/// \file X3DExporter.cpp /// \brief X3D-format files exporter for Assimp. Implementation. /// \date 2016 /// \author smal.root@gmail.com #ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_X3D_EXPORTER #include "X3DExporter.hpp" // Header files, Assimp. #include #include #include #include namespace Assimp { void ExportSceneX3D(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties) { X3DExporter exporter(pFile, pIOSystem, pScene, pProperties); } void X3DExporter::IndentationStringSet(const size_t pNewLevel) { if(pNewLevel > mIndentationString.size()) { if(pNewLevel > mIndentationString.capacity()) mIndentationString.reserve(pNewLevel + 1); for(size_t i = 0, i_e = pNewLevel - mIndentationString.size(); i < i_e; i++) mIndentationString.push_back('\t'); } else if(pNewLevel < mIndentationString.size()) { mIndentationString.resize(pNewLevel); } } void X3DExporter::XML_Write(const std::string& pData) { if (pData.empty() ) { return; } if (mOutFile->Write((void *)pData.data(), pData.length(), 1) != 1) { throw DeadlyExportError("Failed to write scene data!"); } } aiMatrix4x4 X3DExporter::Matrix_GlobalToCurrent(const aiNode& pNode) const { aiNode *cur_node; std::list matr; aiMatrix4x4 out_matr; // starting walk from current element to root matr.push_back(pNode.mTransformation); cur_node = pNode.mParent; if(cur_node != nullptr) { do { matr.push_back(cur_node->mTransformation); cur_node = cur_node->mParent; } while(cur_node != nullptr); } // Multiplication of all matrices in reverse order for(std::list::reverse_iterator rit = matr.rbegin(); rit != matr.rend(); ++rit) out_matr = out_matr * (*rit); return out_matr; } void X3DExporter::AttrHelper_FloatToString(const float pValue, std::string& pTargetString) { pTargetString = to_string(pValue); AttrHelper_CommaToPoint(pTargetString); } void X3DExporter::AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, string& pTargetString) { pTargetString.clear(); pTargetString.reserve(pArray_Size * 6);// (Number + space) * 3. for(size_t idx = 0; idx < pArray_Size; idx++) pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " " + to_string(pArray[idx].z) + " "); // remove last space symbol. pTargetString.resize(pTargetString.length() - 1); AttrHelper_CommaToPoint(pTargetString); } void X3DExporter::AttrHelper_Vec2DArrToString(const aiVector2D* pArray, const size_t pArray_Size, std::string& pTargetString) { pTargetString.clear(); pTargetString.reserve(pArray_Size * 4);// (Number + space) * 2. for(size_t idx = 0; idx < pArray_Size; idx++) pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " "); // remove last space symbol. pTargetString.resize(pTargetString.length() - 1); AttrHelper_CommaToPoint(pTargetString); } void X3DExporter::AttrHelper_Vec3DAsVec2fArrToString(const aiVector3D* pArray, const size_t pArray_Size, string& pTargetString) { pTargetString.clear(); pTargetString.reserve(pArray_Size * 4);// (Number + space) * 2. for(size_t idx = 0; idx < pArray_Size; idx++) pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " "); // remove last space symbol. pTargetString.resize(pTargetString.length() - 1); AttrHelper_CommaToPoint(pTargetString); } void X3DExporter::AttrHelper_Col4DArrToString(const aiColor4D* pArray, const size_t pArray_Size, string& pTargetString) { pTargetString.clear(); pTargetString.reserve(pArray_Size * 8);// (Number + space) * 4. for(size_t idx = 0; idx < pArray_Size; idx++) pTargetString.append(to_string(pArray[idx].r) + " " + to_string(pArray[idx].g) + " " + to_string(pArray[idx].b) + " " + to_string(pArray[idx].a) + " "); // remove last space symbol. pTargetString.resize(pTargetString.length() - 1); AttrHelper_CommaToPoint(pTargetString); } void X3DExporter::AttrHelper_Col3DArrToString(const aiColor3D* pArray, const size_t pArray_Size, std::string& pTargetString) { pTargetString.clear(); pTargetString.reserve(pArray_Size * 6);// (Number + space) * 3. for(size_t idx = 0; idx < pArray_Size; idx++) pTargetString.append(to_string(pArray[idx].r) + " " + to_string(pArray[idx].g) + " " + to_string(pArray[idx].b) + " "); // remove last space symbol. pTargetString.resize(pTargetString.length() - 1); AttrHelper_CommaToPoint(pTargetString); } void X3DExporter::AttrHelper_Color3ToAttrList(std::list& pList, const std::string& pName, const aiColor3D& pValue, const aiColor3D& pDefaultValue) { string tstr; if(pValue == pDefaultValue) return; AttrHelper_Col3DArrToString(&pValue, 1, tstr); pList.push_back({pName, tstr}); } void X3DExporter::AttrHelper_FloatToAttrList(std::list& pList, const string& pName, const float pValue, const float pDefaultValue) { string tstr; if(pValue == pDefaultValue) return; AttrHelper_FloatToString(pValue, tstr); pList.push_back({pName, tstr}); } void X3DExporter::NodeHelper_OpenNode(const string& pNodeName, const size_t pTabLevel, const bool pEmptyElement, const list& pAttrList) { // Write indentation. IndentationStringSet(pTabLevel); XML_Write(mIndentationString); // Begin of the element XML_Write("<" + pNodeName); // Write attributes for(const SAttribute& attr: pAttrList) { XML_Write(" " + attr.Name + "='" + attr.Value + "'"); } // End of the element if(pEmptyElement) { XML_Write("/>\n"); } else { XML_Write(">\n"); } } void X3DExporter::NodeHelper_OpenNode(const string& pNodeName, const size_t pTabLevel, const bool pEmptyElement) { const list attr_list; NodeHelper_OpenNode(pNodeName, pTabLevel, pEmptyElement, attr_list); } void X3DExporter::NodeHelper_CloseNode(const string& pNodeName, const size_t pTabLevel) { // Write indentation. IndentationStringSet(pTabLevel); XML_Write(mIndentationString); // Write element XML_Write("\n"); } void X3DExporter::Export_Node(const aiNode *pNode, const size_t pTabLevel) { bool transform = false; list attr_list; // In Assimp lights is stored in next way: light source store in mScene->mLights and in node tree must present aiNode with name same as // light source has. Considering it we must compare every aiNode name with light sources names. Why not to look where ligths is present // and save them to fili? Because corresponding aiNode can be already written to file and we can only add information to file not to edit. if(CheckAndExport_Light(*pNode, pTabLevel)) return; // Check if need DEF. if(pNode->mName.length) attr_list.push_back({"DEF", pNode->mName.C_Str()}); // Check if need node against . if(!pNode->mTransformation.IsIdentity()) { auto Vector2String = [this](const aiVector3D pVector) -> string { string tstr = to_string(pVector.x) + " " + to_string(pVector.y) + " " + to_string(pVector.z); AttrHelper_CommaToPoint(tstr); return tstr; }; auto Rotation2String = [this](const aiVector3D pAxis, const ai_real pAngle) -> string { string tstr = to_string(pAxis.x) + " " + to_string(pAxis.y) + " " + to_string(pAxis.z) + " " + to_string(pAngle); AttrHelper_CommaToPoint(tstr); return tstr; }; aiVector3D scale, translate, rotate_axis; ai_real rotate_angle; transform = true; pNode->mTransformation.Decompose(scale, rotate_axis, rotate_angle, translate); // Check if values different from default if((rotate_angle != 0) && (rotate_axis.Length() > 0)) attr_list.push_back({"rotation", Rotation2String(rotate_axis, rotate_angle)}); if(!scale.Equal({1.0,1.0,1.0})) { attr_list.push_back({"scale", Vector2String(scale)}); } if(translate.Length() > 0) { attr_list.push_back({"translation", Vector2String(translate)}); } } // Begin node if need. if(transform) NodeHelper_OpenNode("Transform", pTabLevel, false, attr_list); else NodeHelper_OpenNode("Group", pTabLevel); // Export metadata if(pNode->mMetaData != nullptr) { for(size_t idx_prop = 0; idx_prop < pNode->mMetaData->mNumProperties; idx_prop++) { const aiString* key; const aiMetadataEntry* entry; if(pNode->mMetaData->Get(idx_prop, key, entry)) { switch(entry->mType) { case AI_BOOL: Export_MetadataBoolean(*key, *static_cast(entry->mData), pTabLevel + 1); break; case AI_DOUBLE: Export_MetadataDouble(*key, *static_cast(entry->mData), pTabLevel + 1); break; case AI_FLOAT: Export_MetadataFloat(*key, *static_cast(entry->mData), pTabLevel + 1); break; case AI_INT32: Export_MetadataInteger(*key, *static_cast(entry->mData), pTabLevel + 1); break; case AI_AISTRING: Export_MetadataString(*key, *static_cast(entry->mData), pTabLevel + 1); break; default: LogError("Unsupported metadata type: " + to_string(entry->mType)); break; }// switch(entry->mType) } } }// if(pNode->mMetaData != nullptr) // Export meshes. for(size_t idx_mesh = 0; idx_mesh < pNode->mNumMeshes; idx_mesh++) Export_Mesh(pNode->mMeshes[idx_mesh], pTabLevel + 1); // Export children. for(size_t idx_node = 0; idx_node < pNode->mNumChildren; idx_node++) Export_Node(pNode->mChildren[idx_node], pTabLevel + 1); // End node if need. if(transform) NodeHelper_CloseNode("Transform", pTabLevel); else NodeHelper_CloseNode("Group", pTabLevel); } void X3DExporter::Export_Mesh(const size_t pIdxMesh, const size_t pTabLevel) { const char* NodeName_IFS = "IndexedFaceSet"; const char* NodeName_Shape = "Shape"; list attr_list; aiMesh& mesh = *mScene->mMeshes[pIdxMesh];// create alias for conveniance. // Check if mesh already defined early. if(mDEF_Map_Mesh.find(pIdxMesh) != mDEF_Map_Mesh.end()) { // Mesh already defined, just refer to it attr_list.push_back({"USE", mDEF_Map_Mesh.at(pIdxMesh)}); NodeHelper_OpenNode(NodeName_Shape, pTabLevel, true, attr_list); return; } string mesh_name(mesh.mName.C_Str() + string("_IDX_") + to_string(pIdxMesh));// Create mesh name // Define mesh name. attr_list.push_back({"DEF", mesh_name}); mDEF_Map_Mesh[pIdxMesh] = mesh_name; // // "Shape" node. // NodeHelper_OpenNode(NodeName_Shape, pTabLevel, false, attr_list); attr_list.clear(); // // "Appearance" node. // Export_Material(mesh.mMaterialIndex, pTabLevel + 1); // // "IndexedFaceSet" node. // // Fill attributes which differ from default. In Assimp for colors, vertices and normals used one indices set. So, only "coordIndex" must be set. string coordIndex; // fill coordinates index. coordIndex.reserve(mesh.mNumVertices * 4);// Index + space + Face delimiter for(size_t idx_face = 0; idx_face < mesh.mNumFaces; idx_face++) { const aiFace& face_cur = mesh.mFaces[idx_face]; for(size_t idx_vert = 0; idx_vert < face_cur.mNumIndices; idx_vert++) { coordIndex.append(to_string(face_cur.mIndices[idx_vert]) + " "); } coordIndex.append("-1 ");// face delimiter. } // remove last space symbol. coordIndex.resize(coordIndex.length() - 1); attr_list.push_back({"coordIndex", coordIndex}); // create node NodeHelper_OpenNode(NodeName_IFS, pTabLevel + 1, false, attr_list); attr_list.clear(); // Child nodes for "IndexedFaceSet" needed when used colors, textures or normals. string attr_value; // Export AttrHelper_Vec3DArrToString(mesh.mVertices, mesh.mNumVertices, attr_value); attr_list.push_back({"point", attr_value}); NodeHelper_OpenNode("Coordinate", pTabLevel + 2, true, attr_list); attr_list.clear(); // Export if(mesh.HasVertexColors(0)) { AttrHelper_Col4DArrToString(mesh.mColors[0], mesh.mNumVertices, attr_value); attr_list.push_back({"color", attr_value}); NodeHelper_OpenNode("ColorRGBA", pTabLevel + 2, true, attr_list); attr_list.clear(); } // Export if(mesh.HasTextureCoords(0)) { AttrHelper_Vec3DAsVec2fArrToString(mesh.mTextureCoords[0], mesh.mNumVertices, attr_value); attr_list.push_back({"point", attr_value}); NodeHelper_OpenNode("TextureCoordinate", pTabLevel + 2, true, attr_list); attr_list.clear(); } // Export if(mesh.HasNormals()) { AttrHelper_Vec3DArrToString(mesh.mNormals, mesh.mNumVertices, attr_value); attr_list.push_back({"vector", attr_value}); NodeHelper_OpenNode("Normal", pTabLevel + 2, true, attr_list); attr_list.clear(); } // // Close opened nodes. // NodeHelper_CloseNode(NodeName_IFS, pTabLevel + 1); NodeHelper_CloseNode(NodeName_Shape, pTabLevel); } void X3DExporter::Export_Material(const size_t pIdxMaterial, const size_t pTabLevel) { const char* NodeName_A = "Appearance"; list attr_list; aiMaterial& material = *mScene->mMaterials[pIdxMaterial];// create alias for conveniance. // Check if material already defined early. if(mDEF_Map_Material.find(pIdxMaterial) != mDEF_Map_Material.end()) { // Material already defined, just refer to it attr_list.push_back({"USE", mDEF_Map_Material.at(pIdxMaterial)}); NodeHelper_OpenNode(NodeName_A, pTabLevel, true, attr_list); return; } string material_name(string("_IDX_") + to_string(pIdxMaterial));// Create material name aiString ai_mat_name; if(material.Get(AI_MATKEY_NAME, ai_mat_name) == AI_SUCCESS) material_name.insert(0, ai_mat_name.C_Str()); // Define material name. attr_list.push_back({"DEF", material_name}); mDEF_Map_Material[pIdxMaterial] = material_name; // // "Appearance" node. // NodeHelper_OpenNode(NodeName_A, pTabLevel, false, attr_list); attr_list.clear(); // // "Material" node. // { auto Color4ToAttrList = [&](const string& pAttrName, const aiColor4D& pAttrValue, const aiColor3D& pAttrDefaultValue) { string tstr; if(aiColor3D(pAttrValue.r, pAttrValue.g, pAttrValue.b) != pAttrDefaultValue) { AttrHelper_Col4DArrToString(&pAttrValue, 1, tstr); attr_list.push_back({pAttrName, tstr}); } }; float tvalf; aiColor3D color3; aiColor4D color4; // ambientIntensity="0.2" SFFloat [inputOutput] if(material.Get(AI_MATKEY_COLOR_AMBIENT, color3) == AI_SUCCESS) AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", (color3.r + color3.g + color3.b) / 3.0f, 0.2f); else if(material.Get(AI_MATKEY_COLOR_AMBIENT, color4) == AI_SUCCESS) AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", (color4.r + color4.g + color4.b) / 3.0f, 0.2f); // diffuseColor="0.8 0.8 0.8" SFColor [inputOutput] if(material.Get(AI_MATKEY_COLOR_DIFFUSE, color3) == AI_SUCCESS) AttrHelper_Color3ToAttrList(attr_list, "diffuseColor", color3, aiColor3D(0.8f, 0.8f, 0.8f)); else if(material.Get(AI_MATKEY_COLOR_DIFFUSE, color4) == AI_SUCCESS) Color4ToAttrList("diffuseColor", color4, aiColor3D(0.8f, 0.8f, 0.8f)); // emissiveColor="0 0 0" SFColor [inputOutput] if(material.Get(AI_MATKEY_COLOR_EMISSIVE, color3) == AI_SUCCESS) AttrHelper_Color3ToAttrList(attr_list, "emissiveColor", color3, aiColor3D(0, 0, 0)); else if(material.Get(AI_MATKEY_COLOR_EMISSIVE, color4) == AI_SUCCESS) Color4ToAttrList("emissiveColor", color4, aiColor3D(0, 0, 0)); // shininess="0.2" SFFloat [inputOutput] if(material.Get(AI_MATKEY_SHININESS, tvalf) == AI_SUCCESS) AttrHelper_FloatToAttrList(attr_list, "shininess", tvalf, 0.2f); // specularColor="0 0 0" SFColor [inputOutput] if(material.Get(AI_MATKEY_COLOR_SPECULAR, color3) == AI_SUCCESS) AttrHelper_Color3ToAttrList(attr_list, "specularColor", color3, aiColor3D(0, 0, 0)); else if(material.Get(AI_MATKEY_COLOR_SPECULAR, color4) == AI_SUCCESS) Color4ToAttrList("specularColor", color4, aiColor3D(0, 0, 0)); // transparency="0" SFFloat [inputOutput] if(material.Get(AI_MATKEY_OPACITY, tvalf) == AI_SUCCESS) { if(tvalf > 1) tvalf = 1; tvalf = 1.0f - tvalf; AttrHelper_FloatToAttrList(attr_list, "transparency", tvalf, 0); } NodeHelper_OpenNode("Material", pTabLevel + 1, true, attr_list); attr_list.clear(); }// "Material" node. END. // // "ImageTexture" node. // { auto RepeatToAttrList = [&](const string& pAttrName, const bool pAttrValue) { if(!pAttrValue) attr_list.push_back({pAttrName, "false"}); }; bool tvalb; aiString tstring; // url="" MFString if(material.Get(AI_MATKEY_TEXTURE_DIFFUSE(0), tstring) == AI_SUCCESS) { if(strncmp(tstring.C_Str(), AI_EMBEDDED_TEXNAME_PREFIX, strlen(AI_EMBEDDED_TEXNAME_PREFIX)) == 0) LogError("Embedded texture is not supported"); else attr_list.push_back({"url", string("\"") + tstring.C_Str() + "\""}); } // repeatS="true" SFBool if(material.Get(AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0), tvalb) == AI_SUCCESS) RepeatToAttrList("repeatS", tvalb); // repeatT="true" SFBool if(material.Get(AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0), tvalb) == AI_SUCCESS) RepeatToAttrList("repeatT", tvalb); NodeHelper_OpenNode("ImageTexture", pTabLevel + 1, true, attr_list); attr_list.clear(); }// "ImageTexture" node. END. // // "TextureTransform" node. // { auto Vec2ToAttrList = [&](const string& pAttrName, const aiVector2D& pAttrValue, const aiVector2D& pAttrDefaultValue) { string tstr; if(pAttrValue != pAttrDefaultValue) { AttrHelper_Vec2DArrToString(&pAttrValue, 1, tstr); attr_list.push_back({pAttrName, tstr}); } }; aiUVTransform transform; if(material.Get(AI_MATKEY_UVTRANSFORM_DIFFUSE(0), transform) == AI_SUCCESS) { Vec2ToAttrList("translation", transform.mTranslation, aiVector2D(0, 0)); AttrHelper_FloatToAttrList(attr_list, "rotation", transform.mRotation, 0); Vec2ToAttrList("scale", transform.mScaling, aiVector2D(1, 1)); NodeHelper_OpenNode("TextureTransform", pTabLevel + 1, true, attr_list); attr_list.clear(); } }// "TextureTransform" node. END. // // Close opened nodes. // NodeHelper_CloseNode(NodeName_A, pTabLevel); } void X3DExporter::Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel) { list attr_list; attr_list.push_back({"name", pKey.C_Str()}); attr_list.push_back({"value", pValue ? "true" : "false"}); NodeHelper_OpenNode("MetadataBoolean", pTabLevel, true, attr_list); } void X3DExporter::Export_MetadataDouble(const aiString& pKey, const double pValue, const size_t pTabLevel) { list attr_list; attr_list.push_back({"name", pKey.C_Str()}); attr_list.push_back({"value", to_string(pValue)}); NodeHelper_OpenNode("MetadataDouble", pTabLevel, true, attr_list); } void X3DExporter::Export_MetadataFloat(const aiString& pKey, const float pValue, const size_t pTabLevel) { list attr_list; attr_list.push_back({"name", pKey.C_Str()}); attr_list.push_back({"value", to_string(pValue)}); NodeHelper_OpenNode("MetadataFloat", pTabLevel, true, attr_list); } void X3DExporter::Export_MetadataInteger(const aiString& pKey, const int32_t pValue, const size_t pTabLevel) { list attr_list; attr_list.push_back({"name", pKey.C_Str()}); attr_list.push_back({"value", to_string(pValue)}); NodeHelper_OpenNode("MetadataInteger", pTabLevel, true, attr_list); } void X3DExporter::Export_MetadataString(const aiString& pKey, const aiString& pValue, const size_t pTabLevel) { list attr_list; attr_list.push_back({"name", pKey.C_Str()}); attr_list.push_back({"value", pValue.C_Str()}); NodeHelper_OpenNode("MetadataString", pTabLevel, true, attr_list); } bool X3DExporter::CheckAndExport_Light(const aiNode& pNode, const size_t pTabLevel) { list attr_list; auto Vec3ToAttrList = [&](const string& pAttrName, const aiVector3D& pAttrValue, const aiVector3D& pAttrDefaultValue) { string tstr; if(pAttrValue != pAttrDefaultValue) { AttrHelper_Vec3DArrToString(&pAttrValue, 1, tstr); attr_list.push_back({pAttrName, tstr}); } }; size_t idx_light; bool found = false; // Name of the light source can not be empty. if(pNode.mName.length == 0) return false; // search for light with name like node has. for(idx_light = 0; mScene->mNumLights; idx_light++) { if(pNode.mName == mScene->mLights[idx_light]->mName) { found = true; break; } } if(!found) return false; // Light source is found. const aiLight& light = *mScene->mLights[idx_light];// Alias for conveniance. aiMatrix4x4 trafo_mat = Matrix_GlobalToCurrent(pNode).Inverse(); attr_list.push_back({"DEF", light.mName.C_Str()}); attr_list.push_back({"global", "true"});// "false" is not supported. // ambientIntensity="0" SFFloat [inputOutput] AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", aiVector3D(light.mColorAmbient.r, light.mColorAmbient.g, light.mColorAmbient.b).Length(), 0); // color="1 1 1" SFColor [inputOutput] AttrHelper_Color3ToAttrList(attr_list, "color", light.mColorDiffuse, aiColor3D(1, 1, 1)); switch(light.mType) { case aiLightSource_DIRECTIONAL: { aiVector3D direction = trafo_mat * light.mDirection; Vec3ToAttrList("direction", direction, aiVector3D(0, 0, -1)); NodeHelper_OpenNode("DirectionalLight", pTabLevel, true, attr_list); } break; case aiLightSource_POINT: { aiVector3D attenuation(light.mAttenuationConstant, light.mAttenuationLinear, light.mAttenuationQuadratic); aiVector3D location = trafo_mat * light.mPosition; Vec3ToAttrList("attenuation", attenuation, aiVector3D(1, 0, 0)); Vec3ToAttrList("location", location, aiVector3D(0, 0, 0)); NodeHelper_OpenNode("PointLight", pTabLevel, true, attr_list); } break; case aiLightSource_SPOT: { aiVector3D attenuation(light.mAttenuationConstant, light.mAttenuationLinear, light.mAttenuationQuadratic); aiVector3D location = trafo_mat * light.mPosition; aiVector3D direction = trafo_mat * light.mDirection; Vec3ToAttrList("attenuation", attenuation, aiVector3D(1, 0, 0)); Vec3ToAttrList("location", location, aiVector3D(0, 0, 0)); Vec3ToAttrList("direction", direction, aiVector3D(0, 0, -1)); AttrHelper_FloatToAttrList(attr_list, "beamWidth", light.mAngleInnerCone, 0.7854f); AttrHelper_FloatToAttrList(attr_list, "cutOffAngle", light.mAngleOuterCone, 1.570796f); NodeHelper_OpenNode("SpotLight", pTabLevel, true, attr_list); } break; default: throw DeadlyExportError("Unknown light type: " + to_string(light.mType)); }// switch(light.mType) return true; } X3DExporter::X3DExporter(const char* pFileName, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* /*pProperties*/) : mScene(pScene) { list attr_list; mOutFile = pIOSystem->Open(pFileName, "wt"); if(mOutFile == nullptr) throw DeadlyExportError("Could not open output .x3d file: " + string(pFileName)); // Begin document XML_Write("\n"); XML_Write("\n"); // Root node attr_list.push_back({"profile", "Interchange"}); attr_list.push_back({"version", "3.3"}); attr_list.push_back({"xmlns:xsd", "http://www.w3.org/2001/XMLSchema-instance"}); attr_list.push_back({"xsd:noNamespaceSchemaLocation", "http://www.web3d.org/specifications/x3d-3.3.xsd"}); NodeHelper_OpenNode("X3D", 0, false, attr_list); attr_list.clear(); // : meta data. NodeHelper_OpenNode("head", 1); XML_Write(mIndentationString + "\n"); NodeHelper_CloseNode("head", 1); // Scene node. NodeHelper_OpenNode("Scene", 1); Export_Node(mScene->mRootNode, 2); NodeHelper_CloseNode("Scene", 1); // Close Root node. NodeHelper_CloseNode("X3D", 0); // Cleanup pIOSystem->Close(mOutFile); mOutFile = nullptr; } }// namespace Assimp #endif // ASSIMP_BUILD_NO_X3D_EXPORTER #endif // ASSIMP_BUILD_NO_EXPORT