/* --------------------------------------------------------------------------- Open Asset Import Library (assimp) --------------------------------------------------------------------------- Copyright (c) 2006-2022, assimp team All rights reserved. Redistribution and use of this software in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the assimp team, nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission of the assimp team. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. --------------------------------------------------------------------------- */ /** @file Q3DLoader.cpp * @brief Implementation of the Q3D importer class */ #ifndef ASSIMP_BUILD_NO_Q3D_IMPORTER // internal headers #include "Q3DLoader.h" #include #include #include #include #include #include #include namespace Assimp { static constexpr aiImporterDesc desc = { "Quick3D Importer", "", "", "http://www.quick3d.com/", aiImporterFlags_SupportBinaryFlavour, 0, 0, 0, 0, "q3o q3s" }; // ------------------------------------------------------------------------------------------------ // Constructor to be privately used by Importer Q3DImporter::Q3DImporter() = default; // ------------------------------------------------------------------------------------------------ // Destructor, private as well Q3DImporter::~Q3DImporter() = default; // ------------------------------------------------------------------------------------------------ // Returns whether the class can handle the format of the given file. bool Q3DImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool /*checkSig*/) const { static const char *tokens[] = { "quick3Do", "quick3Ds" }; return SearchFileHeaderForToken(pIOHandler, pFile, tokens, AI_COUNT_OF(tokens)); } // ------------------------------------------------------------------------------------------------ const aiImporterDesc *Q3DImporter::GetInfo() const { return &desc; } // ------------------------------------------------------------------------------------------------ // Imports the given file into the given scene structure. void Q3DImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) { auto file = pIOHandler->Open(pFile, "rb"); if (!file) throw DeadlyImportError("Quick3D: Could not open ", pFile); StreamReaderLE stream(file); // The header is 22 bytes large if (stream.GetRemainingSize() < 22) throw DeadlyImportError("File is either empty or corrupt: ", pFile); // Check the file's signature if (ASSIMP_strincmp((const char *)stream.GetPtr(), "quick3Do", 8) && ASSIMP_strincmp((const char *)stream.GetPtr(), "quick3Ds", 8)) { throw DeadlyImportError("Not a Quick3D file. Signature string is: ", ai_str_toprintable((const char *)stream.GetPtr(), 8)); } // Print the file format version ASSIMP_LOG_INFO("Quick3D File format version: ", std::string(&((const char *)stream.GetPtr())[8], 2)); // ... an store it char major = ((const char *)stream.GetPtr())[8]; char minor = ((const char *)stream.GetPtr())[9]; stream.IncPtr(10); unsigned int numMeshes = (unsigned int)stream.GetI4(); unsigned int numMats = (unsigned int)stream.GetI4(); unsigned int numTextures = (unsigned int)stream.GetI4(); std::vector materials; try { materials.reserve(numMats); } catch (const std::bad_alloc &) { ASSIMP_LOG_ERROR("Invalid alloc for materials."); throw DeadlyImportError("Invalid Quick3D-file, material allocation failed."); } std::vector meshes; try { meshes.reserve(numMeshes); } catch (const std::bad_alloc &) { ASSIMP_LOG_ERROR("Invalid alloc for meshes."); throw DeadlyImportError("Invalid Quick3D-file, mesh allocation failed."); } // Allocate the scene root node pScene->mRootNode = new aiNode(); aiColor3D fgColor(0.6f, 0.6f, 0.6f); // Now read all file chunks while (true) { if (stream.GetRemainingSize() < 1) break; char c = stream.GetI1(); switch (c) { // Meshes chunk case 'm': { for (unsigned int quak = 0; quak < numMeshes; ++quak) { meshes.emplace_back(); Mesh &mesh = meshes.back(); // read all vertices unsigned int numVerts = (unsigned int)stream.GetI4(); if (!numVerts) throw DeadlyImportError("Quick3D: Found mesh with zero vertices"); std::vector &verts = mesh.verts; verts.resize(numVerts); for (unsigned int i = 0; i < numVerts; ++i) { verts[i].x = stream.GetF4(); verts[i].y = stream.GetF4(); verts[i].z = stream.GetF4(); } // read all faces numVerts = (unsigned int)stream.GetI4(); if (!numVerts) throw DeadlyImportError("Quick3D: Found mesh with zero faces"); std::vector &faces = mesh.faces; faces.reserve(numVerts); // number of indices for (unsigned int i = 0; i < numVerts; ++i) { faces.emplace_back(stream.GetI2()); if (faces.back().indices.empty()) throw DeadlyImportError("Quick3D: Found face with zero indices"); } // indices for (unsigned int i = 0; i < numVerts; ++i) { Face &vec = faces[i]; for (unsigned int a = 0; a < (unsigned int)vec.indices.size(); ++a) vec.indices[a] = stream.GetI4(); } // material indices for (unsigned int i = 0; i < numVerts; ++i) { faces[i].mat = (unsigned int)stream.GetI4(); } // read all normals numVerts = (unsigned int)stream.GetI4(); std::vector &normals = mesh.normals; normals.resize(numVerts); for (unsigned int i = 0; i < numVerts; ++i) { normals[i].x = stream.GetF4(); normals[i].y = stream.GetF4(); normals[i].z = stream.GetF4(); } numVerts = (unsigned int)stream.GetI4(); if (numTextures && numVerts) { // read all texture coordinates std::vector &uv = mesh.uv; uv.resize(numVerts); for (unsigned int i = 0; i < numVerts; ++i) { uv[i].x = stream.GetF4(); uv[i].y = stream.GetF4(); } // UV indices for (unsigned int i = 0; i < (unsigned int)faces.size(); ++i) { Face &vec = faces[i]; for (unsigned int a = 0; a < (unsigned int)vec.indices.size(); ++a) { vec.uvindices[a] = stream.GetI4(); if (!i && !a) mesh.prevUVIdx = vec.uvindices[a]; else if (vec.uvindices[a] != mesh.prevUVIdx) mesh.prevUVIdx = UINT_MAX; } } } // we don't need the rest, but we need to get to the next chunk stream.IncPtr(36); if (minor > '0' && major == '3') stream.IncPtr(mesh.faces.size()); } } break; // materials chunk case 'c': for (unsigned int i = 0; i < numMats; ++i) { materials.emplace_back(); Material &mat = materials.back(); // read the material name c = stream.GetI1(); while (c) { mat.name.data[mat.name.length++] = c; c = stream.GetI1(); } // add the terminal character mat.name.data[mat.name.length] = '\0'; // read the ambient color mat.ambient.r = stream.GetF4(); mat.ambient.g = stream.GetF4(); mat.ambient.b = stream.GetF4(); // read the diffuse color mat.diffuse.r = stream.GetF4(); mat.diffuse.g = stream.GetF4(); mat.diffuse.b = stream.GetF4(); // read the ambient color mat.specular.r = stream.GetF4(); mat.specular.g = stream.GetF4(); mat.specular.b = stream.GetF4(); // read the transparency mat.transparency = stream.GetF4(); // FIX: it could be the texture index ... mat.texIdx = (unsigned int)stream.GetI4(); } break; // texture chunk case 't': pScene->mNumTextures = numTextures; if (!numTextures) { break; } pScene->mTextures = new aiTexture *[pScene->mNumTextures]; // to make sure we won't crash if we leave through an exception ::memset(pScene->mTextures, 0, sizeof(void *) * pScene->mNumTextures); for (unsigned int i = 0; i < pScene->mNumTextures; ++i) { aiTexture *tex = pScene->mTextures[i] = new aiTexture; // skip the texture name while (stream.GetI1()) ; // read texture width and height tex->mWidth = (unsigned int)stream.GetI4(); tex->mHeight = (unsigned int)stream.GetI4(); if (!tex->mWidth || !tex->mHeight) { throw DeadlyImportError("Quick3D: Invalid texture. Width or height is zero"); } unsigned int mul = tex->mWidth * tex->mHeight; aiTexel *begin = tex->pcData = new aiTexel[mul]; aiTexel *const end = &begin[mul - 1] + 1; for (; begin != end; ++begin) { begin->r = stream.GetI1(); begin->g = stream.GetI1(); begin->b = stream.GetI1(); begin->a = 0xff; } } break; // scene chunk case 's': { // skip position and rotation stream.IncPtr(12); for (unsigned int i = 0; i < 4; ++i) for (unsigned int a = 0; a < 4; ++a) pScene->mRootNode->mTransformation[i][a] = stream.GetF4(); stream.IncPtr(16); // now setup a single camera pScene->mNumCameras = 1; pScene->mCameras = new aiCamera *[1]; aiCamera *cam = pScene->mCameras[0] = new aiCamera(); cam->mPosition.x = stream.GetF4(); cam->mPosition.y = stream.GetF4(); cam->mPosition.z = stream.GetF4(); cam->mName.Set("Q3DCamera"); // skip eye rotation for the moment stream.IncPtr(12); // read the default material color fgColor.r = stream.GetF4(); fgColor.g = stream.GetF4(); fgColor.b = stream.GetF4(); // skip some unimportant properties stream.IncPtr(29); // setup a single point light with no attenuation pScene->mNumLights = 1; pScene->mLights = new aiLight *[1]; aiLight *light = pScene->mLights[0] = new aiLight(); light->mName.Set("Q3DLight"); light->mType = aiLightSource_POINT; light->mAttenuationConstant = 1; light->mAttenuationLinear = 0; light->mAttenuationQuadratic = 0; light->mColorDiffuse.r = stream.GetF4(); light->mColorDiffuse.g = stream.GetF4(); light->mColorDiffuse.b = stream.GetF4(); light->mColorSpecular = light->mColorDiffuse; // We don't need the rest, but we need to know where this chunk ends. unsigned int temp = (unsigned int)(stream.GetI4() * stream.GetI4()); // skip the background file name while (stream.GetI1()) ; // skip background texture data + the remaining fields stream.IncPtr(temp * 3 + 20); // 4 bytes of unknown data here // TODO goto outer; } default: throw DeadlyImportError("Quick3D: Unknown chunk"); }; } outer: // If we have no mesh loaded - break here if (meshes.empty()) throw DeadlyImportError("Quick3D: No meshes loaded"); // If we have no materials loaded - generate a default mat if (materials.empty()) { ASSIMP_LOG_INFO("Quick3D: No material found, generating one"); materials.emplace_back(); materials.back().diffuse = fgColor; } // find out which materials we'll need typedef std::pair FaceIdx; typedef std::vector FaceIdxArray; FaceIdxArray *fidx = new FaceIdxArray[materials.size()]; unsigned int p = 0; for (std::vector::iterator it = meshes.begin(), end = meshes.end(); it != end; ++it, ++p) { unsigned int q = 0; for (std::vector::iterator fit = (*it).faces.begin(), fend = (*it).faces.end(); fit != fend; ++fit, ++q) { if ((*fit).mat >= materials.size()) { ASSIMP_LOG_WARN("Quick3D: Material index overflow"); (*fit).mat = 0; } if (fidx[(*fit).mat].empty()) ++pScene->mNumMeshes; fidx[(*fit).mat].emplace_back(p, q); } } pScene->mNumMaterials = pScene->mNumMeshes; pScene->mMaterials = new aiMaterial *[pScene->mNumMaterials]; pScene->mMeshes = new aiMesh *[pScene->mNumMaterials]; for (unsigned int i = 0, real = 0; i < (unsigned int)materials.size(); ++i) { if (fidx[i].empty()) continue; // Allocate a mesh and a material aiMesh *mesh = pScene->mMeshes[real] = new aiMesh(); aiMaterial *mat = new aiMaterial(); pScene->mMaterials[real] = mat; mesh->mMaterialIndex = real; // Build the output material Material &srcMat = materials[i]; mat->AddProperty(&srcMat.diffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat->AddProperty(&srcMat.specular, 1, AI_MATKEY_COLOR_SPECULAR); mat->AddProperty(&srcMat.ambient, 1, AI_MATKEY_COLOR_AMBIENT); // NOTE: Ignore transparency for the moment - it seems // unclear how to interpret the data #if 0 if (!(minor > '0' && major == '3')) srcMat.transparency = 1.0f - srcMat.transparency; mat->AddProperty(&srcMat.transparency, 1, AI_MATKEY_OPACITY); #endif // add shininess - Quick3D seems to use it ins its viewer srcMat.transparency = 16.f; mat->AddProperty(&srcMat.transparency, 1, AI_MATKEY_SHININESS); int m = (int)aiShadingMode_Phong; mat->AddProperty(&m, 1, AI_MATKEY_SHADING_MODEL); if (srcMat.name.length) mat->AddProperty(&srcMat.name, AI_MATKEY_NAME); // Add a texture if (srcMat.texIdx < pScene->mNumTextures || real < pScene->mNumTextures) { srcMat.name.data[0] = '*'; srcMat.name.length = ASSIMP_itoa10(&srcMat.name.data[1], 1000, (srcMat.texIdx < pScene->mNumTextures ? srcMat.texIdx : real)); mat->AddProperty(&srcMat.name, AI_MATKEY_TEXTURE_DIFFUSE(0)); } mesh->mNumFaces = (unsigned int)fidx[i].size(); aiFace *faces = mesh->mFaces = new aiFace[mesh->mNumFaces]; // Now build the output mesh. First find out how many // vertices we'll need for (FaceIdxArray::const_iterator it = fidx[i].begin(), end = fidx[i].end(); it != end; ++it) { mesh->mNumVertices += (unsigned int)meshes[(*it).first].faces[(*it).second].indices.size(); } aiVector3D *verts = mesh->mVertices = new aiVector3D[mesh->mNumVertices]; aiVector3D *norms = mesh->mNormals = new aiVector3D[mesh->mNumVertices]; aiVector3D *uv = nullptr; if (real < pScene->mNumTextures) { uv = mesh->mTextureCoords[0] = new aiVector3D[mesh->mNumVertices]; mesh->mNumUVComponents[0] = 2; } // Build the final array unsigned int cnt = 0; for (FaceIdxArray::const_iterator it = fidx[i].begin(), end = fidx[i].end(); it != end; ++it, ++faces) { Mesh &curMesh = meshes[(*it).first]; Face &face = curMesh.faces[(*it).second]; faces->mNumIndices = (unsigned int)face.indices.size(); faces->mIndices = new unsigned int[faces->mNumIndices]; aiVector3D faceNormal; bool fnOK = false; for (unsigned int n = 0; n < faces->mNumIndices; ++n, ++cnt, ++norms, ++verts) { if (face.indices[n] >= curMesh.verts.size()) { ASSIMP_LOG_WARN("Quick3D: Vertex index overflow"); face.indices[n] = 0; } // copy vertices *verts = curMesh.verts[face.indices[n]]; if (face.indices[n] >= curMesh.normals.size() && faces->mNumIndices >= 3) { // we have no normal here - assign the face normal if (!fnOK) { const aiVector3D &pV1 = curMesh.verts[face.indices[0]]; const aiVector3D &pV2 = curMesh.verts[face.indices[1]]; const aiVector3D &pV3 = curMesh.verts[face.indices.size() - 1]; faceNormal = (pV2 - pV1) ^ (pV3 - pV1).Normalize(); fnOK = true; } *norms = faceNormal; } else { *norms = curMesh.normals[face.indices[n]]; } // copy texture coordinates if (uv && curMesh.uv.size()) { if (curMesh.prevUVIdx != 0xffffffff && curMesh.uv.size() >= curMesh.verts.size()) // workaround { *uv = curMesh.uv[face.indices[n]]; } else { if (face.uvindices[n] >= curMesh.uv.size()) { ASSIMP_LOG_WARN("Quick3D: Texture coordinate index overflow"); face.uvindices[n] = 0; } *uv = curMesh.uv[face.uvindices[n]]; } uv->y = 1.f - uv->y; ++uv; } // setup the new vertex index faces->mIndices[n] = cnt; } } ++real; } // Delete our nice helper array delete[] fidx; // Now we need to attach the meshes to the root node of the scene pScene->mRootNode->mNumMeshes = pScene->mNumMeshes; pScene->mRootNode->mMeshes = new unsigned int[pScene->mNumMeshes]; for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { pScene->mRootNode->mMeshes[i] = i; } // Add cameras and light sources to the scene root node pScene->mRootNode->mNumChildren = pScene->mNumLights + pScene->mNumCameras; if (pScene->mRootNode->mNumChildren) { pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren]; // the light source aiNode *nd = pScene->mRootNode->mChildren[0] = new aiNode(); nd->mParent = pScene->mRootNode; nd->mName.Set("Q3DLight"); nd->mTransformation = pScene->mRootNode->mTransformation; nd->mTransformation.Inverse(); // camera nd = pScene->mRootNode->mChildren[1] = new aiNode(); nd->mParent = pScene->mRootNode; nd->mName.Set("Q3DCamera"); nd->mTransformation = pScene->mRootNode->mChildren[0]->mTransformation; } } } // namespace Assimp #endif // !! ASSIMP_BUILD_NO_Q3D_IMPORTER