // and applies them to nd
    // I don't believe nodes have boolean attributes
    for (pugi::xml_node &attribute : attributesNode.children()) {
        if (attribute.type() != pugi::node_element) continue;
        if (!ASSIMP_stricmp(attribute.name(), "vector3d")) { // <vector3d />
            VectorProperty prop;
            ReadVectorProperty(prop, attribute);
            if (prop.name == "Position") {
                nd->position = prop.value;
            } else if (prop.name == "Rotation") {
                nd->rotation = prop.value;
            } else if (prop.name == "Scale") {
                nd->scaling = prop.value;
            } else if (Node::CAMERA == nd->type) {
                aiCamera *cam = cameras.back();
                if (prop.name == "Target") {
                    cam->mLookAt = prop.value;
                } else if (prop.name == "UpVector") {
                    cam->mUp = prop.value;
                }
            }
        } else if (!ASSIMP_stricmp(attribute.name(), "float")) { // <float />
            FloatProperty prop;
            ReadFloatProperty(prop, attribute);
            if (prop.name == "FramesPerSecond" && Node::ANIMMESH == nd->type) {
                nd->framesPerSecond = prop.value;
            } else if (Node::CAMERA == nd->type) {
                /*  This is the vertical, not the horizontal FOV.
                 *  We need to compute the right FOV from the
                 *  screen aspect which we don't know yet.
                 */
                if (prop.name == "Fovy") {
                    cameras.back()->mHorizontalFOV = prop.value;
                } else if (prop.name == "Aspect") {
                    cameras.back()->mAspect = prop.value;
                } else if (prop.name == "ZNear") {
                    cameras.back()->mClipPlaneNear = prop.value;
                } else if (prop.name == "ZFar") {
                    cameras.back()->mClipPlaneFar = prop.value;
                }
            } else if (Node::LIGHT == nd->type) {
                /*  Additional light information
                 */
                if (prop.name == "Attenuation") {
                    lights.back()->mAttenuationLinear = prop.value;
                } else if (prop.name == "OuterCone") {
                    lights.back()->mAngleOuterCone = AI_DEG_TO_RAD(prop.value);
                } else if (prop.name == "InnerCone") {
                    lights.back()->mAngleInnerCone = AI_DEG_TO_RAD(prop.value);
                }
            }
            // radius of the sphere to be generated -
            // or alternatively, size of the cube
            else if ((Node::SPHERE == nd->type && prop.name == "Radius") ||
                     (Node::CUBE == nd->type && prop.name == "Size")) {
                nd->sphereRadius = prop.value;
            }
        } else if (!ASSIMP_stricmp(attribute.name(), "int")) { // <int />
            // Only sphere nodes make use of integer attributes
            if (Node::SPHERE == nd->type) {
                IntProperty prop;
                ReadIntProperty(prop, attribute);
                if (prop.name == "PolyCountX") {
                    nd->spherePolyCountX = prop.value;
                } else if (prop.name == "PolyCountY") {
                    nd->spherePolyCountY = prop.value;
                }
            }
        } else if (!ASSIMP_stricmp(attribute.name(), "string") || !ASSIMP_stricmp(attribute.name(), "enum")) { // <string /> or < enum />
            StringProperty prop;
            ReadStringProperty(prop, attribute);
            if (prop.value.length() == 0) continue; // skip empty strings
            if (prop.name == "Name") {
                nd->name = prop.value;

                /*  If we're either a camera or a light source
                 *  we need to update the name in the aiLight/
                 *  aiCamera structure, too.
                 */
                if (Node::CAMERA == nd->type) {
                    cameras.back()->mName.Set(prop.value);
                } else if (Node::LIGHT == nd->type) {
                    lights.back()->mName.Set(prop.value);
                }
            } else if (Node::LIGHT == nd->type && "LightType" == prop.name) {
                if (prop.value == "Spot")
                    lights.back()->mType = aiLightSource_SPOT;
                else if (prop.value == "Point")
                    lights.back()->mType = aiLightSource_POINT;
                else if (prop.value == "Directional")
                    lights.back()->mType = aiLightSource_DIRECTIONAL;
                else {
                    // We won't pass the validation with aiLightSourceType_UNDEFINED,
                    // so we remove the light and replace it with a silly dummy node
                    delete lights.back();
                    lights.pop_back();
                    nd->type = Node::DUMMY;

                    ASSIMP_LOG_ERROR("Ignoring light of unknown type: ", prop.value);
                }
            } else if ((prop.name == "Mesh" && Node::MESH == nd->type) ||
                       Node::ANIMMESH == nd->type) {
                /*  This is the file name of the mesh - either
                 *  animated or not. We need to make sure we setup
                 *  the correct post-processing settings here.
                 */
                unsigned int pp = 0;
                BatchLoader::PropertyMap map;

                /* If the mesh is a static one remove all animations from the impor data
                 */
                if (Node::ANIMMESH != nd->type) {
                    pp |= aiProcess_RemoveComponent;
                    SetGenericProperty<int>(map.ints, AI_CONFIG_PP_RVC_FLAGS,
                            aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS);
                }

                /*  TODO: maybe implement the protection against recursive
                 *  loading calls directly in BatchLoader? The current
                 *  implementation is not absolutely safe. A LWS and an IRR
                 *  file referencing each other *could* cause the system to
                 *  recurse forever.
                 */

                const std::string extension = GetExtension(prop.value);
                if ("irr" == extension) {
                    ASSIMP_LOG_ERROR("IRR: Can't load another IRR file recursively");
                } else {
                    nd->id = batch.AddLoadRequest(prop.value, pp, &map);
                    nd->meshPath = prop.value;
                }
            }
        }
    }
}

void IRRImporter::ParseAnimators(pugi::xml_node &animatorNode, IRRImporter::Node *nd) {
    Animator *curAnim = nullptr;
    // Make empty animator
    nd->animators.emplace_back();
    curAnim = &nd->animators.back(); // Push it back
    pugi::xml_node attributes = animatorNode.child("attributes");
    if (!attributes) {
        ASSIMP_LOG_WARN("Animator node does not contain attributes. ");
        return;
    }

    for (pugi::xml_node attrib : attributes.children()) {
        // XML may contain useless noes like CDATA
        if (!ASSIMP_stricmp(attrib.name(), "vector3d")) {
            VectorProperty prop;
            ReadVectorProperty(prop, attrib);

            if (curAnim->type == Animator::ROTATION && prop.name == "Rotation") {
                // We store the rotation euler angles in 'direction'
                curAnim->direction = prop.value;
            } else if (curAnim->type == Animator::FOLLOW_SPLINE) {
                // Check whether the vector follows the PointN naming scheme,
                // here N is the ONE-based index of the point
                if (prop.name.length() >= 6 && prop.name.substr(0, 5) == "Point") {
                    // Add a new key to the list
                    curAnim->splineKeys.emplace_back();
                    aiVectorKey &key = curAnim->splineKeys.back();

                    // and parse its properties
                    key.mValue = prop.value;
                    key.mTime = strtoul10(&prop.name[5]);
                }
            } else if (curAnim->type == Animator::FLY_CIRCLE) {
                if (prop.name == "Center") {
                    curAnim->circleCenter = prop.value;
                } else if (prop.name == "Direction") {
                    curAnim->direction = prop.value;

                    // From Irrlicht's source - a workaround for backward compatibility with Irrlicht 1.1
                    if (curAnim->direction == aiVector3D()) {
                        curAnim->direction = aiVector3D(0.f, 1.f, 0.f);
                    } else
                        curAnim->direction.Normalize();
                }
            } else if (curAnim->type == Animator::FLY_STRAIGHT) {
                if (prop.name == "Start") {
                    // We reuse the field here
                    curAnim->circleCenter = prop.value;
                } else if (prop.name == "End") {
                    // We reuse the field here
                    curAnim->direction = prop.value;
                }
            }

            //} else if (!ASSIMP_stricmp(reader->getNodeName(), "bool")) {
        } else if (!ASSIMP_stricmp(attrib.name(), "bool")) {
            BoolProperty prop;
            ReadBoolProperty(prop, attrib);

            if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop") {
                curAnim->loop = prop.value;
            }
            //} else if (!ASSIMP_stricmp(reader->getNodeName(), "float")) {
        } else if (!ASSIMP_stricmp(attrib.name(), "float")) {
            FloatProperty prop;
            ReadFloatProperty(prop, attrib);

            // The speed property exists for several animators
            if (prop.name == "Speed") {
                curAnim->speed = prop.value;
            } else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius") {
                curAnim->circleRadius = prop.value;
            } else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness") {
                curAnim->tightness = prop.value;
            }
            //} else if (!ASSIMP_stricmp(reader->getNodeName(), "int")) {
        } else if (!ASSIMP_stricmp(attrib.name(), "int")) {
            IntProperty prop;
            ReadIntProperty(prop, attrib);

            if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay") {
                curAnim->timeForWay = prop.value;
            }
            //} else if (!ASSIMP_stricmp(reader->getNodeName(), "string") || !ASSIMP_stricmp(reader->getNodeName(), "enum")) {
        } else if (!ASSIMP_stricmp(attrib.name(), "string") || !ASSIMP_stricmp(attrib.name(), "enum")) {
            StringProperty prop;
            ReadStringProperty(prop, attrib);

            if (prop.name == "Type") {
                // type of the animator
                if (prop.value == "rotation") {
                    curAnim->type = Animator::ROTATION;
                } else if (prop.value == "flyCircle") {
                    curAnim->type = Animator::FLY_CIRCLE;
                } else if (prop.value == "flyStraight") {
                    curAnim->type = Animator::FLY_CIRCLE;
                } else if (prop.value == "followSpline") {
                    curAnim->type = Animator::FOLLOW_SPLINE;
                } else {
                    ASSIMP_LOG_WARN("IRR: Ignoring unknown animator: ", prop.value);

                    curAnim->type = Animator::UNKNOWN;
                }
            }
        }
    }
}

IRRImporter::Node *IRRImporter::ParseNode(pugi::xml_node &node, BatchLoader &batch) {
    // Parse <node> tags.
    // <node> tags have various types
    // <node> tags can contain <attribute>, <material>
    // they can also contain other <node> tags, (and can reference other files as well?)
    // ***********************************************************************
    /*  What we're going to do with the node depends
     *  on its type:
     *
     *  "mesh" - Load a mesh from an external file
     *  "cube" - Generate a cube
     *  "skybox" - Generate a skybox
     *  "light" - A light source
     *  "sphere" - Generate a sphere mesh
     *  "animatedMesh" - Load an animated mesh from an external file
     *    and join its animation channels with ours.
     *  "empty" - A dummy node
     *  "camera" - A camera
     *  "terrain" - a terrain node (data comes from a heightmap)
     *  "billboard", ""
     *
     *  Each of these nodes can be animated and all can have multiple
     *  materials assigned (except lights, cameras and dummies, of course).
     *  Said materials and animators are all collected at the bottom
     */
    // ***********************************************************************
    Node *nd;
    pugi::xml_attribute nodeTypeAttrib = node.attribute("type");
    if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "mesh") || !ASSIMP_stricmp(nodeTypeAttrib.value(), "octTree")) {
        // OctTree's and meshes are treated equally
        nd = new Node(Node::MESH);
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "cube")) {
        nd = new Node(Node::CUBE);
        guessedMeshCnt += 1; // Cube is only one mesh
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "skybox")) {
        nd = new Node(Node::SKYBOX);
        guessedMeshCnt += 6; // Skybox is a box, with 6 meshes?
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "camera")) {
        nd = new Node(Node::CAMERA);
        // Setup a temporary name for the camera
        aiCamera *cam = new aiCamera();
        cam->mName.Set(nd->name);
        cameras.push_back(cam);
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "light")) {
        nd = new Node(Node::LIGHT);
        // Setup a temporary name for the light
        aiLight *cam = new aiLight();
        cam->mName.Set(nd->name);
        lights.push_back(cam);
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "sphere")) {
        nd = new Node(Node::SPHERE);
        guessedMeshCnt += 1;
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "animatedMesh")) {
        nd = new Node(Node::ANIMMESH);
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "empty")) {
        nd = new Node(Node::DUMMY);
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "terrain")) {
        nd = new Node(Node::TERRAIN);
    } else if (!ASSIMP_stricmp(nodeTypeAttrib.value(), "billBoard")) {
        // We don't support billboards, so ignore them
        ASSIMP_LOG_ERROR("IRR: Billboards are not supported by Assimp");
        nd = new Node(Node::DUMMY);
    } else {
        ASSIMP_LOG_WARN("IRR: Found unknown node: ", nodeTypeAttrib.value());

        /*  We skip the contents of nodes we don't know.
         *  We parse the transformation and all animators
         *  and skip the rest.
         */
        nd = new Node(Node::DUMMY);
    }

    // TODO: consolidate all into one loop
    for (pugi::xml_node subNode : node.children()) {
        // Collect node attributes first
        if (!ASSIMP_stricmp(subNode.name(), "attributes")) {
            ParseNodeAttributes(subNode, nd, batch); // Parse attributes into this node
        } else if (!ASSIMP_stricmp(subNode.name(), "animators")) {
            // Then parse any animators
            // All animators should contain an <attributes> tag

            //  This is an animation path - add a new animator
            //  to the list.
            ParseAnimators(subNode, nd); // Function modifies nd's animator vector
            guessedAnimCnt += 1;
        }

        // Then parse any materials
        // Materials are available to almost all node types
        if (nd->type != Node::DUMMY) {
            if (!ASSIMP_stricmp(subNode.name(), "materials")) {
                // Parse material description directly
                // Each material should contain an <attributes> node
                // with everything specified
                nd->materials.emplace_back();
                std::pair<aiMaterial *, unsigned int> &p = nd->materials.back();
                p.first = ParseMaterial(subNode, p.second);
                guessedMatCnt += 1;
            }
        }
    }

    // Then parse any child nodes
    // Attach the newly created node to the scene-graph
    for (pugi::xml_node child : node.children()) {
        if (!ASSIMP_stricmp(child.name(), "node")) { // Is a child node
            Node *childNd = ParseNode(child, batch); // Repeat this function for all children
            nd->children.push_back(childNd);
        };
    }

    // Return fully specified node
    return nd;
}

// ------------------------------------------------------------------------------------------------
// Imports the given file into the given scene structure.
void IRRImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
    std::unique_ptr<IOStream> file(pIOHandler->Open(pFile));
    // Check whether we can read from the file
    if (file == nullptr) {
        throw DeadlyImportError("Failed to open IRR file ", pFile);
    }

    // Construct the irrXML parser
    XmlParser st;
    if (!st.parse(file.get())) {
        throw DeadlyImportError("XML parse error while loading IRR file ", pFile);
    }
    pugi::xml_node documentRoot = st.getRootNode();

    // The root node of the scene
    Node *root = new Node(Node::DUMMY);
    root->parent = nullptr;
    root->name = "<IRRSceneRoot>";

    // Batch loader used to load external models
    BatchLoader batch(pIOHandler);
    // batch.SetBasePath(pFile);

    cameras.reserve(1); // Probably only one camera in entire scene
    lights.reserve(5);

    this->guessedAnimCnt = 0;
    this->guessedMeshCnt = 0;
    this->guessedMatCnt = 0;

    // Parse the XML
    // Find the scene root from document root.
    const pugi::xml_node &sceneRoot = documentRoot.child("irr_scene");
    if (!sceneRoot) {
        delete root;
        throw new DeadlyImportError("IRR: <irr_scene> not found in file");
    }
    for (pugi::xml_node &child : sceneRoot.children()) {
        // XML elements are either nodes, animators, attributes, or materials
        if (!ASSIMP_stricmp(child.name(), "node")) {
            // Recursive collect subtree children
            Node *nd = ParseNode(child, batch);
            // Attach to root
            root->children.push_back(nd);
        }
    }

    //  Now iterate through all cameras and compute their final (horizontal) FOV
    for (aiCamera *cam : cameras) {
        // screen aspect could be missing
        if (cam->mAspect) {
            cam->mHorizontalFOV *= cam->mAspect;
        } else {
            ASSIMP_LOG_WARN("IRR: Camera aspect is not given, can't compute horizontal FOV");
        }
    }

    batch.LoadAll();

    // Allocate a temporary scene data structure
    aiScene *tempScene = new aiScene();
    tempScene->mRootNode = new aiNode();
    tempScene->mRootNode->mName.Set("<IRRRoot>");

    // Copy the cameras to the output array
    if (!cameras.empty()) {
        tempScene->mNumCameras = (unsigned int)cameras.size();
        tempScene->mCameras = new aiCamera *[tempScene->mNumCameras];
        ::memcpy(tempScene->mCameras, &cameras[0], sizeof(void *) * tempScene->mNumCameras);
    }

    // Copy the light sources to the output array
    if (!lights.empty()) {
        tempScene->mNumLights = (unsigned int)lights.size();
        tempScene->mLights = new aiLight *[tempScene->mNumLights];
        ::memcpy(tempScene->mLights, &lights[0], sizeof(void *) * tempScene->mNumLights);
    }

    // temporary data
    std::vector<aiNodeAnim *> anims;
    std::vector<aiMaterial *> materials;
    std::vector<AttachmentInfo> attach;
    std::vector<aiMesh *> meshes;

    // try to guess how much storage we'll need
    anims.reserve(guessedAnimCnt + (guessedAnimCnt >> 2));
    meshes.reserve(guessedMeshCnt + (guessedMeshCnt >> 2));
    materials.reserve(guessedMatCnt + (guessedMatCnt >> 2));

    // Now process our scene-graph recursively: generate final
    // meshes and generate animation channels for all nodes.
    unsigned int defMatIdx = UINT_MAX;
    GenerateGraph(root, tempScene->mRootNode, tempScene,
            batch, meshes, anims, attach, materials, defMatIdx);

    if (!anims.empty()) {
        tempScene->mNumAnimations = 1;
        tempScene->mAnimations = new aiAnimation *[tempScene->mNumAnimations];
        aiAnimation *an = tempScene->mAnimations[0] = new aiAnimation();

        // ***********************************************************
        // This is only the global animation channel of the scene.
        // If there are animated models, they will have separate
        // animation channels in the scene. To display IRR scenes
        // correctly, users will need to combine the global anim
        // channel with all the local animations they want to play
        // ***********************************************************
        an->mName.Set("Irr_GlobalAnimChannel");

        // copy all node animation channels to the global channel
        an->mNumChannels = (unsigned int)anims.size();
        an->mChannels = new aiNodeAnim *[an->mNumChannels];
        ::memcpy(an->mChannels, &anims[0], sizeof(void *) * an->mNumChannels);
    }
    if (!meshes.empty()) {
        // copy all meshes to the temporary scene
        tempScene->mNumMeshes = (unsigned int)meshes.size();
        tempScene->mMeshes = new aiMesh *[tempScene->mNumMeshes];
        ::memcpy(tempScene->mMeshes, &meshes[0], tempScene->mNumMeshes * sizeof(void *));
    }

    // Copy all materials to the output array
    if (!materials.empty()) {
        tempScene->mNumMaterials = (unsigned int)materials.size();
        tempScene->mMaterials = new aiMaterial *[tempScene->mNumMaterials];
        ::memcpy(tempScene->mMaterials, &materials[0], sizeof(void *) * tempScene->mNumMaterials);
    }

    //  Now merge all sub scenes and attach them to the correct
    //  attachment points in the scenegraph.
    SceneCombiner::MergeScenes(&pScene, tempScene, attach,
            AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES | (!configSpeedFlag ? (AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES_IF_NECESSARY | AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES) :
                                                                      0));

    // If we have no meshes | no materials now set the INCOMPLETE
    // scene flag. This is necessary if we failed to load all
    // models from external files
    if (!pScene->mNumMeshes || !pScene->mNumMaterials) {
        ASSIMP_LOG_WARN("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE");
        pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
    }

    // Finished ... everything destructs automatically and all
    // temporary scenes have already been deleted by MergeScenes()
    delete root;
}

#endif // !! ASSIMP_BUILD_NO_IRR_IMPORTER