/* Open Asset Import Library (ASSIMP) ---------------------------------------------------------------------- Copyright (c) 2006-2010, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ---------------------------------------------------------------------- */ /** @file IFC.cpp * @brief Implementation of the Industry Foundation Classes loader. */ #ifndef INCLUDED_IFCUTIL_H #define INCLUDED_IFCUTIL_H #include "IFCReaderGen.h" #include "IFCLoader.h" namespace Assimp { namespace IFC { // helper for std::for_each to delete all heap-allocated items in a container template struct delete_fun { void operator()(T* del) { delete del; } }; // ------------------------------------------------------------------------------------------------ // Temporary representation of an opening in a wall or a floor // ------------------------------------------------------------------------------------------------ struct TempMesh; struct TempOpening { const IFC::IfcExtrudedAreaSolid* solid; aiVector3D extrusionDir; boost::shared_ptr profileMesh; // ------------------------------------------------------------------------------ TempOpening(const IFC::IfcExtrudedAreaSolid* solid,aiVector3D extrusionDir,boost::shared_ptr profileMesh) : solid(solid) , extrusionDir(extrusionDir) , profileMesh(profileMesh) { } // ------------------------------------------------------------------------------ void Transform(const aiMatrix4x4& mat); // defined later since TempMesh is not complete yet }; // ------------------------------------------------------------------------------------------------ // Intermediate data storage during conversion. Keeps everything and a bit more. // ------------------------------------------------------------------------------------------------ struct ConversionData { ConversionData(const STEP::DB& db, const IFC::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings) : len_scale(1.0) , angle_scale(1.0) , db(db) , proj(proj) , out(out) , settings(settings) , apply_openings() , collect_openings() {} ~ConversionData() { std::for_each(meshes.begin(),meshes.end(),delete_fun()); std::for_each(materials.begin(),materials.end(),delete_fun()); } float len_scale, angle_scale; bool plane_angle_in_radians; const STEP::DB& db; const IFC::IfcProject& proj; aiScene* out; aiMatrix4x4 wcs; std::vector meshes; std::vector materials; typedef std::map > MeshCache; MeshCache cached_meshes; const IFCImporter::Settings& settings; // Intermediate arrays used to resolve openings in walls: only one of them // can be given at a time. apply_openings if present if the current element // is a wall and needs its openings to be poured into its geometry while // collect_openings is present only if the current element is an // IfcOpeningElement, for which all the geometry needs to be preserved // for later processing by a parent, which is a wall. std::vector* apply_openings; std::vector* collect_openings; }; // ------------------------------------------------------------------------------------------------ // Binary predicate to compare vectors with a given, quadratic epsilon. // ------------------------------------------------------------------------------------------------ struct FuzzyVectorCompare { FuzzyVectorCompare(float epsilon) : epsilon(epsilon) {} bool operator()(const aiVector3D& a, const aiVector3D& b) { return fabs((a-b).SquareLength()) < epsilon; } const float epsilon; }; // ------------------------------------------------------------------------------------------------ // Helper used during mesh construction. Aids at creating aiMesh'es out of relatively few polygons. // ------------------------------------------------------------------------------------------------ struct TempMesh { std::vector verts; std::vector vertcnt; // utilities aiMesh* ToMesh(); void Clear(); void Transform(const aiMatrix4x4& mat); aiVector3D Center() const; void Append(const TempMesh& other); void RemoveAdjacentDuplicates(); }; // conversion routines for common IFC entities, implemented in IFCUtil.cpp void ConvertColor(aiColor4D& out, const IfcColourRgb& in); void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base); void ConvertCartesianPoint(aiVector3D& out, const IfcCartesianPoint& in); void ConvertDirection(aiVector3D& out, const IfcDirection& in); void ConvertVector(aiVector3D& out, const IfcVector& in); void AssignMatrixAxes(aiMatrix4x4& out, const aiVector3D& x, const aiVector3D& y, const aiVector3D& z); void ConvertAxisPlacement(aiMatrix4x4& out, const IfcAxis2Placement3D& in); void ConvertAxisPlacement(aiMatrix4x4& out, const IfcAxis2Placement2D& in); void ConvertAxisPlacement(aiVector3D& axis, aiVector3D& pos, const IFC::IfcAxis1Placement& in); void ConvertAxisPlacement(aiMatrix4x4& out, const IfcAxis2Placement& in, ConversionData& conv); void ConvertTransformOperator(aiMatrix4x4& out, const IfcCartesianTransformationOperator& op); bool IsTrue(const EXPRESS::BOOLEAN& in); float ConvertSIPrefix(const std::string& prefix); // IFCProfile.cpp bool ProcessProfile(const IfcProfileDef& prof, TempMesh& meshout, ConversionData& conv); // IFCMaterial.cpp unsigned int ProcessMaterials(const IFC::IfcRepresentationItem& item, ConversionData& conv); // IFCGeometry.cpp bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector& mesh_indices, ConversionData& conv); void AssignAddedMeshes(std::vector& mesh_indices,aiNode* nd,ConversionData& /*conv*/); // IFCCurve.cpp // ------------------------------------------------------------------------------------------------ // Custom exception for use by members of the Curve class // ------------------------------------------------------------------------------------------------ class CurveError { public: CurveError(const std::string& s) : s(s) { } std::string s; }; // ------------------------------------------------------------------------------------------------ // Temporary representation for an arbitrary sub-class of IfcCurve. Used to sample the curves // to obtain a list of line segments. // ------------------------------------------------------------------------------------------------ class Curve { protected: Curve(const IfcCurve& base_entity, ConversionData& conv) : base_entity(base_entity) , conv(conv) {} public: typedef std::pair ParamRange; public: // check if a curve is closed virtual bool IsClosed() const = 0; // evaluate the curve at the given parametric position virtual aiVector3D Eval(float p) const = 0; // try to match a point on the curve to a given parameter // for self-intersecting curves, the result is not ambiguous and // it is undefined which parameter is returned. virtual bool ReverseEval(const aiVector3D& val, float& paramOut) const; // get the range of the curve (both inclusive). // +inf and -inf are valid return values, the curve is not bounded in such a case. virtual std::pair GetParametricRange() const = 0; float GetParametricRangeDelta() const; // estimate the number of sample points that this curve will require virtual size_t EstimateSampleCount(float start,float end) const; // intelligently sample the curve based on the current settings // and append the result to the mesh virtual void SampleDiscrete(TempMesh& out,float start,float end) const; #ifdef _DEBUG // check if a particular parameter value lies within the well-defined range bool InRange(float) const; #endif public: static Curve* Convert(const IFC::IfcCurve&,ConversionData& conv); protected: const IfcCurve& base_entity; ConversionData& conv; }; // -------------------------------------------------------------------------------- // A BoundedCurve always holds the invariant that GetParametricRange() // never returns infinite values. // -------------------------------------------------------------------------------- class BoundedCurve : public Curve { public: BoundedCurve(const IfcBoundedCurve& entity, ConversionData& conv) : Curve(entity,conv) {} public: bool IsClosed() const; public: // sample the entire curve void SampleDiscrete(TempMesh& out) const; using Curve::SampleDiscrete; }; } } #endif