/* --------------------------------------------------------------------------- Open Asset Import Library (ASSIMP) --------------------------------------------------------------------------- Copyright (c) 2006-2008, ASSIMP Development Team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the ASSIMP team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the ASSIMP Development Team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file WriteTextDumb.cpp * @brief Implementation of the 'assimp dump' utility */ #include "Main.h" #include "../code/ProcessHelper.h" const char* AICMD_MSG_DUMP_HELP = "todo assimp dumb help"; // ----------------------------------------------------------------------------------- // Compress a binary dump file (beginning at offset head_size) void CompressBinaryDump(const char* file, unsigned int head_size) { // for simplicity ... copy the file into memory again and compress it there FILE* p = ::fopen(file,"r"); ::fseek(p,0,SEEK_END); const unsigned int size = (unsigned int)::ftell(p); ::fseek(p,0,SEEK_SET); if (sizemName,out); WriteMat4x4(node->mTransformation,out); WriteInteger(node->mNumMeshes,out); for (unsigned int i = 0; i < node->mNumMeshes;++i) WriteInteger(node->mMeshes[i],out); WriteInteger(node->mNumChildren,out); for (unsigned int i = 0; i < node->mNumChildren;++i) WriteBinaryNode(node->mChildren[i],out); } // ----------------------------------------------------------------------------------- // Write the min/max values of an array of Ts to the file template inline void WriteBounds(const T* in, unsigned int size, FILE* out) { T minc,maxc; ArrayBounds(in,size,minc,maxc); ::fwrite(&minc,sizeof(T),1,out); ::fwrite(&maxc,sizeof(T),1,out); } // ----------------------------------------------------------------------------------- // Write a binary model dump void WriteBinaryDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened, bool compressed, ImportData& imp) { time_t tt = ::time(NULL); tm* p = ::gmtime(&tt); // header ::fprintf(out,"ASSIMP.binary-dump.%s.",::asctime(p)); // == 45 bytes WriteInteger(aiGetVersionMajor(),out); WriteInteger(aiGetVersionMinor(),out); WriteInteger(aiGetVersionRevision(),out); WriteInteger(aiGetCompileFlags(),out); WriteShort(shortened,out); WriteShort(compressed,out); // == 20 bytes char buff[256]; ::strncpy(buff,src,256); ::fwrite(buff,256,1,out); ::strncpy(buff,cmd,128); ::fwrite(buff,128,1,out); // leave 41 bytes free for future extensions ::memset(buff,0xcd,41); ::fwrite(buff,32,1,out); // == 435 bytes // ==== total header size: 500 bytes // Up to here the data is uncompressed. For compressed files, the rest // is compressed using standard DEFLATE from zlib. // basic scene information WriteInteger(scene->mFlags,out); WriteInteger(scene->mNumAnimations,out); WriteInteger(scene->mNumTextures,out); WriteInteger(scene->mNumMaterials,out); WriteInteger(scene->mNumCameras,out); WriteInteger(scene->mNumLights,out); WriteInteger(scene->mNumMeshes,out); // write node graph WriteBinaryNode(scene->mRootNode,out); // write materials for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { const aiMaterial* mat = scene->mMaterials[i]; WriteMagic("#MA",out); WriteInteger(mat->mNumProperties,out); for (unsigned int a = 0; a < mat->mNumProperties;++a) { const aiMaterialProperty* prop = mat->mProperties[a]; WriteMagic("#MP",out); WriteAiString(prop->mKey,out); WriteInteger(prop->mSemantic,out); WriteInteger(prop->mIndex,out); WriteInteger(prop->mDataLength,out); ::fwrite(prop->mData,prop->mDataLength,1,out); } } // write cameras for (unsigned int i = 0; i < scene->mNumCameras;++i) { const aiCamera* cam = scene->mCameras[i]; WriteMagic("#CA",out); WriteAiString(cam->mName,out); WriteVec3(cam->mPosition,out); WriteVec3(cam->mLookAt,out); WriteVec3(cam->mUp,out); WriteFloat(cam->mClipPlaneNear,out); WriteFloat(cam->mClipPlaneFar,out); WriteFloat(cam->mHorizontalFOV,out); WriteFloat(cam->mAspect,out); } // write lights for (unsigned int i = 0; i < scene->mNumLights;++i) { const aiLight* l = scene->mLights[i]; WriteMagic("#LI",out); WriteAiString(l->mName,out); WriteInteger(l->mType,out); WriteVec3((const aiVector3D&)l->mColorDiffuse,out); WriteVec3((const aiVector3D&)l->mColorSpecular,out); WriteVec3((const aiVector3D&)l->mColorAmbient,out); if (l->mType != aiLightSource_DIRECTIONAL) { WriteVec3(l->mPosition,out); WriteFloat(l->mAttenuationLinear,out); WriteFloat(l->mAttenuationConstant,out); WriteFloat(l->mAttenuationQuadratic,out); } if (l->mType != aiLightSource_POINT) { WriteVec3(l->mDirection,out); } if (l->mType == aiLightSource_SPOT) { WriteFloat(l->mAttenuationConstant,out); WriteFloat(l->mAttenuationQuadratic,out); } } // write all animations for (unsigned int i = 0; i < scene->mNumAnimations;++i) { const aiAnimation* anim = scene->mAnimations[i]; WriteMagic("#AN",out); WriteAiString (anim->mName,out); WriteDouble (anim->mTicksPerSecond,out); WriteDouble (anim->mDuration,out); WriteInteger(anim->mNumChannels,out); for (unsigned int a = 0; a < anim->mNumChannels;++a) { const aiNodeAnim* nd = anim->mChannels[a]; WriteMagic("#NA",out); WriteAiString(nd->mNodeName,out); WriteInteger(nd->mPreState,out); WriteInteger(nd->mPostState,out); WriteInteger(nd->mNumPositionKeys,out); WriteInteger(nd->mNumRotationKeys,out); WriteInteger(nd->mNumScalingKeys,out); if (nd->mPositionKeys) { if (shortened) { WriteBounds(nd->mPositionKeys,nd->mNumPositionKeys,out); } // else write as usual else ::fwrite(nd->mPositionKeys,sizeof(aiVectorKey),nd->mNumPositionKeys,out); } if (nd->mRotationKeys) { if (shortened) { WriteBounds(nd->mRotationKeys,nd->mNumRotationKeys,out); } // else write as usual else ::fwrite(nd->mRotationKeys,sizeof(aiQuatKey),nd->mNumRotationKeys,out); } if (nd->mScalingKeys) { if (shortened) { WriteBounds(nd->mScalingKeys,nd->mNumScalingKeys,out); } // else write as usual else ::fwrite(nd->mScalingKeys,sizeof(aiVectorKey),nd->mNumScalingKeys,out); } } } // write all meshes for (unsigned int i = 0; i < scene->mNumMeshes;++i) { const aiMesh* mesh = scene->mMeshes[i]; WriteMagic("#ME",out); WriteInteger(mesh->mPrimitiveTypes,out); WriteInteger(mesh->mNumBones,out); WriteInteger(mesh->mNumFaces,out); WriteInteger(mesh->mNumVertices,out); // write bones if (mesh->mNumBones) { for (unsigned int a = 0; a < mesh->mNumBones;++a) { const aiBone* b = mesh->mBones[a]; WriteMagic("#BN",out); WriteAiString(b->mName,out); WriteMat4x4(b->mOffsetMatrix,out); WriteInteger(b->mNumWeights,out); // for the moment we write dumb min/max values for the bones, too. // maybe I'll add a better, hash-like solution later if (shortened) { WriteBounds(b->mWeights,b->mNumWeights,out); } // else write as usual else ::fwrite(b->mWeights,sizeof(aiVertexWeight),b->mNumWeights,out); } } // write faces. There are no floating-point calculations involved // in these, so we can write a simple hash over the face data // to the dump file. We generate a single 32 Bit hash for 512 faces // using Assimp's standard hashing function. if (shortened) { unsigned int processed = 0; for (unsigned int job;job = std::min(mesh->mNumFaces-processed,512u);processed += job) { unsigned int hash = 0; for (unsigned int a = 0; a < job;++a) { const aiFace& f = mesh->mFaces[processed+a]; hash = SuperFastHash((const char*)&f.mNumIndices,sizeof(unsigned int),hash); hash = SuperFastHash((const char*) f.mIndices,f.mNumIndices*sizeof(unsigned int),hash); } WriteInteger(hash,out); } } else // else write as usual { for (unsigned int i = 0; i < mesh->mNumFaces;++i) { const aiFace& f = mesh->mFaces[i]; WriteInteger(f.mNumIndices,out); for (unsigned int a = 0; a < f.mNumIndices;++a) WriteInteger(f.mIndices[a],out); } } // first of all, write bits for all existent vertex components unsigned int c = 0; if (mesh->mVertices) c |= 1; if (mesh->mNormals) c |= 2; if (mesh->mTangents && mesh->mBitangents) c |= 4; for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { if (!mesh->mTextureCoords[n])break; c |= (8 << n); } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) { if (!mesh->mColors[n])break; c |= (16 << n); } WriteInteger(c,out); aiVector3D minVec, maxVec; if (mesh->mVertices) { if (shortened) { WriteBounds(mesh->mVertices,mesh->mNumVertices,out); } // else write as usual else ::fwrite(mesh->mVertices,12*mesh->mNumVertices,1,out); } if (mesh->mNormals) { if (shortened) { WriteBounds(mesh->mNormals,mesh->mNumVertices,out); } // else write as usual else ::fwrite(mesh->mNormals,12*mesh->mNumVertices,1,out); } if (mesh->mTangents && mesh->mBitangents) { if (shortened) { WriteBounds(mesh->mTangents,mesh->mNumVertices,out); WriteBounds(mesh->mBitangents,mesh->mNumVertices,out); } // else write as usual else { ::fwrite(mesh->mTangents,12*mesh->mNumVertices,1,out); ::fwrite(mesh->mBitangents,12*mesh->mNumVertices,1,out); } } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_TEXTURECOORDS;++n) { if (!mesh->mTextureCoords[n])break; // write number of UV components WriteInteger(mesh->mNumUVComponents[n],out); if (shortened) { WriteBounds(mesh->mTextureCoords[n],mesh->mNumVertices,out); } // else write as usual else ::fwrite(mesh->mTextureCoords[n],12*mesh->mNumVertices,1,out); } for (unsigned int n = 0; n < AI_MAX_NUMBER_OF_COLOR_SETS;++n) { if (!mesh->mColors[n]) break; if (shortened) { WriteBounds(mesh->mColors[n],mesh->mNumVertices,out); } // else write as usual else ::fwrite(mesh->mColors[n],16*mesh->mNumVertices,1,out); } } } // ----------------------------------------------------------------------------------- // Convert a name to standard XML format void ConvertName(aiString& out, const aiString& in) { out.length = 0; for (unsigned int i = 0; i < in.length; ++i) { switch (in.data[i]) { case '<': out.Append("<");break; case '>': out.Append(">");break; case '&': out.Append("&");break; case '\"': out.Append(""");break; case '\'': out.Append("'");break; default: out.data[out.length++] = in.data[i]; } } out.data[out.length] = 0; } // ----------------------------------------------------------------------------------- // Write a single node as text dump void WriteNode(const aiNode* node, FILE* out, unsigned int depth) { char prefix[512]; for (unsigned int i = 0; i < depth;++i) prefix[i] = '\t'; prefix[depth] = '\0'; const aiMatrix4x4& m = node->mTransformation; aiString name; ConvertName(name,node->mName); ::fprintf(out,"%s \n" "%s\t \n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t\t%0 6f %0 6f %0 6f %0 6f\n" "%s\t \n", prefix,name.data,prefix, prefix,m.a1,m.a2,m.a3,m.a4, prefix,m.b1,m.b2,m.b3,m.b4, prefix,m.c1,m.c2,m.c3,m.c4, prefix,m.d1,m.d2,m.d3,m.d4,prefix); if (node->mNumMeshes) { ::fprintf(out, "%s\t\n%s\t", prefix,node->mNumMeshes,prefix); for (unsigned int i = 0; i < node->mNumMeshes;++i) { ::fprintf(out,"%i ",node->mMeshes[i]); } ::fprintf(out,"\n%s\t\n",prefix); } ::fprintf(out,"%s\t%i\n", prefix,node->mNumChildren); for (unsigned int i = 0; i < node->mNumChildren;++i) WriteNode(node->mChildren[i],out,depth+1); ::fprintf(out,"%s\n",prefix); } // ----------------------------------------------------------------------------------- // Write a text model dump void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened) { time_t tt = ::time(NULL); tm* p = ::gmtime(&tt); aiString name; // write header ::fprintf(out, "\n" "\n\n" "" " \n\n" "\n", aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,cmd,::asctime(p), scene->mNumMeshes, scene->mNumMaterials,scene->mNumTextures, scene->mNumCameras,scene->mNumLights,scene->mNumAnimations); // write the node graph WriteNode(scene->mRootNode, out, 1); // write cameras for (unsigned int i = 0; i < scene->mNumCameras;++i) { aiCamera* cam = scene->mCameras[i]; ConvertName(name,cam->mName); // camera header ::fprintf(out,"\t\n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n" "\t\n", name.data, cam->mUp.x,cam->mUp.y,cam->mUp.z, cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z, cam->mPosition.x,cam->mPosition.y,cam->mPosition.z, cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i); } // write lights for (unsigned int i = 0; i < scene->mNumLights;++i) { aiLight* l = scene->mLights[i]; ConvertName(name,l->mName); // light header ::fprintf(out,"\t type=\"%s\"\n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n" "\t\t %0 8f %0 8f %0 8f \n", name.data, (l->mType == aiLightSource_DIRECTIONAL ? "directional" : (l->mType == aiLightSource_POINT ? "point" : "spot" )), l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b, l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b, l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b); if (l->mType != aiLightSource_DIRECTIONAL) { ::fprintf(out, "\t\t %0 8f %0 8f %0 8f \n" "\t\t %f \n" "\t\t %f \n" "\t\t %f \n", l->mPosition.x,l->mPosition.y,l->mPosition.z, l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic); } if (l->mType != aiLightSource_POINT) { ::fprintf(out, "\t\t %0 8f %0 8f %0 8f \n", l->mDirection.x,l->mDirection.y,l->mDirection.z); } if (l->mType == aiLightSource_SPOT) { ::fprintf(out, "\t\t %f \n" "\t\t %f \n", l->mAngleOuterCone,l->mAngleInnerCone); } ::fprintf(out,"\t\n"); } // write textures for (unsigned int i = 0; i < scene->mNumTextures;++i) { aiTexture* tex = scene->mTextures[i]; bool compressed = (tex->mHeight == 0); // mesh header ::fprintf(out,"\t \n" "\t\t %i \n", "\t\t %i \n", "\t\t %s \n", (compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight), (compressed ? "true" : "false")); if (compressed) { ::fprintf(out,"\t\t %i \n",tex->mWidth); if (!shortened) { for (unsigned int n = 0; n < tex->mWidth;++n) { ::fprintf(out,"\t\t\t%2x",tex->pcData[n]); if (n && !(n % 50)) ::fprintf(out,"\n"); } } } else if (!shortened){ ::fprintf(out,"\t\t %i \n",tex->mWidth*tex->mHeight*4); const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1; for (unsigned int y = 0; y < tex->mHeight;++y) { for (unsigned int x = 0; x < tex->mWidth;++x) { aiTexel* tx = tex->pcData + y*tex->mWidth+x; unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a; ::fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a); // group by four for readibility if (0 == (x+y*tex->mWidth) % 4) ::fprintf(out,"\n"); } } } ::fprintf(out,"\t\t\n\t\n"); } // write materials for (unsigned int i = 0; i< scene->mNumMaterials; ++i) { const aiMaterial* mat = scene->mMaterials[i]; ::fprintf(out, "\t\n",mat->mNumProperties); for (unsigned int n = 0; n < mat->mNumProperties;++n) { const aiMaterialProperty* prop = mat->mProperties[n]; const char* sz = ""; if (prop->mType == aiPTI_Float) sz = "float"; else if (prop->mType == aiPTI_Integer) sz = "integer"; else if (prop->mType == aiPTI_String) sz = "string"; else if (prop->mType == aiPTI_Buffer) sz = "binary_buffer"; ::fprintf(out, "\t\tmKey.data, sz, TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex); if (prop->mType == aiPTI_Float) { ::fprintf(out, " size=\"%i\">\n\t\t\t", prop->mDataLength/sizeof(float)); for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) ::fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float)))); } else if (prop->mType == aiPTI_Integer) { ::fprintf(out, " size=\"%i\">\n\t\t\t", prop->mDataLength/sizeof(int)); for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) ::fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int)))); } else if (prop->mType == aiPTI_Buffer) { ::fprintf(out, " size=\"%i\">\n\t\t\t", prop->mDataLength); for (unsigned int p = 0; p < prop->mDataLength;++p) { ::fprintf(out,"%2x ",prop->mData[p]); if (p && 0 == p%30) ::fprintf(out,"\n\t\t\t"); } } else if (prop->mType == aiPTI_String) { ::fprintf(out,">\n\t\t\t\"%s\"",prop->mData+4 /* skip length */); } ::fprintf(out,"\n\t\t\n"); } ::fprintf(out,"\t\n"); } // write animations for (unsigned int i = 0; i < scene->mNumAnimations;++i) { aiAnimation* anim = scene->mAnimations[i]; // anim header ConvertName(name,anim->mName); ::fprintf(out,"\t\n" "\t\t %i \n" "\t\t %e \n" "\t\t %e \n", name.data, anim->mNumChannels,anim->mDuration, anim->mTicksPerSecond); // write bone animation channels for (unsigned int n = 0; n < anim->mNumChannels;++n) { aiNodeAnim* nd = anim->mChannels[n]; // node anim header ConvertName(name,nd->mNodeName); ::fprintf(out,"\t\t\n" "\t\t\t %i \n" "\t\t\t %i \n" "\t\t\t %i \n", name.data,nd->mNumPositionKeys,nd->mNumScalingKeys,nd->mNumRotationKeys); if (!shortened) { // write position keys for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) { aiVectorKey* vc = nd->mPositionKeys+a; ::fprintf(out,"\t\t\t\n" "\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,a); } // write scaling keys for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) { aiVectorKey* vc = nd->mScalingKeys+a; ::fprintf(out,"\t\t\t\n" "\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,a); } // write rotation keys for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) { aiQuatKey* vc = nd->mRotationKeys+a; ::fprintf(out,"\t\t\t\n" "\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\n", vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w,a); } } ::fprintf(out,"\t\t\n",n); } ::fprintf(out,"\t\n",i); } // write meshes for (unsigned int i = 0; i < scene->mNumMeshes;++i) { aiMesh* mesh = scene->mMeshes[i]; const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1; // mesh header ::fprintf(out,"\t\n" "\t\t %i \n" "\t\t %i \n", (mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""), (mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""), mesh->mNumVertices,mesh->mNumFaces); // bones for (unsigned int n = 0; n < mesh->mNumBones;++n) { aiBone* bone = mesh->mBones[n]; ConvertName(name,bone->mName); // bone header ::fprintf(out,"\t\t\n" "\t\t\t \n" "\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n" "\t\t\t \n" "\t\t\t %i \n", name.data, bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4, bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4, bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4, bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4, bone->mNumWeights); if (!shortened) { // bone weights for (unsigned int a = 0; a < bone->mNumWeights;++a) { aiVertexWeight* wght = bone->mWeights+a; ::fprintf(out,"\t\t\t\n\t\t\t\t%f\n\t\t\t\n", wght->mVertexId,wght->mWeight); } } ::fprintf(out,"\t\t\n",n); } // faces if (!shortened) { for (unsigned int n = 0; n < mesh->mNumFaces; ++n) { aiFace& f = mesh->mFaces[n]; ::fprintf(out,"\t\t\n" "\t\t\t",f.mNumIndices); for (unsigned int j = 0; j < f.mNumIndices;++j) ::fprintf(out,"%i ",f.mIndices[j]); ::fprintf(out,"\n\t\t\n"); } } // vertex positions if (mesh->HasPositions()) { ::fprintf(out,"\t\t \n"); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mVertices[n].x, mesh->mVertices[n].y, mesh->mVertices[n].z); } } else { } ::fprintf(out,"\t\t\n"); } // vertex normals if (mesh->HasNormals()) { ::fprintf(out,"\t\t \n"); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mNormals[n].x, mesh->mNormals[n].y, mesh->mNormals[n].z); } } else { } ::fprintf(out,"\t\t\n"); } // vertex tangents and bitangents if (mesh->HasTangentsAndBitangents()) { ::fprintf(out,"\t\t \n"); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ::fprintf(out,"\t\t%0 8f %0 8f %0 8f \t %0 8f %0 8f %0 8f\n", mesh->mTangents[n].x, mesh->mTangents[n].y, mesh->mTangents[n].z, mesh->mBitangents[n].x, mesh->mBitangents[n].y, mesh->mBitangents[n].z); } } else { } ::fprintf(out,"\t\t\n"); } // texture coordinates for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) { if (!mesh->mTextureCoords[a]) break; ::fprintf(out,"\t\t \n",mesh->mNumUVComponents[a]); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ::fprintf(out,"\t\t%0 8f %0 8f %0 8f\n", mesh->mTextureCoords[a][n].x, mesh->mTextureCoords[a][n].y, mesh->mTextureCoords[a][n].z); } } else { } ::fprintf(out,"\t\t\n"); } // vertex colors for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) { if (!mesh->mColors[a]) break; ::fprintf(out,"\t\t \n"); if (!shortened) { for (unsigned int n = 0; n < mesh->mNumVertices; ++n) { ::fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n", mesh->mColors[a][n].r, mesh->mColors[a][n].g, mesh->mColors[a][n].b, mesh->mColors[a][n].a); } } else { } ::fprintf(out,"\t\t\n"); } ::fprintf(out,"\t\n"); } ::fprintf(out,"\n"); } // ----------------------------------------------------------------------------------- int Assimp_Dump (const char** params, unsigned int num) { if (num < 1) { ::printf("assimp dump: Invalid number of arguments. See \'assimp extract --help\'\r\n"); return 1; } // --help if (!::strcmp( params[0], "-h") || !::strcmp( params[0], "--help") || !::strcmp( params[0], "-?") ) { printf(AICMD_MSG_DUMP_HELP); return 0; } // asssimp dump in out [options] if (num < 1) { ::printf("assimp dump: Invalid number of arguments. See \'assimp dump --help\'\r\n"); return 1; } std::string in = std::string(params[0]); std::string out = (num > 1 ? std::string(params[1]) : std::string("-")); // store full command line std::string cmd; for (unsigned int i = (out[0] == '-' ? 1 : 2); i < num;++i) { if (!params[i])continue; cmd.append(params[i]); cmd.append(" "); } // get import flags ImportData import; ProcessStandardArguments(import,params+1,num-1); bool binary = false, shortened = false,compressed=false; // process other flags for (unsigned int i = 1; i < num;++i) { if (!params[i])continue; if (!::strcmp( params[i], "-b") || !::strcmp( params[i], "--binary")) { binary = true; } else if (!::strcmp( params[i], "-s") || !::strcmp( params[i], "--short")) { shortened = true; } else if (!::strcmp( params[i], "-z") || !::strcmp( params[i], "--compressed")) { compressed = true; } else if (i > 2 || params[i][0] == '-') { ::printf("Unknown parameter: %s\n",params[i]); return 10; } } if (out[0] == '-') { // take file name from input file std::string::size_type s = in.find_last_of('.'); if (s == std::string::npos) s = in.length(); out = in.substr(0,s); out.append((binary ? ".assfile" : ".xml")); if (shortened && binary) out.append(".regress"); } // import the main model const aiScene* scene = ImportModel(import,in); if (!scene) { ::printf("assimp dump: Unable to load input file %s\n",in.c_str()); return 5; } // open the output file and build the dump FILE* o = ::fopen(out.c_str(),(binary ? "wb" : "wt")); if (!o) { ::printf("assimp dump: Unable to open output file %s\n",out.c_str()); return 12; } if (binary) WriteBinaryDump (scene,o,in.c_str(),cmd.c_str(),shortened,compressed,import); else WriteDump (scene,o,in.c_str(),cmd.c_str(),shortened); ::fclose(o); if (compressed && binary) CompressBinaryDump(out.c_str(),500); ::printf("assimp dump: Wrote output dump %s\n",out.c_str()); return 0; }