Compare commits

...

3 Commits

Author SHA1 Message Date
Kim Kulling 8e4ee11bf3 Prototype new triangulation. 2021-01-13 22:43:46 +01:00
Kim Kulling 4bb2006325 add missing unittest. 2020-11-11 20:00:46 +01:00
Kim Kulling 456b54988a closes https://github.com/assimp/assimp/issues/1044: set default value in case of light intensity envelopes- 2020-11-11 19:38:42 +01:00
26 changed files with 2906 additions and 3441 deletions

View File

@ -123,20 +123,20 @@ const aiImporterDesc *FBXImporter::GetInfo() const {
// ------------------------------------------------------------------------------------------------
// Setup configuration properties for the loader
void FBXImporter::SetupProperties(const Importer *pImp) {
settings.readAllLayers = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_ALL_GEOMETRY_LAYERS, true);
settings.readAllMaterials = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_ALL_MATERIALS, false);
settings.readMaterials = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_MATERIALS, true);
settings.readTextures = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_TEXTURES, true);
settings.readCameras = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_CAMERAS, true);
settings.readLights = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_LIGHTS, true);
settings.readAnimations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_ANIMATIONS, true);
settings.readWeights = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_WEIGHTS, true);
settings.strictMode = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_STRICT_MODE, false);
settings.preservePivots = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, true);
settings.optimizeEmptyAnimationCurves = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_OPTIMIZE_EMPTY_ANIMATION_CURVES, true);
settings.useLegacyEmbeddedTextureNaming = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_EMBEDDED_TEXTURES_LEGACY_NAMING, false);
settings.removeEmptyBones = pImp->GetPropertyBool(AI_CONFIG_IMPORT_REMOVE_EMPTY_BONES, true);
settings.convertToMeters = pImp->GetPropertyBool(AI_CONFIG_FBX_CONVERT_TO_M, false);
mSettings.readAllLayers = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_ALL_GEOMETRY_LAYERS, true);
mSettings.readAllMaterials = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_ALL_MATERIALS, false);
mSettings.readMaterials = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_MATERIALS, true);
mSettings.readTextures = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_TEXTURES, true);
mSettings.readCameras = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_CAMERAS, true);
mSettings.readLights = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_LIGHTS, true);
mSettings.readAnimations = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_ANIMATIONS, true);
mSettings.readWeights = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_READ_WEIGHTS, true);
mSettings.strictMode = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_STRICT_MODE, false);
mSettings.preservePivots = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_PRESERVE_PIVOTS, true);
mSettings.optimizeEmptyAnimationCurves = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_OPTIMIZE_EMPTY_ANIMATION_CURVES, true);
mSettings.useLegacyEmbeddedTextureNaming = pImp->GetPropertyBool(AI_CONFIG_IMPORT_FBX_EMBEDDED_TEXTURES_LEGACY_NAMING, false);
mSettings.removeEmptyBones = pImp->GetPropertyBool(AI_CONFIG_IMPORT_REMOVE_EMPTY_BONES, true);
mSettings.convertToMeters = pImp->GetPropertyBool(AI_CONFIG_FBX_CONVERT_TO_M, false);
}
// ------------------------------------------------------------------------------------------------
@ -181,10 +181,10 @@ void FBXImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSy
Parser parser(tokens, is_binary);
// take the raw parse-tree and convert it to a FBX DOM
Document doc(parser, settings);
Document doc(parser, mSettings);
// convert the FBX DOM to aiScene
ConvertToAssimpScene(pScene, doc, settings.removeEmptyBones);
ConvertToAssimpScene(pScene, doc, mSettings.removeEmptyBones);
// size relative to cm
float size_relative_to_cm = doc.GlobalSettings().UnitScaleFactor();

View File

@ -70,27 +70,16 @@ typedef class basic_formatter<char, std::char_traits<char>, std::allocator<char>
class FBXImporter : public BaseImporter, public LogFunctions<FBXImporter> {
public:
FBXImporter();
virtual ~FBXImporter();
// --------------------
bool CanRead(const std::string &pFile,
IOSystem *pIOHandler,
bool checkSig) const;
~FBXImporter() override;
bool CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const;
protected:
// --------------------
const aiImporterDesc *GetInfo() const;
// --------------------
void SetupProperties(const Importer *pImp);
// --------------------
void InternReadFile(const std::string &pFile,
aiScene *pScene,
IOSystem *pIOHandler);
void InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler);
private:
FBX::ImportSettings settings;
FBX::ImportSettings mSettings;
}; // !class FBXImporter
} // end of namespace Assimp

View File

@ -48,12 +48,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <functional>
#include "FBXMeshGeometry.h"
#include "FBXDocument.h"
#include "FBXImporter.h"
#include "FBXImportSettings.h"
#include "FBXDocumentUtil.h"
#include "FBXImportSettings.h"
#include "FBXImporter.h"
#include "FBXMeshGeometry.h"
namespace Assimp {
namespace FBX {
@ -61,10 +60,8 @@ namespace FBX {
using namespace Util;
// ------------------------------------------------------------------------------------------------
Geometry::Geometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
: Object(id, element, name)
, skin()
{
Geometry::Geometry(uint64_t id, const Element &element, const std::string &name, const Document &doc) :
Object(id, element, name), skin() {
const std::vector<const Connection *> &conns = doc.GetConnectionsByDestinationSequenced(ID(), "Deformer");
for (const Connection *con : conns) {
const Skin *const sk = ProcessSimpleConnection<Skin>(*con, false, "Skin -> Geometry", element);
@ -79,8 +76,7 @@ Geometry::Geometry(uint64_t id, const Element& element, const std::string& name,
}
// ------------------------------------------------------------------------------------------------
Geometry::~Geometry()
{
Geometry::~Geometry() {
// empty
}
@ -95,9 +91,8 @@ const Skin* Geometry::DeformerSkin() const {
}
// ------------------------------------------------------------------------------------------------
MeshGeometry::MeshGeometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
: Geometry(id, element,name, doc)
{
MeshGeometry::MeshGeometry(uint64_t id, const Element &element, const std::string &name, const Document &doc) :
Geometry(id, element, name, doc) {
const Scope *sc = element.Compound();
if (!sc) {
DOMError("failed to read Geometry object (class: Mesh), no data scope found");
@ -183,8 +178,7 @@ MeshGeometry::MeshGeometry(uint64_t id, const Element& element, const std::strin
if (doc.Settings().readAllLayers || index == 0) {
const Scope &layer = GetRequiredScope(*(*it).second);
ReadLayer(layer);
}
else {
} else {
FBXImporter::LogWarn("ignoring additional geometry layers");
}
}
@ -269,15 +263,13 @@ unsigned int MeshGeometry::FaceForVertexIndex( unsigned int in_index ) const {
const std::vector<unsigned int>::iterator it = std::upper_bound(
m_facesVertexStartIndices.begin(),
m_facesVertexStartIndices.end(),
in_index
);
in_index);
return static_cast<unsigned int>(std::distance(m_facesVertexStartIndices.begin(), it - 1));
}
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadLayer(const Scope& layer)
{
void MeshGeometry::ReadLayer(const Scope &layer) {
const ElementCollection &LayerElement = layer.GetCollection("LayerElement");
for (ElementMap::const_iterator eit = LayerElement.first; eit != LayerElement.second; ++eit) {
const Scope &elayer = GetRequiredScope(*(*eit).second);
@ -286,10 +278,8 @@ void MeshGeometry::ReadLayer(const Scope& layer)
}
}
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadLayerElement(const Scope& layerElement)
{
void MeshGeometry::ReadLayerElement(const Scope &layerElement) {
const Element &Type = GetRequiredElement(layerElement, "Type");
const Element &TypedIndex = GetRequiredElement(layerElement, "TypedIndex");
@ -312,15 +302,12 @@ void MeshGeometry::ReadLayerElement(const Scope& layerElement)
}
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scope& source)
{
void MeshGeometry::ReadVertexData(const std::string &type, int index, const Scope &source) {
const std::string &MappingInformationType = ParseTokenAsString(GetRequiredToken(
GetRequiredElement(source,"MappingInformationType"),0)
);
GetRequiredElement(source, "MappingInformationType"), 0));
const std::string &ReferenceInformationType = ParseTokenAsString(GetRequiredToken(
GetRequiredElement(source,"ReferenceInformationType"),0)
);
GetRequiredElement(source, "ReferenceInformationType"), 0));
if (type == "LayerElementUV") {
if (index >= AI_MAX_NUMBER_OF_TEXTURECOORDS) {
@ -337,10 +324,8 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
ReadVertexDataUV(m_uvs[index], source,
MappingInformationType,
ReferenceInformationType
);
}
else if (type == "LayerElementMaterial") {
ReferenceInformationType);
} else if (type == "LayerElementMaterial") {
if (m_materials.size() > 0) {
FBXImporter::LogError("ignoring additional material layer");
return;
@ -350,8 +335,7 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
ReadVertexDataMaterials(temp_materials, source,
MappingInformationType,
ReferenceInformationType
);
ReferenceInformationType);
// sometimes, there will be only negative entries. Drop the material
// layer in such a case (I guess it means a default material should
@ -366,8 +350,7 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
}
std::swap(temp_materials, m_materials);
}
else if (type == "LayerElementNormal") {
} else if (type == "LayerElementNormal") {
if (m_normals.size() > 0) {
FBXImporter::LogError("ignoring additional normal layer");
return;
@ -375,10 +358,8 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
ReadVertexDataNormals(m_normals, source,
MappingInformationType,
ReferenceInformationType
);
}
else if (type == "LayerElementTangent") {
ReferenceInformationType);
} else if (type == "LayerElementTangent") {
if (m_tangents.size() > 0) {
FBXImporter::LogError("ignoring additional tangent layer");
return;
@ -386,10 +367,8 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
ReadVertexDataTangents(m_tangents, source,
MappingInformationType,
ReferenceInformationType
);
}
else if (type == "LayerElementBinormal") {
ReferenceInformationType);
} else if (type == "LayerElementBinormal") {
if (m_binormals.size() > 0) {
FBXImporter::LogError("ignoring additional binormal layer");
return;
@ -397,10 +376,8 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
ReadVertexDataBinormals(m_binormals, source,
MappingInformationType,
ReferenceInformationType
);
}
else if (type == "LayerElementColor") {
ReferenceInformationType);
} else if (type == "LayerElementColor") {
if (index >= AI_MAX_NUMBER_OF_COLOR_SETS) {
FBXImporter::LogError(Formatter::format("ignoring vertex color layer, maximum number of color sets exceeded: ")
<< index << " (limit is " << AI_MAX_NUMBER_OF_COLOR_SETS << ")");
@ -409,8 +386,7 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
ReadVertexDataColors(m_colors[index], source,
MappingInformationType,
ReferenceInformationType
);
ReferenceInformationType);
}
}
@ -427,8 +403,7 @@ void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
size_t vertex_count,
const std::vector<unsigned int> &mapping_counts,
const std::vector<unsigned int> &mapping_offsets,
const std::vector<unsigned int>& mappings)
{
const std::vector<unsigned int> &mappings) {
bool isDirect = ReferenceInformationType == "Direct";
bool isIndexToDirect = ReferenceInformationType == "IndexToDirect";
@ -461,8 +436,7 @@ void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
data_out[mappings[j]] = tempData[i];
}
}
}
else if (MappingInformationType == "ByVertice" && isIndexToDirect) {
} else if (MappingInformationType == "ByVertice" && isIndexToDirect) {
std::vector<T> tempData;
ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));
@ -487,21 +461,18 @@ void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
data_out[mappings[j]] = tempData[uvIndices[i]];
}
}
}
else if (MappingInformationType == "ByPolygonVertex" && isDirect) {
} else if (MappingInformationType == "ByPolygonVertex" && isDirect) {
std::vector<T> tempData;
ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));
if (tempData.size() != vertex_count) {
FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygon mapping: ")
<< tempData.size() << ", expected " << vertex_count
);
<< tempData.size() << ", expected " << vertex_count);
return;
}
data_out.swap(tempData);
}
else if (MappingInformationType == "ByPolygonVertex" && isIndexToDirect) {
} else if (MappingInformationType == "ByPolygonVertex" && isIndexToDirect) {
std::vector<T> tempData;
ParseVectorDataArray(tempData, GetRequiredElement(source, dataElementName));
@ -529,8 +500,7 @@ void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
data_out[next++] = tempData[i];
}
}
else {
} else {
FBXImporter::LogError(Formatter::format("ignoring vertex data channel, access type not implemented: ")
<< MappingInformationType << "," << ReferenceInformationType);
}
@ -539,8 +509,7 @@ void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataNormals(std::vector<aiVector3D> &normals_out, const Scope &source,
const std::string &MappingInformationType,
const std::string& ReferenceInformationType)
{
const std::string &ReferenceInformationType) {
ResolveVertexDataArray(normals_out, source, MappingInformationType, ReferenceInformationType,
"Normals",
"NormalsIndex",
@ -553,8 +522,7 @@ void MeshGeometry::ReadVertexDataNormals(std::vector<aiVector3D>& normals_out, c
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataUV(std::vector<aiVector2D> &uv_out, const Scope &source,
const std::string &MappingInformationType,
const std::string& ReferenceInformationType)
{
const std::string &ReferenceInformationType) {
ResolveVertexDataArray(uv_out, source, MappingInformationType, ReferenceInformationType,
"UV",
"UVIndex",
@ -567,8 +535,7 @@ void MeshGeometry::ReadVertexDataUV(std::vector<aiVector2D>& uv_out, const Scope
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataColors(std::vector<aiColor4D> &colors_out, const Scope &source,
const std::string &MappingInformationType,
const std::string& ReferenceInformationType)
{
const std::string &ReferenceInformationType) {
ResolveVertexDataArray(colors_out, source, MappingInformationType, ReferenceInformationType,
"Colors",
"ColorIndex",
@ -584,8 +551,7 @@ static const char *TangentsIndexToken = "TangentsIndex";
void MeshGeometry::ReadVertexDataTangents(std::vector<aiVector3D> &tangents_out, const Scope &source,
const std::string &MappingInformationType,
const std::string& ReferenceInformationType)
{
const std::string &ReferenceInformationType) {
const char *str = source.Elements().count("Tangents") > 0 ? "Tangents" : "Tangent";
const char *strIdx = source.Elements().count("Tangents") > 0 ? TangentsIndexToken : TangentIndexToken;
ResolveVertexDataArray(tangents_out, source, MappingInformationType, ReferenceInformationType,
@ -603,8 +569,7 @@ static const std::string BinormalsIndexToken = "BinormalsIndex";
void MeshGeometry::ReadVertexDataBinormals(std::vector<aiVector3D> &binormals_out, const Scope &source,
const std::string &MappingInformationType,
const std::string& ReferenceInformationType)
{
const std::string &ReferenceInformationType) {
const char *str = source.Elements().count("Binormals") > 0 ? "Binormals" : "Binormal";
const char *strIdx = source.Elements().count("Binormals") > 0 ? BinormalsIndexToken.c_str() : BinormalIndexToken.c_str();
ResolveVertexDataArray(binormals_out, source, MappingInformationType, ReferenceInformationType,
@ -616,15 +581,12 @@ void MeshGeometry::ReadVertexDataBinormals(std::vector<aiVector3D>& binormals_ou
m_mappings);
}
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexDataMaterials(std::vector<int> &materials_out, const Scope &source,
const std::string &MappingInformationType,
const std::string& ReferenceInformationType)
{
const std::string &ReferenceInformationType) {
const size_t face_count = m_faces.size();
if( 0 == face_count )
{
if (0 == face_count) {
return;
}
@ -650,8 +612,7 @@ void MeshGeometry::ReadVertexDataMaterials(std::vector<int>& materials_out, cons
if (materials_out.size() != face_count) {
FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygon mapping: ")
<< materials_out.size() << ", expected " << face_count
);
<< materials_out.size() << ", expected " << face_count);
return;
}
} else {
@ -660,8 +621,8 @@ void MeshGeometry::ReadVertexDataMaterials(std::vector<int>& materials_out, cons
}
}
// ------------------------------------------------------------------------------------------------
ShapeGeometry::ShapeGeometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
: Geometry(id, element, name, doc) {
ShapeGeometry::ShapeGeometry(uint64_t id, const Element &element, const std::string &name, const Document &doc) :
Geometry(id, element, name, doc) {
const Scope *sc = element.Compound();
if (nullptr == sc) {
DOMError("failed to read Geometry object (class: Shape), no data scope found");
@ -691,9 +652,8 @@ const std::vector<unsigned int>& ShapeGeometry::GetIndices() const {
return m_indices;
}
// ------------------------------------------------------------------------------------------------
LineGeometry::LineGeometry(uint64_t id, const Element& element, const std::string& name, const Document& doc)
: Geometry(id, element, name, doc)
{
LineGeometry::LineGeometry(uint64_t id, const Element &element, const std::string &name, const Document &doc) :
Geometry(id, element, name, doc) {
const Scope *sc = element.Compound();
if (!sc) {
DOMError("failed to read Geometry object (class: Line), no data scope found");
@ -716,7 +676,6 @@ const std::vector<aiVector3D>& LineGeometry::GetVertices() const {
const std::vector<int> &LineGeometry::GetIndices() const {
return m_indices;
}
} // !FBX
} // !Assimp
} // namespace FBX
} // namespace Assimp
#endif

View File

@ -52,13 +52,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "../contrib/zlib/zlib.h"
#endif
#include "FBXTokenizer.h"
#include "FBXParser.h"
#include "FBXTokenizer.h"
#include "FBXUtil.h"
#include <assimp/ByteSwapper.h>
#include <assimp/ParsingUtils.h>
#include <assimp/fast_atof.h>
#include <assimp/ByteSwapper.h>
#include <assimp/DefaultLogger.hpp>
#include <iostream>
@ -71,25 +71,21 @@ namespace {
// ------------------------------------------------------------------------------------------------
// signal parse error, this is always unrecoverable. Throws DeadlyImportError.
AI_WONT_RETURN void ParseError(const std::string &message, const Token &token) AI_WONT_RETURN_SUFFIX;
AI_WONT_RETURN void ParseError(const std::string& message, const Token& token)
{
AI_WONT_RETURN void ParseError(const std::string &message, const Token &token) {
throw DeadlyImportError("FBX-Parser", Util::GetTokenText(&token), message);
}
// ------------------------------------------------------------------------------------------------
AI_WONT_RETURN void ParseError(const std::string &message, const Element *element = nullptr) AI_WONT_RETURN_SUFFIX;
AI_WONT_RETURN void ParseError(const std::string& message, const Element* element)
{
AI_WONT_RETURN void ParseError(const std::string &message, const Element *element) {
if (element) {
ParseError(message, element->KeyToken());
}
throw DeadlyImportError("FBX-Parser ", message);
}
// ------------------------------------------------------------------------------------------------
void ParseError(const std::string& message, TokenPtr token)
{
void ParseError(const std::string &message, TokenPtr token) {
if (token) {
ParseError(message, *token);
}
@ -109,15 +105,14 @@ namespace {
::memcpy(&result, data, sizeof(T));
return result;
}
}
} // namespace
namespace Assimp {
namespace FBX {
// ------------------------------------------------------------------------------------------------
Element::Element(const Token& key_token, Parser& parser)
: key_token(key_token)
{
Element::Element(const Token &key_token, Parser &parser) :
key_token(key_token) {
TokenPtr n = nullptr;
do {
n = parser.AdvanceToNextToken();
@ -160,19 +155,16 @@ Element::Element(const Token& key_token, Parser& parser)
parser.AdvanceToNextToken();
return;
}
}
while(n->Type() != TokenType_KEY && n->Type() != TokenType_CLOSE_BRACKET);
} while (n->Type() != TokenType_KEY && n->Type() != TokenType_CLOSE_BRACKET);
}
// ------------------------------------------------------------------------------------------------
Element::~Element()
{
Element::~Element() {
// no need to delete tokens, they are owned by the parser
}
// ------------------------------------------------------------------------------------------------
Scope::Scope(Parser& parser,bool topLevel)
{
Scope::Scope(Parser &parser, bool topLevel) {
if (!topLevel) {
TokenPtr t = parser.CurrentToken();
if (t->Type() != TokenType_OPEN_BRACKET) {
@ -206,34 +198,26 @@ Scope::Scope(Parser& parser,bool topLevel)
}
// ------------------------------------------------------------------------------------------------
Scope::~Scope()
{
Scope::~Scope() {
for (ElementMap::value_type &v : elements) {
delete v.second;
}
}
// ------------------------------------------------------------------------------------------------
Parser::Parser (const TokenList& tokens, bool is_binary)
: tokens(tokens)
, last()
, current()
, cursor(tokens.begin())
, is_binary(is_binary)
{
Parser::Parser(const TokenList &tokens, bool is_binary) :
tokens(tokens), last(), current(), cursor(tokens.begin()), is_binary(is_binary) {
ASSIMP_LOG_DEBUG("Parsing FBX tokens");
root.reset(new Scope(*this, true));
}
// ------------------------------------------------------------------------------------------------
Parser::~Parser()
{
Parser::~Parser() {
// empty
}
// ------------------------------------------------------------------------------------------------
TokenPtr Parser::AdvanceToNextToken()
{
TokenPtr Parser::AdvanceToNextToken() {
last = current;
if (cursor == tokens.end()) {
current = nullptr;
@ -244,20 +228,17 @@ TokenPtr Parser::AdvanceToNextToken()
}
// ------------------------------------------------------------------------------------------------
TokenPtr Parser::CurrentToken() const
{
TokenPtr Parser::CurrentToken() const {
return current;
}
// ------------------------------------------------------------------------------------------------
TokenPtr Parser::LastToken() const
{
TokenPtr Parser::LastToken() const {
return last;
}
// ------------------------------------------------------------------------------------------------
uint64_t ParseTokenAsID(const Token& t, const char*& err_out)
{
uint64_t ParseTokenAsID(const Token &t, const char *&err_out) {
err_out = nullptr;
if (t.Type() != TokenType_DATA) {
@ -265,8 +246,7 @@ uint64_t ParseTokenAsID(const Token& t, const char*& err_out)
return 0L;
}
if(t.IsBinary())
{
if (t.IsBinary()) {
const char *data = t.begin();
if (data[0] != 'L') {
err_out = "failed to parse ID, unexpected data type, expected L(ong) (binary)";
@ -293,8 +273,7 @@ uint64_t ParseTokenAsID(const Token& t, const char*& err_out)
}
// ------------------------------------------------------------------------------------------------
size_t ParseTokenAsDim(const Token& t, const char*& err_out)
{
size_t ParseTokenAsDim(const Token &t, const char *&err_out) {
// same as ID parsing, except there is a trailing asterisk
err_out = nullptr;
@ -303,8 +282,7 @@ size_t ParseTokenAsDim(const Token& t, const char*& err_out)
return 0;
}
if(t.IsBinary())
{
if (t.IsBinary()) {
const char *data = t.begin();
if (data[0] != 'L') {
err_out = "failed to parse ID, unexpected data type, expected L(ong) (binary)";
@ -338,10 +316,8 @@ size_t ParseTokenAsDim(const Token& t, const char*& err_out)
return id;
}
// ------------------------------------------------------------------------------------------------
float ParseTokenAsFloat(const Token& t, const char*& err_out)
{
float ParseTokenAsFloat(const Token &t, const char *&err_out) {
err_out = nullptr;
if (t.Type() != TokenType_DATA) {
@ -349,8 +325,7 @@ float ParseTokenAsFloat(const Token& t, const char*& err_out)
return 0.0f;
}
if(t.IsBinary())
{
if (t.IsBinary()) {
const char *data = t.begin();
if (data[0] != 'F' && data[0] != 'D') {
err_out = "failed to parse F(loat) or D(ouble), unexpected data type (binary)";
@ -359,8 +334,7 @@ float ParseTokenAsFloat(const Token& t, const char*& err_out)
if (data[0] == 'F') {
return SafeParse<float>(data + 1, t.end());
}
else {
} else {
return static_cast<float>(SafeParse<double>(data + 1, t.end()));
}
}
@ -381,10 +355,8 @@ float ParseTokenAsFloat(const Token& t, const char*& err_out)
return fast_atof(temp);
}
// ------------------------------------------------------------------------------------------------
int ParseTokenAsInt(const Token& t, const char*& err_out)
{
int ParseTokenAsInt(const Token &t, const char *&err_out) {
err_out = nullptr;
if (t.Type() != TokenType_DATA) {
@ -392,8 +364,7 @@ int ParseTokenAsInt(const Token& t, const char*& err_out)
return 0;
}
if(t.IsBinary())
{
if (t.IsBinary()) {
const char *data = t.begin();
if (data[0] != 'I') {
err_out = "failed to parse I(nt), unexpected data type (binary)";
@ -417,10 +388,8 @@ int ParseTokenAsInt(const Token& t, const char*& err_out)
return intval;
}
// ------------------------------------------------------------------------------------------------
int64_t ParseTokenAsInt64(const Token& t, const char*& err_out)
{
int64_t ParseTokenAsInt64(const Token &t, const char *&err_out) {
err_out = nullptr;
if (t.Type() != TokenType_DATA) {
@ -428,8 +397,7 @@ int64_t ParseTokenAsInt64(const Token& t, const char*& err_out)
return 0L;
}
if (t.IsBinary())
{
if (t.IsBinary()) {
const char *data = t.begin();
if (data[0] != 'L') {
err_out = "failed to parse Int64, unexpected data type";
@ -456,8 +424,7 @@ int64_t ParseTokenAsInt64(const Token& t, const char*& err_out)
}
// ------------------------------------------------------------------------------------------------
std::string ParseTokenAsString(const Token& t, const char*& err_out)
{
std::string ParseTokenAsString(const Token &t, const char *&err_out) {
err_out = nullptr;
if (t.Type() != TokenType_DATA) {
@ -465,8 +432,7 @@ std::string ParseTokenAsString(const Token& t, const char*& err_out)
return "";
}
if(t.IsBinary())
{
if (t.IsBinary()) {
const char *data = t.begin();
if (data[0] != 'S') {
err_out = "failed to parse S(tring), unexpected data type (binary)";
@ -496,14 +462,12 @@ std::string ParseTokenAsString(const Token& t, const char*& err_out)
return std::string(s + 1, length - 2);
}
namespace {
// ------------------------------------------------------------------------------------------------
// read the type code and element count of a binary data array and stop there
void ReadBinaryDataArrayHead(const char *&data, const char *end, char &type, uint32_t &count,
const Element& el)
{
const Element &el) {
if (static_cast<size_t>(end - data) < 5) {
ParseError("binary data array is too short, need five (5) bytes for type signature and element count", &el);
}
@ -519,13 +483,11 @@ void ReadBinaryDataArrayHead(const char*& data, const char* end, char& type, uin
data += 5;
}
// ------------------------------------------------------------------------------------------------
// read binary data array, assume cursor points to the 'compression mode' field (i.e. behind the header)
void ReadBinaryDataArray(char type, uint32_t count, const char *&data, const char *end,
std::vector<char> &buff,
const Element& /*el*/)
{
const Element & /*el*/) {
BE_NCONST uint32_t encmode = SafeParse<uint32_t>(data, end);
AI_SWAP4(encmode);
data += 4;
@ -539,8 +501,7 @@ void ReadBinaryDataArray(char type, uint32_t count, const char*& data, const cha
// determine the length of the uncompressed data by looking at the type signature
uint32_t stride = 0;
switch(type)
{
switch (type) {
case 'f':
case 'i':
stride = 4;
@ -563,8 +524,7 @@ void ReadBinaryDataArray(char type, uint32_t count, const char*& data, const cha
// plain data, no compression
std::copy(data, end, buff.begin());
}
else if(encmode == 1) {
} else if (encmode == 1) {
// zlib/deflate, next comes ZIP head (0x78 0x01)
// see http://www.ietf.org/rfc/rfc1950.txt
@ -604,13 +564,11 @@ void ReadBinaryDataArray(char type, uint32_t count, const char*& data, const cha
ai_assert(data == end);
}
} // !anon
} // namespace
// ------------------------------------------------------------------------------------------------
// read an array of float3 tuples
void ParseVectorDataArray(std::vector<aiVector3D>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<aiVector3D> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
@ -660,8 +618,7 @@ void ParseVectorDataArray(std::vector<aiVector3D>& out, const Element& el)
stream << " vec3.x = " << vec3.x << " vec3.y = " << vec3.y << " vec3.z = " << vec3.z << std::endl;
DefaultLogger::get()->info( stream.str() );
}*/
}
else if (type == 'f') {
} else if (type == 'f') {
const float *f = reinterpret_cast<const float *>(&buff[0]);
for (unsigned int i = 0; i < count3; ++i, f += 3) {
out.push_back(aiVector3D(f[0], f[1], f[2]));
@ -694,11 +651,9 @@ void ParseVectorDataArray(std::vector<aiVector3D>& out, const Element& el)
}
}
// ------------------------------------------------------------------------------------------------
// read an array of color4 tuples
void ParseVectorDataArray(std::vector<aiColor4D>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<aiColor4D> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -741,8 +696,7 @@ void ParseVectorDataArray(std::vector<aiColor4D>& out, const Element& el)
static_cast<float>(d[2]),
static_cast<float>(d[3])));
}
}
else if (type == 'f') {
} else if (type == 'f') {
const float *f = reinterpret_cast<const float *>(&buff[0]);
for (unsigned int i = 0; i < count4; ++i, f += 4) {
out.push_back(aiColor4D(f[0], f[1], f[2], f[3]));
@ -773,11 +727,9 @@ void ParseVectorDataArray(std::vector<aiColor4D>& out, const Element& el)
}
}
// ------------------------------------------------------------------------------------------------
// read an array of float2 tuples
void ParseVectorDataArray(std::vector<aiVector2D>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<aiVector2D> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -818,8 +770,7 @@ void ParseVectorDataArray(std::vector<aiVector2D>& out, const Element& el)
out.push_back(aiVector2D(static_cast<float>(d[0]),
static_cast<float>(d[1])));
}
}
else if (type == 'f') {
} else if (type == 'f') {
const float *f = reinterpret_cast<const float *>(&buff[0]);
for (unsigned int i = 0; i < count2; ++i, f += 2) {
out.push_back(aiVector2D(f[0], f[1]));
@ -849,11 +800,9 @@ void ParseVectorDataArray(std::vector<aiVector2D>& out, const Element& el)
}
}
// ------------------------------------------------------------------------------------------------
// read an array of ints
void ParseVectorDataArray(std::vector<int>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<int> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -907,11 +856,9 @@ void ParseVectorDataArray(std::vector<int>& out, const Element& el)
}
}
// ------------------------------------------------------------------------------------------------
// read an array of floats
void ParseVectorDataArray(std::vector<float>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<float> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -944,8 +891,7 @@ void ParseVectorDataArray(std::vector<float>& out, const Element& el)
for (unsigned int i = 0; i < count; ++i, ++d) {
out.push_back(static_cast<float>(*d));
}
}
else if (type == 'f') {
} else if (type == 'f') {
const float *f = reinterpret_cast<const float *>(&buff[0]);
for (unsigned int i = 0; i < count; ++i, ++f) {
out.push_back(*f);
@ -971,8 +917,7 @@ void ParseVectorDataArray(std::vector<float>& out, const Element& el)
// ------------------------------------------------------------------------------------------------
// read an array of uints
void ParseVectorDataArray(std::vector<unsigned int>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<unsigned int> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -1033,11 +978,9 @@ void ParseVectorDataArray(std::vector<unsigned int>& out, const Element& el)
}
}
// ------------------------------------------------------------------------------------------------
// read an array of uint64_ts
void ParseVectorDataArray(std::vector<uint64_t>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<uint64_t> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -1094,8 +1037,7 @@ void ParseVectorDataArray(std::vector<uint64_t>& out, const Element& el)
// ------------------------------------------------------------------------------------------------
// read an array of int64_ts
void ParseVectorDataArray(std::vector<int64_t>& out, const Element& el)
{
void ParseVectorDataArray(std::vector<int64_t> &out, const Element &el) {
out.resize(0);
const TokenList &tok = el.Tokens();
if (tok.empty()) {
@ -1151,8 +1093,7 @@ void ParseVectorDataArray(std::vector<int64_t>& out, const Element& el)
}
// ------------------------------------------------------------------------------------------------
aiMatrix4x4 ReadMatrix(const Element& element)
{
aiMatrix4x4 ReadMatrix(const Element &element) {
std::vector<float> values;
ParseVectorDataArray(values, element);
@ -1162,7 +1103,6 @@ aiMatrix4x4 ReadMatrix(const Element& element)
aiMatrix4x4 result;
result.a1 = values[0];
result.a2 = values[1];
result.a3 = values[2];
@ -1187,11 +1127,9 @@ aiMatrix4x4 ReadMatrix(const Element& element)
return result;
}
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsString() with ParseError handling
std::string ParseTokenAsString(const Token& t)
{
std::string ParseTokenAsString(const Token &t) {
const char *err;
const std::string &i = ParseTokenAsString(t, err);
if (err) {
@ -1211,8 +1149,7 @@ bool HasElement( const Scope& sc, const std::string& index ) {
// ------------------------------------------------------------------------------------------------
// extract a required element from a scope, abort if the element cannot be found
const Element& GetRequiredElement(const Scope& sc, const std::string& index, const Element* element /*= nullptr*/)
{
const Element &GetRequiredElement(const Scope &sc, const std::string &index, const Element *element /*= nullptr*/) {
const Element *el = sc[index];
if (!el) {
ParseError("did not find required element \"" + index + "\"", element);
@ -1220,11 +1157,9 @@ const Element& GetRequiredElement(const Scope& sc, const std::string& index, con
return *el;
}
// ------------------------------------------------------------------------------------------------
// extract required compound scope
const Scope& GetRequiredScope(const Element& el)
{
const Scope &GetRequiredScope(const Element &el) {
const Scope *const s = el.Compound();
if (!s) {
ParseError("expected compound scope", &el);
@ -1233,11 +1168,9 @@ const Scope& GetRequiredScope(const Element& el)
return *s;
}
// ------------------------------------------------------------------------------------------------
// get token at a particular index
const Token& GetRequiredToken(const Element& el, unsigned int index)
{
const Token &GetRequiredToken(const Element &el, unsigned int index) {
const TokenList &t = el.Tokens();
if (index >= t.size()) {
ParseError(Formatter::format("missing token at index ") << index, &el);
@ -1246,11 +1179,9 @@ const Token& GetRequiredToken(const Element& el, unsigned int index)
return *t[index];
}
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsID() with ParseError handling
uint64_t ParseTokenAsID(const Token& t)
{
uint64_t ParseTokenAsID(const Token &t) {
const char *err;
const uint64_t i = ParseTokenAsID(t, err);
if (err) {
@ -1259,11 +1190,9 @@ uint64_t ParseTokenAsID(const Token& t)
return i;
}
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsDim() with ParseError handling
size_t ParseTokenAsDim(const Token& t)
{
size_t ParseTokenAsDim(const Token &t) {
const char *err;
const size_t i = ParseTokenAsDim(t, err);
if (err) {
@ -1272,11 +1201,9 @@ size_t ParseTokenAsDim(const Token& t)
return i;
}
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsFloat() with ParseError handling
float ParseTokenAsFloat(const Token& t)
{
float ParseTokenAsFloat(const Token &t) {
const char *err;
const float i = ParseTokenAsFloat(t, err);
if (err) {
@ -1287,8 +1214,7 @@ float ParseTokenAsFloat(const Token& t)
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsInt() with ParseError handling
int ParseTokenAsInt(const Token& t)
{
int ParseTokenAsInt(const Token &t) {
const char *err;
const int i = ParseTokenAsInt(t, err);
if (err) {
@ -1299,8 +1225,7 @@ int ParseTokenAsInt(const Token& t)
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsInt64() with ParseError handling
int64_t ParseTokenAsInt64(const Token& t)
{
int64_t ParseTokenAsInt64(const Token &t) {
const char *err;
const int64_t i = ParseTokenAsInt64(t, err);
if (err) {
@ -1309,7 +1234,7 @@ int64_t ParseTokenAsInt64(const Token& t)
return i;
}
} // !FBX
} // !Assimp
} // namespace FBX
} // namespace Assimp
#endif

View File

@ -43,18 +43,17 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* holes for windows and doors into walls.
*/
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
#include "IFCUtil.h"
#include "Common/PolyTools.h"
#include "IFCUtil.h"
#include "PostProcessing/ProcessHelper.h"
#ifdef ASSIMP_USE_HUNTER
#include <poly2tri/poly2tri.h>
#include <polyclipping/clipper.hpp>
#else
# include "../contrib/poly2tri/poly2tri/poly2tri.h"
#include "../contrib/clipper/clipper.hpp"
#include "../contrib/poly2tri/poly2tri/poly2tri.h"
#endif
#include <iterator>
@ -71,21 +70,17 @@ namespace Assimp {
#define from_int64(p) (static_cast<IfcFloat>((p)) / max_ulong64)
#define one_vec (IfcVector2(static_cast<IfcFloat>(1.0), static_cast<IfcFloat>(1.0)))
// fallback method to generate wall openings
bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening> &openings, const std::vector<IfcVector3> &nors,
TempMesh &curmesh);
typedef std::pair< IfcVector2, IfcVector2 > BoundingBox;
typedef std::map<IfcVector2,size_t,XYSorter> XYSortedField;
using BoundingBox = std::pair<IfcVector2, IfcVector2>;
using XYSortedField = std::map<IfcVector2, size_t, XYSorter>;
// ------------------------------------------------------------------------------------------------
void QuadrifyPart(const IfcVector2 &pmin, const IfcVector2 &pmax, XYSortedField &field,
const std::vector<BoundingBox> &bbs,
std::vector<IfcVector2>& out)
{
std::vector<IfcVector2> &out) {
if (!(pmin.x - pmax.x) || !(pmin.y - pmax.y)) {
return;
}
@ -111,10 +106,10 @@ void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField&
if (!found) {
// the rectangle [pmin,pend] is opaque, fill it
out.push_back(pmin);
out.push_back(IfcVector2(pmin.x,pmax.y));
out.push_back(pmax);
out.push_back(IfcVector2(pmax.x,pmin.y));
out.emplace_back(pmin);
out.emplace_back(pmin.x, pmax.y);
out.emplace_back(pmax);
out.emplace_back(pmax.x, pmin.y);
return;
}
@ -123,10 +118,10 @@ void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField&
// see if there's an offset to fill at the top of our quad
if (xs - pmin.x) {
out.push_back(pmin);
out.push_back(IfcVector2(pmin.x,pmax.y));
out.push_back(IfcVector2(xs,pmax.y));
out.push_back(IfcVector2(xs,pmin.y));
out.emplace_back(pmin);
out.emplace_back(pmin.x, pmax.y);
out.emplace_back(xs, pmax.y);
out.emplace_back(xs, pmin.y);
}
// search along the y-axis for all openings that overlap xs and our quad
@ -157,10 +152,10 @@ void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField&
}
if (!found) {
// the rectangle [pmin,pend] is opaque, fill it
out.push_back(IfcVector2(xs,pmin.y));
out.push_back(IfcVector2(xs,pmax.y));
out.push_back(IfcVector2(xe,pmax.y));
out.push_back(IfcVector2(xe,pmin.y));
out.emplace_back(IfcVector2(xs, pmin.y));
out.emplace_back(xs, pmax.y);
out.emplace_back(xe, pmax.y);
out.emplace_back(xe, pmin.y);
return;
}
if (ylast < pmax.y) {
@ -173,23 +168,17 @@ void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField&
}
}
typedef std::vector<IfcVector2> Contour;
typedef std::vector<bool> SkipList; // should probably use int for performance reasons
using Contour = std::vector<IfcVector2>;
using SkipList = std::vector<bool>; // should probably use int for performance reasons
struct ProjectedWindowContour
{
struct ProjectedWindowContour {
Contour contour;
BoundingBox bb;
SkipList skiplist;
bool is_rectangular;
ProjectedWindowContour(const Contour& contour, const BoundingBox& bb, bool is_rectangular)
: contour(contour)
, bb(bb)
, is_rectangular(is_rectangular)
{}
ProjectedWindowContour(const Contour &contour, const BoundingBox &bb, bool is_rectangular) :
contour(contour), bb(bb), is_rectangular(is_rectangular) {}
bool IsInvalid() const {
return contour.empty();
@ -204,19 +193,17 @@ struct ProjectedWindowContour
}
};
typedef std::vector< ProjectedWindowContour > ContourVector;
using ContourVector = std::vector<ProjectedWindowContour>;
// ------------------------------------------------------------------------------------------------
bool BoundingBoxesOverlapping( const BoundingBox &ibb, const BoundingBox &bb )
{
bool BoundingBoxesOverlapping(const BoundingBox &ibb, const BoundingBox &bb) {
// count the '=' case as non-overlapping but as adjacent to each other
return ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
ibb.first.y < bb.second.y && ibb.second.y > bb.first.y;
}
// ------------------------------------------------------------------------------------------------
bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp_contour)
{
bool IsDuplicateVertex(const IfcVector2 &vv, const std::vector<IfcVector2> &temp_contour) {
// sanity check for duplicate vertices
for (const IfcVector2 &cp : temp_contour) {
if ((cp - vv).SquareLength() < 1e-5f) {
@ -228,8 +215,7 @@ bool IsDuplicateVertex(const IfcVector2& vv, const std::vector<IfcVector2>& temp
// ------------------------------------------------------------------------------------------------
void ExtractVerticesFromClipper(const ClipperLib::Polygon &poly, std::vector<IfcVector2> &temp_contour,
bool filter_duplicates = false)
{
bool filter_duplicates = false) {
temp_contour.clear();
for (const ClipperLib::IntPoint &point : poly) {
IfcVector2 vv = IfcVector2(from_int64(point.X), from_int64(point.Y));
@ -243,8 +229,7 @@ void ExtractVerticesFromClipper(const ClipperLib::Polygon& poly, std::vector<Ifc
}
// ------------------------------------------------------------------------------------------------
BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
{
BoundingBox GetBoundingBox2D(const ClipperLib::Polygon &poly) {
IfcVector2 newbb_min, newbb_max;
MinMaxChooser<IfcVector2>()(newbb_min, newbb_max);
@ -264,8 +249,7 @@ BoundingBox GetBoundingBox(const ClipperLib::Polygon& poly)
// ------------------------------------------------------------------------------------------------
void InsertWindowContours(const ContourVector &contours,
const std::vector<TempOpening> & /*openings*/,
TempMesh& curmesh)
{
TempMesh &curmesh) {
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
for (size_t i = 0; i < contours.size(); ++i) {
const BoundingBox &bb = contours[i].bb;
@ -282,10 +266,7 @@ void InsertWindowContours(const ContourVector& contours,
verts.insert(contour[n]);
}
const std::set<IfcVector2, XYSorter>::const_iterator end = verts.end();
if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
&& verts.find(IfcVector2(bb.first.x,bb.second.y))!=end
&& verts.find(IfcVector2(bb.second.x,bb.first.y))!=end
) {
if (verts.find(bb.first) != end && verts.find(bb.second) != end && verts.find(IfcVector2(bb.first.x, bb.second.y)) != end && verts.find(IfcVector2(bb.second.x, bb.first.y)) != end) {
continue;
}
}
@ -310,8 +291,7 @@ void InsertWindowContours(const ContourVector& contours,
if (std::fabs(v.x - bb.first.x) < epsilon) {
edge.x = bb.first.x;
hit = true;
}
else if (std::fabs(v.x-bb.second.x)<epsilon) {
} else if (std::fabs(v.x - bb.second.x) < epsilon) {
edge.x = bb.second.x;
hit = true;
}
@ -319,8 +299,7 @@ void InsertWindowContours(const ContourVector& contours,
if (std::fabs(v.y - bb.first.y) < epsilon) {
edge.y = bb.first.y;
hit = true;
}
else if (std::fabs(v.y-bb.second.y)<epsilon) {
} else if (std::fabs(v.y - bb.second.y) < epsilon) {
edge.y = bb.second.y;
hit = true;
}
@ -349,21 +328,18 @@ void InsertWindowContours(const ContourVector& contours,
if (std::fabs(contour[last_hit].x - bb.first.x) < epsilon) {
corner.x = bb.first.x;
}
else if (std::fabs(contour[last_hit].x-bb.second.x)<epsilon) {
} else if (std::fabs(contour[last_hit].x - bb.second.x) < epsilon) {
corner.x = bb.second.x;
}
if (std::fabs(contour[last_hit].y - bb.first.y) < epsilon) {
corner.y = bb.first.y;
}
else if (std::fabs(contour[last_hit].y-bb.second.y)<epsilon) {
} else if (std::fabs(contour[last_hit].y - bb.second.y) < epsilon) {
corner.y = bb.second.y;
}
curmesh.mVerts.push_back(IfcVector3(corner.x, corner.y, 0.0f));
}
else if (cnt == 1) {
} else if (cnt == 1) {
// avoid degenerate polygons (also known as lines or points)
curmesh.mVerts.erase(curmesh.mVerts.begin() + old, curmesh.mVerts.end());
}
@ -375,8 +351,7 @@ void InsertWindowContours(const ContourVector& contours,
if (n == very_first_hit) {
break;
}
}
else {
} else {
very_first_hit = n;
}
@ -389,8 +364,7 @@ void InsertWindowContours(const ContourVector& contours,
// ------------------------------------------------------------------------------------------------
void MergeWindowContours(const std::vector<IfcVector2> &a,
const std::vector<IfcVector2> &b,
ClipperLib::ExPolygons& out)
{
ClipperLib::ExPolygons &out) {
out.clear();
ClipperLib::Clipper clipper;
@ -423,8 +397,7 @@ void MergeWindowContours (const std::vector<IfcVector2>& a,
// Subtract a from b
void MakeDisjunctWindowContours(const std::vector<IfcVector2> &a,
const std::vector<IfcVector2> &b,
ClipperLib::ExPolygons& out)
{
ClipperLib::ExPolygons &out) {
out.clear();
ClipperLib::Clipper clipper;
@ -454,8 +427,7 @@ void MakeDisjunctWindowContours (const std::vector<IfcVector2>& a,
}
// ------------------------------------------------------------------------------------------------
void CleanupWindowContour(ProjectedWindowContour& window)
{
void CleanupWindowContour(ProjectedWindowContour &window) {
std::vector<IfcVector2> scratch;
std::vector<IfcVector2> &contour = window.contour;
@ -489,23 +461,19 @@ void CleanupWindowContour(ProjectedWindowContour& window)
}
// ------------------------------------------------------------------------------------------------
void CleanupWindowContours(ContourVector& contours)
{
void CleanupWindowContours(ContourVector &contours) {
// Use PolyClipper to clean up window contours
try {
for (ProjectedWindowContour &window : contours) {
CleanupWindowContour(window);
}
}
catch (const char* sx) {
IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: "
+ std::string(sx) + ")");
} catch (const char *sx) {
IFCImporter::LogError("error during polygon clipping, window shape may be wrong: (Clipper: " + std::string(sx) + ")");
}
}
// ------------------------------------------------------------------------------------------------
void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh)
{
void CleanupOuterContour(const std::vector<IfcVector2> &contour_flat, TempMesh &curmesh) {
std::vector<IfcVector3> vold;
std::vector<unsigned int> iold;
@ -568,10 +536,8 @@ void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh&
clipper.Clear();
}
}
}
catch (const char* sx) {
IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: "
+ std::string(sx) + ")");
} catch (const char *sx) {
IFCImporter::LogError("Ifc: error during polygon clipping, wall contour line may be wrong: (Clipper: " + std::string(sx) + ")");
return;
}
@ -586,12 +552,11 @@ typedef std::vector<OpeningRefs > OpeningRefVector;
typedef std::vector<std::pair<
ContourVector::const_iterator,
Contour::const_iterator>
> ContourRefVector;
Contour::const_iterator>>
ContourRefVector;
// ------------------------------------------------------------------------------------------------
bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
{
bool BoundingBoxesAdjacent(const BoundingBox &bb, const BoundingBox &ibb) {
// TODO: I'm pretty sure there is a much more compact way to check this
const IfcFloat epsilon = Math::getEpsilon<float>();
return (std::fabs(bb.second.x - ibb.first.x) < epsilon && bb.first.y <= ibb.second.y && bb.second.y >= ibb.first.y) ||
@ -605,8 +570,7 @@ bool BoundingBoxesAdjacent(const BoundingBox& bb, const BoundingBox& ibb)
// output the intersection points on n0,n1
bool IntersectingLineSegments(const IfcVector2 &n0, const IfcVector2 &n1,
const IfcVector2 &m0, const IfcVector2 &m1,
IfcVector2& out0, IfcVector2& out1)
{
IfcVector2 &out0, IfcVector2 &out1) {
const IfcVector2 n0_to_n1 = n1 - n0;
const IfcVector2 n0_to_m0 = m0 - n0;
@ -645,8 +609,7 @@ bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
if (std::fabs(s1) == inf && std::fabs(n0_to_m1.x) < smalle) {
s1 = 0.;
}
}
else {
} else {
s0 = n0_to_m0.y / n0_to_n1.y;
s1 = n0_to_m1.y / n0_to_n1.y;
@ -679,8 +642,7 @@ bool IntersectingLineSegments(const IfcVector2& n0, const IfcVector2& n1,
}
// ------------------------------------------------------------------------------------------------
void FindAdjacentContours(ContourVector::iterator current, const ContourVector& contours)
{
void FindAdjacentContours(ContourVector::iterator current, const ContourVector &contours) {
const IfcFloat sqlen_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
const BoundingBox &bb = (*current).bb;
@ -737,8 +699,7 @@ void FindAdjacentContours(ContourVector::iterator current, const ContourVector&
ncontour.insert(ncontour.begin() + n, isect0);
skiplist.insert(skiplist.begin() + n, true);
}
else {
} else {
skiplist[n] = true;
}
@ -756,15 +717,13 @@ void FindAdjacentContours(ContourVector::iterator current, const ContourVector&
}
// ------------------------------------------------------------------------------------------------
AI_FORCE_INLINE bool LikelyBorder(const IfcVector2& vdelta)
{
AI_FORCE_INLINE bool LikelyBorder(const IfcVector2 &vdelta) {
const IfcFloat dot_point_epsilon = static_cast<IfcFloat>(Math::getEpsilon<float>());
return std::fabs(vdelta.x * vdelta.y) < dot_point_epsilon;
}
// ------------------------------------------------------------------------------------------------
void FindBorderContours(ContourVector::iterator current)
{
void FindBorderContours(ContourVector::iterator current) {
const IfcFloat border_epsilon_upper = static_cast<IfcFloat>(1 - 1e-4);
const IfcFloat border_epsilon_lower = static_cast<IfcFloat>(1e-4);
@ -790,14 +749,12 @@ void FindBorderContours(ContourVector::iterator current)
if (LikelyBorder(proj_point - last_proj_point)) {
skiplist[std::distance(cbegin, cit) - 1] = true;
}
}
else if (cit == cbegin) {
} else if (cit == cbegin) {
start_on_outer_border = true;
}
outer_border = true;
}
else {
} else {
outer_border = false;
}
@ -814,16 +771,14 @@ void FindBorderContours(ContourVector::iterator current)
}
// ------------------------------------------------------------------------------------------------
AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta)
{
AI_FORCE_INLINE bool LikelyDiagonal(IfcVector2 vdelta) {
vdelta.x = std::fabs(vdelta.x);
vdelta.y = std::fabs(vdelta.y);
return (std::fabs(vdelta.x - vdelta.y) < 0.8 * std::max(vdelta.x, vdelta.y));
}
// ------------------------------------------------------------------------------------------------
void FindLikelyCrossingLines(ContourVector::iterator current)
{
void FindLikelyCrossingLines(ContourVector::iterator current) {
SkipList &skiplist = (*current).skiplist;
IfcVector2 last_proj_point;
@ -851,8 +806,7 @@ void FindLikelyCrossingLines(ContourVector::iterator current)
size_t CloseWindows(ContourVector &contours,
const IfcMatrix4 &minv,
OpeningRefVector &contours_to_openings,
TempMesh& curmesh)
{
TempMesh &curmesh) {
size_t closed = 0;
// For all contour points, check if one of the assigned openings does
// already have points assigned to it. In this case, assume this is
@ -961,8 +915,7 @@ size_t CloseWindows(ContourVector& contours,
if (drop_this_edge) {
curmesh.mVerts.pop_back();
curmesh.mVerts.pop_back();
}
else {
} else {
curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? world_point : bestv);
curmesh.mVerts.push_back(((cit == cbegin) != reverseCountourFaces) ? bestv : world_point);
@ -989,15 +942,13 @@ size_t CloseWindows(ContourVector& contours,
curmesh.mVertcnt.pop_back();
curmesh.mVerts.pop_back();
curmesh.mVerts.pop_back();
}
else {
} else {
curmesh.mVerts.push_back(reverseCountourFaces ? start0 : start1);
curmesh.mVerts.push_back(reverseCountourFaces ? start1 : start0);
}
}
}
}
else {
} else {
const Contour::const_iterator cbegin = (*it).contour.begin(), cend = (*it).contour.end();
for (TempOpening *opening : refs) {
@ -1015,8 +966,7 @@ size_t CloseWindows(ContourVector& contours,
}
// ------------------------------------------------------------------------------------------------
void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
{
void Quadrify(const std::vector<BoundingBox> &bbs, TempMesh &curmesh) {
ai_assert(curmesh.IsEmpty());
std::vector<IfcVector2> quads;
@ -1042,8 +992,7 @@ void Quadrify(const std::vector< BoundingBox >& bbs, TempMesh& curmesh)
}
// ------------------------------------------------------------------------------------------------
void Quadrify(const ContourVector& contours, TempMesh& curmesh)
{
void Quadrify(const ContourVector &contours, TempMesh &curmesh) {
std::vector<BoundingBox> bbs;
bbs.reserve(contours.size());
@ -1056,8 +1005,7 @@ void Quadrify(const ContourVector& contours, TempMesh& curmesh)
// ------------------------------------------------------------------------------------------------
IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2> &out_contour, const TempMesh &in_mesh,
bool &ok, IfcVector3& nor_out)
{
bool &ok, IfcVector3 &nor_out) {
const std::vector<IfcVector3> &in_verts = in_mesh.mVerts;
ok = true;
@ -1073,7 +1021,6 @@ IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh
IfcFloat zcoord = 0;
out_contour.reserve(in_verts.size());
IfcVector3 vmin, vmax;
MinMaxChooser<IfcVector3>()(vmin, vmax);
@ -1144,8 +1091,7 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
TempMesh &curmesh,
bool check_intersection,
bool generate_connection_geometry,
const IfcVector3& wall_extrusion_axis)
{
const IfcVector3 &wall_extrusion_axis) {
OpeningRefVector contours_to_openings;
// Try to derive a solid base plane within the current surface for use as
@ -1163,14 +1109,12 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
}
// Obtain inverse transform for getting back to world space later on
const IfcMatrix4 minv = IfcMatrix4(m).Inverse();
const IfcMatrix4 mInverse = IfcMatrix4(m).Inverse();
// Compute bounding boxes for all 2D openings in projection space
ContourVector contours;
std::vector<IfcVector2> temp_contour;
std::vector<IfcVector2> temp_contour2;
std::vector<IfcVector2> temp_contour, temp_contour2;
IfcVector3 wall_extrusion_axis_norm = wall_extrusion_axis;
wall_extrusion_axis_norm.Normalize();
@ -1181,8 +1125,7 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
IfcVector3 norm_extrusion_dir = opening.extrusionDir;
if (norm_extrusion_dir.SquareLength() > 1e-10) {
norm_extrusion_dir.Normalize();
}
else {
} else {
norm_extrusion_dir = IfcVector3();
}
@ -1196,8 +1139,7 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
profile_data = opening.profileMesh2D.get();
is_2d_source = true;
}
}
else {
} else {
// vertical extrusion
if (std::fabs(norm_extrusion_dir * nor) > 0.9) {
profile_data = opening.profileMesh2D.get();
@ -1241,7 +1183,8 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
bool side_flag = true;
if (!is_2d_source) {
const IfcVector3 face_nor = ((profile_verts[vi_total + 2] - profile_verts[vi_total]) ^
(profile_verts[vi_total+1] - profile_verts[vi_total])).Normalize();
(profile_verts[vi_total + 1] - profile_verts[vi_total]))
.Normalize();
const IfcFloat abs_dot_face_nor = std::abs(nor * face_nor);
if (abs_dot_face_nor < 0.9) {
@ -1270,8 +1213,7 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
if (side_flag) {
vpmin = std::min(vpmin, vv);
vpmax = std::max(vpmax, vv);
}
else {
} else {
vpmin2 = std::min(vpmin2, vv);
vpmax2 = std::max(vpmax2, vv);
}
@ -1335,7 +1277,7 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
MakeDisjunctWindowContours(other, temp_contour, poly);
if (poly.size() == 1) {
const BoundingBox newbb = GetBoundingBox(poly[0].outer);
const BoundingBox newbb = GetBoundingBox2D(poly[0].outer);
if (!BoundingBoxesOverlapping(ibb, newbb)) {
// Good guy bounding box
bb = newbb;
@ -1352,13 +1294,11 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
if (poly.size() > 1) {
return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
}
else if (poly.size() == 0) {
} else if (poly.size() == 0) {
IFCImporter::LogWarn("ignoring duplicate opening");
temp_contour.clear();
break;
}
else {
} else {
IFCImporter::LogVerboseDebug("merging overlapping openings");
ExtractVerticesFromClipper(poly[0].outer, temp_contour, false);
@ -1427,21 +1367,20 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
// Undo the projection and get back to world (or local object) space
for (IfcVector3 &v3 : curmesh.mVerts) {
v3 = minv * v3;
v3 = mInverse * v3;
}
// Generate window caps to connect the symmetric openings on both sides
// of the wall.
if (generate_connection_geometry) {
CloseWindows(contours, minv, contours_to_openings, curmesh);
CloseWindows(contours, mInverse, contours_to_openings, curmesh);
}
return true;
}
// ------------------------------------------------------------------------------------------------
bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening> &openings, const std::vector<IfcVector3> &nors,
TempMesh& curmesh)
{
TempMesh &curmesh) {
IFCImporter::LogWarn("forced to use poly2tri fallback method to generate wall openings");
std::vector<IfcVector3> &out = curmesh.mVerts;
@ -1456,8 +1395,7 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
return false;
}
const IfcMatrix3 minv = IfcMatrix3(m).Inverse();
const IfcMatrix3 mInverse = IfcMatrix3(m).Inverse();
IfcFloat coord = -1;
@ -1475,7 +1413,6 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
// (which are present, of course), this should be the same value for
// all polygon vertices (assuming the polygon is planar).
// XXX this should be guarded, but we somehow need to pick a suitable
// epsilon
// if(coord != -1.0f) {
@ -1502,7 +1439,6 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
ClipperLib::ExPolygons clipped;
ClipperLib::Polygons holes_union;
IfcVector3 wall_extrusion;
bool first = true;
@ -1597,10 +1533,8 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
ClipperLib::pftNonZero);
}
}
catch (const char* sx) {
IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: "
+ std::string(sx) + ")");
} catch (const char *sx) {
IFCImporter::LogError("Ifc: error during polygon clipping, skipping openings for this face: (Clipper: " + std::string(sx) + ")");
return false;
}
@ -1629,14 +1563,11 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
// happen in production use if the input data is broken. An assertion would be
// inappropriate.
cdt = new p2t::CDT(contour_points);
}
catch(const std::exception& e) {
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
+ std::string(e.what()) + ")");
} catch (const std::exception &e) {
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: " + std::string(e.what()) + ")");
continue;
}
// Build the poly2tri inner contours for all holes we got from ClipperLib
for (ClipperLib::Polygon &opening : clip.holes) {
@ -1653,10 +1584,8 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
try {
// Note: See above
cdt->Triangulate();
}
catch(const std::exception& e) {
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: "
+ std::string(e.what()) + ")");
} catch (const std::exception &e) {
IFCImporter::LogError("Ifc: error during polygon triangulation, skipping some openings: (poly2tri: " + std::string(e.what()) + ")");
continue;
}
@ -1668,11 +1597,10 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
const IfcVector2 v = IfcVector2(
static_cast<IfcFloat>(tri->GetPoint(i)->x),
static_cast<IfcFloat>( tri->GetPoint(i)->y )
);
static_cast<IfcFloat>(tri->GetPoint(i)->y));
ai_assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
const IfcVector3 v3 = minv * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y,coord) ;
const IfcVector3 v3 = mInverse * IfcVector3(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y, coord);
curmesh.mVerts.push_back(v3);
}
@ -1693,9 +1621,8 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
return result;
}
} // ! IFC
} // ! Assimp
} // namespace IFC
} // namespace Assimp
#undef to_int64
#undef from_int64

View File

@ -66,8 +66,7 @@ void TempOpening::Transform(const IfcMatrix4& mat) {
}
// ------------------------------------------------------------------------------------------------
aiMesh* TempMesh::ToMesh()
{
aiMesh *TempMesh::ToMesh() {
ai_assert(mVerts.size() == std::accumulate(mVertcnt.begin(), mVertcnt.end(), size_t(0)));
if (mVerts.empty()) {
@ -105,36 +104,31 @@ aiMesh* TempMesh::ToMesh()
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Clear()
{
void TempMesh::Clear() {
mVerts.clear();
mVertcnt.clear();
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Transform(const IfcMatrix4& mat)
{
void TempMesh::Transform(const IfcMatrix4 &mat) {
for (IfcVector3 &v : mVerts) {
v *= mat;
}
}
// ------------------------------------------------------------------------------
IfcVector3 TempMesh::Center() const
{
IfcVector3 TempMesh::Center() const {
return (mVerts.size() == 0) ? IfcVector3(0.0f, 0.0f, 0.0f) : (std::accumulate(mVerts.begin(), mVerts.end(), IfcVector3()) / static_cast<IfcFloat>(mVerts.size()));
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Append(const TempMesh& other)
{
void TempMesh::Append(const TempMesh &other) {
mVerts.insert(mVerts.end(), other.mVerts.begin(), other.mVerts.end());
mVertcnt.insert(mVertcnt.end(), other.mVertcnt.begin(), other.mVertcnt.end());
}
// ------------------------------------------------------------------------------------------------
void TempMesh::RemoveDegenerates()
{
void TempMesh::RemoveDegenerates() {
// The strategy is simple: walk the mesh and compute normals using
// Newell's algorithm. The length of the normals gives the area
// of the polygons, which is close to zero for lines.
@ -167,11 +161,10 @@ void TempMesh::RemoveDegenerates()
}
// ------------------------------------------------------------------------------------------------
IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bool normalize)
{
std::vector<IfcFloat> temp((cnt+2)*3);
for( size_t vofs = 0, i = 0; vofs < cnt; ++vofs )
{
IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3 *vtcs, size_t cnt, bool normalize) {
const size_t Capa = cnt + 2;
std::vector<IfcFloat> temp((Capa)*3);
for (size_t vofs = 0, i = 0; vofs < cnt; ++vofs) {
const IfcVector3 &v = vtcs[vofs];
temp[i++] = v.x;
temp[i++] = v.y;
@ -179,22 +172,19 @@ IfcVector3 TempMesh::ComputePolygonNormal(const IfcVector3* vtcs, size_t cnt, bo
}
IfcVector3 nor;
NewellNormal<3, 3, 3>(nor, static_cast<int>(cnt), &temp[0], &temp[1], &temp[2]);
NewellNormal<3, 3, 3>(nor, static_cast<int>(cnt), &temp[0], &temp[1], &temp[2], Capa);
return normalize ? nor.Normalize() : nor;
}
// ------------------------------------------------------------------------------------------------
void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
bool normalize,
size_t ofs) const
{
void TempMesh::ComputePolygonNormals(std::vector<IfcVector3> &normals, bool normalize, size_t ofs) const {
size_t max_vcount = 0;
std::vector<unsigned int>::const_iterator begin = mVertcnt.begin() + ofs, end = mVertcnt.end(), iit;
for (iit = begin; iit != end; ++iit) {
max_vcount = std::max(max_vcount, static_cast<size_t>(*iit));
}
std::vector<IfcFloat> temp((max_vcount+2)*4);
const size_t Capa = max_vcount + 2;
std::vector<IfcFloat> temp(Capa * 4);
normals.reserve(normals.size() + mVertcnt.size() - ofs);
// `NewellNormal()` currently has a relatively strange interface and need to
@ -202,7 +192,7 @@ void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
size_t vidx = std::accumulate(mVertcnt.begin(), begin, 0);
for (iit = begin; iit != end; vidx += *iit++) {
if (!*iit) {
normals.push_back(IfcVector3());
normals.emplace_back();
continue;
}
for (size_t vofs = 0, cnt = 0; vofs < *iit; ++vofs) {
@ -216,8 +206,8 @@ void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
++cnt;
}
normals.push_back(IfcVector3());
NewellNormal<4,4,4>(normals.back(),*iit,&temp[0],&temp[1],&temp[2]);
normals.emplace_back();
NewellNormal<4, 4, 4>(normals.back(), *iit, &temp[0], &temp[1], &temp[2], Capa);
}
if (normalize) {
@ -229,30 +219,26 @@ void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
// ------------------------------------------------------------------------------------------------
// Compute the normal of the last polygon in the given mesh
IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const
{
IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const {
return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize);
}
struct CompareVector
{
bool operator () (const IfcVector3& a, const IfcVector3& b) const
{
struct CompareVector {
bool operator()(const IfcVector3 &a, const IfcVector3 &b) const {
IfcVector3 d = a - b;
IfcFloat eps = 1e-6;
return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
}
};
struct FindVector
{
struct FindVector {
IfcVector3 v;
FindVector(const IfcVector3& p) : v(p) { }
FindVector(const IfcVector3 &p) :
v(p) {}
bool operator()(const IfcVector3 &p) { return FuzzyVectorCompare(1e-6)(p, v); }
};
// ------------------------------------------------------------------------------------------------
void TempMesh::FixupFaceOrientation()
{
void TempMesh::FixupFaceOrientation() {
const IfcVector3 vavg = Center();
// create a list of start indices for all faces to allow random access to faces
@ -262,18 +248,15 @@ void TempMesh::FixupFaceOrientation()
// list all faces on a vertex
std::map<IfcVector3, std::vector<size_t>, CompareVector> facesByVertex;
for( size_t a = 0; a < mVertcnt.size(); ++a )
{
for (size_t a = 0; a < mVertcnt.size(); ++a) {
for (size_t b = 0; b < mVertcnt[a]; ++b)
facesByVertex[mVerts[faceStartIndices[a] + b]].push_back(a);
}
// determine neighbourhood for all polys
std::vector<size_t> neighbour(mVerts.size(), SIZE_MAX);
std::vector<size_t> tempIntersect(10);
for( size_t a = 0; a < mVertcnt.size(); ++a )
{
for( size_t b = 0; b < mVertcnt[a]; ++b )
{
for (size_t a = 0; a < mVertcnt.size(); ++a) {
for (size_t b = 0; b < mVertcnt[a]; ++b) {
size_t ib = faceStartIndices[a] + b, nib = faceStartIndices[a] + (b + 1) % mVertcnt[a];
const std::vector<size_t> &facesOnB = facesByVertex[mVerts[ib]];
const std::vector<size_t> &facesOnNB = facesByVertex[mVerts[nib]];
@ -294,30 +277,31 @@ void TempMesh::FixupFaceOrientation()
// facing outwards. So we reverse this face to point outwards in relation to the center. Then we adapt neighbouring
// faces to have the same winding until all faces have been tested.
std::vector<bool> faceDone(mVertcnt.size(), false);
while( std::count(faceDone.begin(), faceDone.end(), false) != 0 )
{
while (std::count(faceDone.begin(), faceDone.end(), false) != 0) {
// find the farthest of the remaining faces
size_t farthestIndex = SIZE_MAX;
IfcFloat farthestDistance = -1.0;
for( size_t a = 0; a < mVertcnt.size(); ++a )
{
for (size_t a = 0; a < mVertcnt.size(); ++a) {
if (faceDone[a])
continue;
IfcVector3 faceCenter = std::accumulate(mVerts.begin() + faceStartIndices[a],
mVerts.begin() + faceStartIndices[a] + mVertcnt[a], IfcVector3(0.0)) / IfcFloat(mVertcnt[a]);
mVerts.begin() + faceStartIndices[a] + mVertcnt[a], IfcVector3(0.0)) /
IfcFloat(mVertcnt[a]);
IfcFloat dst = (faceCenter - vavg).SquareLength();
if( dst > farthestDistance ) { farthestDistance = dst; farthestIndex = a; }
if (dst > farthestDistance) {
farthestDistance = dst;
farthestIndex = a;
}
}
// calculate its normal and reverse the poly if its facing towards the mesh center
IfcVector3 farthestNormal = ComputePolygonNormal(mVerts.data() + faceStartIndices[farthestIndex], mVertcnt[farthestIndex]);
IfcVector3 farthestCenter = std::accumulate(mVerts.begin() + faceStartIndices[farthestIndex],
mVerts.begin() + faceStartIndices[farthestIndex] + mVertcnt[farthestIndex], IfcVector3(0.0))
/ IfcFloat(mVertcnt[farthestIndex]);
mVerts.begin() + faceStartIndices[farthestIndex] + mVertcnt[farthestIndex], IfcVector3(0.0)) /
IfcFloat(mVertcnt[farthestIndex]);
// We accept a bit of negative orientation without reversing. In case of doubt, prefer the orientation given in
// the file.
if( (farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4 )
{
if ((farthestNormal * (farthestCenter - vavg).Normalize()) < -0.4) {
size_t fsi = faceStartIndices[farthestIndex], fvc = mVertcnt[farthestIndex];
std::reverse(mVerts.begin() + fsi, mVerts.begin() + fsi + fvc);
std::reverse(neighbour.begin() + fsi, neighbour.begin() + fsi + fvc);
@ -334,15 +318,13 @@ void TempMesh::FixupFaceOrientation()
todo.push_back(farthestIndex);
// go over its neighbour faces recursively and adapt their winding order to match the farthest face
while( !todo.empty() )
{
while (!todo.empty()) {
size_t tdf = todo.back();
size_t vsi = faceStartIndices[tdf], vc = mVertcnt[tdf];
todo.pop_back();
// check its neighbours
for( size_t a = 0; a < vc; ++a )
{
for (size_t a = 0; a < vc; ++a) {
// ignore neighbours if we already checked them
size_t nbi = neighbour[vsi + a];
if (nbi == SIZE_MAX || faceDone[nbi])
@ -358,8 +340,7 @@ void TempMesh::FixupFaceOrientation()
// to reverse the neighbour
nb_vidx = (nb_vidx + 1) % nbvc;
size_t oursideidx = (a + 1) % vc;
if( FuzzyVectorCompare(1e-6)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx]) )
{
if (FuzzyVectorCompare(1e-6)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx])) {
std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc);
std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
for (size_t aa = 0; aa < nbvc - 1; ++aa) {
@ -390,7 +371,6 @@ void TempMesh::RemoveAdjacentDuplicates() {
IfcVector3 vmin, vmax;
ArrayBounds(&*base, cnt, vmin, vmax);
const IfcFloat epsilon = (vmax - vmin).SquareLength() / static_cast<IfcFloat>(1e9);
//const IfcFloat dotepsilon = 1e-9;
@ -442,78 +422,58 @@ void TempMesh::RemoveAdjacentDuplicates() {
}
// ------------------------------------------------------------------------------------------------
void TempMesh::Swap(TempMesh& other)
{
void TempMesh::Swap(TempMesh &other) {
mVertcnt.swap(other.mVertcnt);
mVerts.swap(other.mVerts);
}
// ------------------------------------------------------------------------------------------------
bool IsTrue(const ::Assimp::STEP::EXPRESS::BOOLEAN& in)
{
bool IsTrue(const ::Assimp::STEP::EXPRESS::BOOLEAN &in) {
return (std::string)in == "TRUE" || (std::string)in == "T";
}
// ------------------------------------------------------------------------------------------------
IfcFloat ConvertSIPrefix(const std::string& prefix)
{
IfcFloat ConvertSIPrefix(const std::string &prefix) {
if (prefix == "EXA") {
return 1e18f;
}
else if (prefix == "PETA") {
} else if (prefix == "PETA") {
return 1e15f;
}
else if (prefix == "TERA") {
} else if (prefix == "TERA") {
return 1e12f;
}
else if (prefix == "GIGA") {
} else if (prefix == "GIGA") {
return 1e9f;
}
else if (prefix == "MEGA") {
} else if (prefix == "MEGA") {
return 1e6f;
}
else if (prefix == "KILO") {
} else if (prefix == "KILO") {
return 1e3f;
}
else if (prefix == "HECTO") {
} else if (prefix == "HECTO") {
return 1e2f;
}
else if (prefix == "DECA") {
} else if (prefix == "DECA") {
return 1e-0f;
}
else if (prefix == "DECI") {
} else if (prefix == "DECI") {
return 1e-1f;
}
else if (prefix == "CENTI") {
} else if (prefix == "CENTI") {
return 1e-2f;
}
else if (prefix == "MILLI") {
} else if (prefix == "MILLI") {
return 1e-3f;
}
else if (prefix == "MICRO") {
} else if (prefix == "MICRO") {
return 1e-6f;
}
else if (prefix == "NANO") {
} else if (prefix == "NANO") {
return 1e-9f;
}
else if (prefix == "PICO") {
} else if (prefix == "PICO") {
return 1e-12f;
}
else if (prefix == "FEMTO") {
} else if (prefix == "FEMTO") {
return 1e-15f;
}
else if (prefix == "ATTO") {
} else if (prefix == "ATTO") {
return 1e-18f;
}
else {
} else {
IFCImporter::LogError("Unrecognized SI prefix: " + prefix);
return 1;
}
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourRgb& in)
{
void ConvertColor(aiColor4D &out, const Schema_2x3::IfcColourRgb &in) {
out.r = static_cast<float>(in.Red);
out.g = static_cast<float>(in.Green);
out.b = static_cast<float>(in.Blue);
@ -521,8 +481,7 @@ void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourRgb& in)
}
// ------------------------------------------------------------------------------------------------
void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base)
{
void ConvertColor(aiColor4D &out, const Schema_2x3::IfcColourOrFactor &in, ConversionData &conv, const aiColor4D *base) {
if (const ::Assimp::STEP::EXPRESS::REAL *const r = in.ToPtr<::Assimp::STEP::EXPRESS::REAL>()) {
out.r = out.g = out.b = static_cast<float>(*r);
if (base) {
@ -530,20 +489,17 @@ void ConvertColor(aiColor4D& out, const Schema_2x3::IfcColourOrFactor& in,Conver
out.g *= static_cast<float>(base->g);
out.b *= static_cast<float>(base->b);
out.a = static_cast<float>(base->a);
}
else out.a = 1.0;
}
else if (const Schema_2x3::IfcColourRgb* const rgb = in.ResolveSelectPtr<Schema_2x3::IfcColourRgb>(conv.db)) {
} else
out.a = 1.0;
} else if (const Schema_2x3::IfcColourRgb *const rgb = in.ResolveSelectPtr<Schema_2x3::IfcColourRgb>(conv.db)) {
ConvertColor(out, *rgb);
}
else {
} else {
IFCImporter::LogWarn("skipping unknown IfcColourOrFactor entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertCartesianPoint(IfcVector3& out, const Schema_2x3::IfcCartesianPoint& in)
{
void ConvertCartesianPoint(IfcVector3 &out, const Schema_2x3::IfcCartesianPoint &in) {
out = IfcVector3();
for (size_t i = 0; i < in.Coordinates.size(); ++i) {
out[static_cast<unsigned int>(i)] = in.Coordinates[i];
@ -551,15 +507,13 @@ void ConvertCartesianPoint(IfcVector3& out, const Schema_2x3::IfcCartesianPoint&
}
// ------------------------------------------------------------------------------------------------
void ConvertVector(IfcVector3& out, const Schema_2x3::IfcVector& in)
{
void ConvertVector(IfcVector3 &out, const Schema_2x3::IfcVector &in) {
ConvertDirection(out, in.Orientation);
out *= in.Magnitude;
}
// ------------------------------------------------------------------------------------------------
void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in)
{
void ConvertDirection(IfcVector3 &out, const Schema_2x3::IfcDirection &in) {
out = IfcVector3();
for (size_t i = 0; i < in.DirectionRatios.size(); ++i) {
out[static_cast<unsigned int>(i)] = in.DirectionRatios[i];
@ -573,8 +527,7 @@ void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in)
}
// ------------------------------------------------------------------------------------------------
void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y, const IfcVector3& z)
{
void AssignMatrixAxes(IfcMatrix4 &out, const IfcVector3 &x, const IfcVector3 &y, const IfcVector3 &z) {
out.a1 = x.x;
out.b1 = x.y;
out.c1 = x.z;
@ -589,8 +542,7 @@ void AssignMatrixAxes(IfcMatrix4& out, const IfcVector3& x, const IfcVector3& y,
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement3D& in)
{
void ConvertAxisPlacement(IfcMatrix4 &out, const Schema_2x3::IfcAxis2Placement3D &in) {
IfcVector3 loc;
ConvertCartesianPoint(loc, in.Location);
@ -614,8 +566,7 @@ void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement3D
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement2D& in)
{
void ConvertAxisPlacement(IfcMatrix4 &out, const Schema_2x3::IfcAxis2Placement2D &in) {
IfcVector3 loc;
ConvertCartesianPoint(loc, in.Location);
@ -631,34 +582,28 @@ void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement2D
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcVector3& axis, IfcVector3& pos, const Schema_2x3::IfcAxis1Placement& in)
{
void ConvertAxisPlacement(IfcVector3 &axis, IfcVector3 &pos, const Schema_2x3::IfcAxis1Placement &in) {
ConvertCartesianPoint(pos, in.Location);
if (in.Axis) {
ConvertDirection(axis, in.Axis.Get());
}
else {
} else {
axis = IfcVector3(0.f, 0.f, 1.f);
}
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(IfcMatrix4& out, const Schema_2x3::IfcAxis2Placement& in, ConversionData& conv)
{
void ConvertAxisPlacement(IfcMatrix4 &out, const Schema_2x3::IfcAxis2Placement &in, ConversionData &conv) {
if (const Schema_2x3::IfcAxis2Placement3D *pl3 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement3D>(conv.db)) {
ConvertAxisPlacement(out, *pl3);
}
else if(const Schema_2x3::IfcAxis2Placement2D* pl2 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement2D>(conv.db)) {
} else if (const Schema_2x3::IfcAxis2Placement2D *pl2 = in.ResolveSelectPtr<Schema_2x3::IfcAxis2Placement2D>(conv.db)) {
ConvertAxisPlacement(out, *pl2);
}
else {
} else {
IFCImporter::LogWarn("skipping unknown IfcAxis2Placement entity");
}
}
// ------------------------------------------------------------------------------------------------
void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTransformationOperator& op)
{
void ConvertTransformOperator(IfcMatrix4 &out, const Schema_2x3::IfcCartesianTransformationOperator &op) {
IfcVector3 loc;
ConvertCartesianPoint(loc, op.LocalOrigin);
@ -679,14 +624,12 @@ void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTra
IfcMatrix4::Translation(loc, locm);
AssignMatrixAxes(out, x, y, z);
IfcVector3 vscale;
if (const Schema_2x3::IfcCartesianTransformationOperator3DnonUniform *nuni = op.ToPtr<Schema_2x3::IfcCartesianTransformationOperator3DnonUniform>()) {
vscale.x = nuni->Scale ? op.Scale.Get() : 1.f;
vscale.y = nuni->Scale2 ? nuni->Scale2.Get() : 1.f;
vscale.z = nuni->Scale3 ? nuni->Scale3.Get() : 1.f;
}
else {
} else {
const IfcFloat sc = op.Scale ? op.Scale.Get() : 1.f;
vscale = IfcVector3(sc, sc, sc);
}
@ -697,8 +640,7 @@ void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTra
out = locm * out * s;
}
} // ! IFC
} // ! Assimp
} // namespace IFC
} // namespace Assimp
#endif

View File

@ -4,7 +4,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -47,27 +46,26 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef INCLUDED_IFCUTIL_H
#define INCLUDED_IFCUTIL_H
#include "AssetLib/IFC/IFCReaderGen_2x3.h"
#include "AssetLib/IFC/IFCLoader.h"
#include "AssetLib/IFC/IFCReaderGen_2x3.h"
#include "AssetLib/Step/STEPFile.h"
#include <assimp/mesh.h>
#include <assimp/material.h>
#include <assimp/mesh.h>
struct aiNode;
namespace Assimp {
namespace IFC {
typedef double IfcFloat;
using IfcFloat = double;
// IfcFloat-precision math data types
typedef aiVector2t<IfcFloat> IfcVector2;
typedef aiVector3t<IfcFloat> IfcVector3;
typedef aiMatrix4x4t<IfcFloat> IfcMatrix4;
typedef aiMatrix3x3t<IfcFloat> IfcMatrix3;
typedef aiColor4t<IfcFloat> IfcColor4;
using IfcVector2 = aiVector2t<IfcFloat>;
using IfcVector3 = aiVector3t<IfcFloat>;
using IfcMatrix4 = aiMatrix4x4t<IfcFloat>;
using IfcMatrix3 = aiMatrix3x3t<IfcFloat>;
using IfcColor4 = aiColor4t<IfcFloat>;
// ------------------------------------------------------------------------------------------------
// Helper for std::for_each to delete all heap-allocated items in a container
@ -79,8 +77,6 @@ struct delete_fun {
}
};
// ------------------------------------------------------------------------------------------------
// Helper used during mesh construction. Aids at creating aiMesh'es out of relatively few polygons.
// ------------------------------------------------------------------------------------------------
@ -104,17 +100,14 @@ struct TempMesh {
void Swap(TempMesh &other);
};
inline
bool TempMesh::IsEmpty() const {
inline bool TempMesh::IsEmpty() const {
return mVerts.empty() && mVertcnt.empty();
}
// ------------------------------------------------------------------------------------------------
// Temporary representation of an opening in a wall or a floor
// ------------------------------------------------------------------------------------------------
struct TempOpening
{
struct TempOpening {
const IFC::Schema_2x3::IfcSolidModel *solid;
IfcVector3 extrusionDir;
@ -129,34 +122,33 @@ struct TempOpening
std::vector<IfcVector3> wallPoints;
// ------------------------------------------------------------------------------
TempOpening()
: solid()
, extrusionDir()
, profileMesh()
{
TempOpening() :
solid(),
extrusionDir(),
profileMesh() {
// empty
}
// ------------------------------------------------------------------------------
TempOpening(const IFC::Schema_2x3::IfcSolidModel *solid, IfcVector3 extrusionDir,
std::shared_ptr<TempMesh> profileMesh,
std::shared_ptr<TempMesh> profileMesh2D)
: solid(solid)
, extrusionDir(extrusionDir)
, profileMesh(profileMesh)
, profileMesh2D(profileMesh2D)
{
std::shared_ptr<TempMesh> profileMesh2D) :
solid(solid),
extrusionDir(extrusionDir),
profileMesh(profileMesh),
profileMesh2D(profileMesh2D) {
// empty
}
// ------------------------------------------------------------------------------
void Transform(const IfcMatrix4 &mat); // defined later since TempMesh is not complete yet
// ------------------------------------------------------------------------------
// Helper to sort openings by distance from a given base point
struct DistanceSorter {
DistanceSorter(const IfcVector3& base) : base(base) {}
DistanceSorter(const IfcVector3 &base) :
base(base) {}
bool operator()(const TempOpening &a, const TempOpening &b) const {
return (a.profileMesh->Center() - base).SquareLength() < (b.profileMesh->Center() - base).SquareLength();
@ -166,22 +158,28 @@ struct TempOpening
};
};
// ------------------------------------------------------------------------------------------------
// Intermediate data storage during conversion. Keeps everything and a bit more.
// ------------------------------------------------------------------------------------------------
struct ConversionData
{
ConversionData(const STEP::DB& db, const IFC::Schema_2x3::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings)
: len_scale(1.0)
, angle_scale(-1.0)
, db(db)
, proj(proj)
, out(out)
, settings(settings)
, apply_openings()
, collect_openings()
{}
struct ConversionData {
ConversionData(const STEP::DB &db, const IFC::Schema_2x3::IfcProject &proj, aiScene *out, const IFCImporter::Settings &settings) :
len_scale(1.0),
angle_scale(-1.0),
plane_angle_in_radians(true),
db(db),
proj(proj),
out(out),
wcs(),
meshes(),
materials(),
cached_meshes(),
cached_materials(),
settings(settings),
apply_openings(nullptr),
collect_openings(nullptr),
already_processed() {
// empty
}
~ConversionData() {
std::for_each(meshes.begin(), meshes.end(), delete_fun<aiMesh>());
@ -200,16 +198,19 @@ struct ConversionData
std::vector<aiMaterial *> materials;
struct MeshCacheIndex {
const IFC::Schema_2x3::IfcRepresentationItem* item; unsigned int matindex;
MeshCacheIndex() : item(nullptr), matindex(0) { }
MeshCacheIndex(const IFC::Schema_2x3::IfcRepresentationItem* i, unsigned int mi) : item(i), matindex(mi) { }
const IFC::Schema_2x3::IfcRepresentationItem *item;
unsigned int matindex;
MeshCacheIndex() :
item(nullptr), matindex(0) {}
MeshCacheIndex(const IFC::Schema_2x3::IfcRepresentationItem *i, unsigned int mi) :
item(i), matindex(mi) {}
bool operator==(const MeshCacheIndex &o) const { return item == o.item && matindex == o.matindex; }
bool operator<(const MeshCacheIndex &o) const { return item < o.item || (item == o.item && matindex < o.matindex); }
};
typedef std::map<MeshCacheIndex, std::set<unsigned int> > MeshCache;
using MeshCache = std::map<MeshCacheIndex, std::set<unsigned int>>;
MeshCache cached_meshes;
typedef std::map<const IFC::Schema_2x3::IfcSurfaceStyle*, unsigned int> MaterialCache;
using MaterialCache = std::map<const IFC::Schema_2x3::IfcSurfaceStyle *, unsigned int>;
MaterialCache cached_materials;
const IFCImporter::Settings &settings;
@ -226,13 +227,13 @@ struct ConversionData
std::set<uint64_t> already_processed;
};
// ------------------------------------------------------------------------------------------------
// Binary predicate to compare vectors with a given, quadratic epsilon.
// ------------------------------------------------------------------------------------------------
struct FuzzyVectorCompare {
FuzzyVectorCompare(IfcFloat epsilon) : epsilon(epsilon) {}
FuzzyVectorCompare(IfcFloat epsilon) :
epsilon(epsilon) {}
bool operator()(const IfcVector3 &a, const IfcVector3 &b) {
return std::abs((a - b).SquareLength()) < epsilon;
}
@ -240,7 +241,6 @@ struct FuzzyVectorCompare {
const IfcFloat epsilon;
};
// ------------------------------------------------------------------------------------------------
// Ordering predicate to totally order R^2 vectors first by x and then by y
// ------------------------------------------------------------------------------------------------
@ -255,8 +255,6 @@ struct XYSorter {
}
};
// conversion routines for common IFC entities, implemented in IFCUtil.cpp
void ConvertColor(aiColor4D &out, const Schema_2x3::IfcColourRgb &in);
void ConvertColor(aiColor4D &out, const Schema_2x3::IfcColourOrFactor &in, ConversionData &conv, const aiColor4D *base);
@ -272,7 +270,6 @@ void ConvertTransformOperator(IfcMatrix4& out, const Schema_2x3::IfcCartesianTra
bool IsTrue(const Assimp::STEP::EXPRESS::BOOLEAN &in);
IfcFloat ConvertSIPrefix(const std::string &prefix);
// IFCProfile.cpp
bool ProcessProfile(const Schema_2x3::IfcProfileDef &prof, TempMesh &meshout, ConversionData &conv);
bool ProcessCurve(const Schema_2x3::IfcCurve &curve, TempMesh &meshout, ConversionData &conv);
@ -305,7 +302,6 @@ void ProcessBooleanExtrudedAreaSolidDifference(const Schema_2x3::IfcExtrudedArea
const TempMesh &first_operand,
ConversionData &conv);
// IFCOpenings.cpp
bool GenerateOpenings(std::vector<TempOpening> &openings,
@ -315,8 +311,6 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
bool generate_connection_geometry,
const IfcVector3 &wall_extrusion_axis = IfcVector3(0, 1, 0));
// IFCCurve.cpp
// ------------------------------------------------------------------------------------------------
@ -324,8 +318,8 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
// ------------------------------------------------------------------------------------------------
class CurveError {
public:
CurveError(const std::string& s)
: mStr(s) {
CurveError(const std::string &s) :
mStr(s) {
// empty
}
@ -338,18 +332,17 @@ public:
// ------------------------------------------------------------------------------------------------
class Curve {
protected:
Curve(const Schema_2x3::IfcCurve& base_entity, ConversionData& conv)
: base_entity(base_entity)
, conv(conv) {
Curve(const Schema_2x3::IfcCurve &base_entity, ConversionData &conv) :
base_entity(base_entity),
conv(conv) {
// empty
}
public:
typedef std::pair<IfcFloat, IfcFloat> ParamRange;
using ParamRange = std::pair<IfcFloat, IfcFloat>;
virtual ~Curve() {}
// check if a curve is closed
virtual bool IsClosed() const = 0;
@ -384,23 +377,19 @@ protected:
ConversionData &conv;
};
// --------------------------------------------------------------------------------
// A BoundedCurve always holds the invariant that GetParametricRange()
// never returns infinite values.
// --------------------------------------------------------------------------------
class BoundedCurve : public Curve {
public:
BoundedCurve(const Schema_2x3::IfcBoundedCurve& entity, ConversionData& conv)
: Curve(entity,conv)
{}
BoundedCurve(const Schema_2x3::IfcBoundedCurve &entity, ConversionData &conv) :
Curve(entity, conv) {}
public:
bool IsClosed() const;
bool IsClosed() const override;
public:
// sample the entire curve
void SampleDiscrete(TempMesh &out) const;
using Curve::SampleDiscrete;
@ -408,7 +397,8 @@ public:
// IfcProfile.cpp
bool ProcessCurve(const Schema_2x3::IfcCurve &curve, TempMesh &meshout, ConversionData &conv);
}
}
} // namespace IFC
} // namespace Assimp
#endif

View File

@ -43,9 +43,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the CPP-API class #Importer
*/
#include <assimp/version.h>
#include <assimp/config.h>
#include <assimp/importerdesc.h>
#include <assimp/version.h>
// ------------------------------------------------------------------------------------------------
/* Uncomment this line to prevent Assimp from catching unknown exceptions.
@ -62,29 +62,30 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ------------------------------------------------------------------------------------------------
// Internal headers
// ------------------------------------------------------------------------------------------------
#include "Common/Importer.h"
#include "Common/BaseProcess.h"
#include "Common/DefaultProgressHandler.h"
#include "PostProcessing/ProcessHelper.h"
#include "Common/Importer.h"
#include "Common/ScenePreprocessor.h"
#include "Common/ScenePrivate.h"
#include "PostProcessing/ProcessHelper.h"
#include <assimp/BaseImporter.h>
#include <assimp/Exceptional.h>
#include <assimp/GenericProperty.h>
#include <assimp/MemoryIOWrapper.h>
#include <assimp/Profiler.h>
#include <assimp/TinyFormatter.h>
#include <assimp/Exceptional.h>
#include <assimp/Profiler.h>
#include <assimp/commonMetaData.h>
#include <set>
#include <memory>
#include <cctype>
#include <memory>
#include <set>
#include <assimp/DefaultIOStream.h>
#include <assimp/DefaultIOSystem.h>
// clang-format off
#ifndef ASSIMP_BUILD_NO_VALIDATEDS_PROCESS
# include "PostProcessing/ValidateDataStructure.h"
#endif
@ -99,8 +100,9 @@ namespace Assimp {
// PostStepRegistry.cpp
void GetPostProcessingStepInstanceList(std::vector<BaseProcess *> &out);
}
} // namespace Assimp
// clang-format on
using namespace Assimp;
using namespace Assimp::Intern;
@ -117,8 +119,7 @@ void* AllocateFromAssimpHeap::operator new ( size_t num_bytes) {
void *AllocateFromAssimpHeap::operator new(size_t num_bytes, const std::nothrow_t &) throw() {
try {
return AllocateFromAssimpHeap::operator new(num_bytes);
}
catch( ... ) {
} catch (...) {
return nullptr;
}
}
@ -145,8 +146,8 @@ void AllocateFromAssimpHeap::operator delete[] ( void* data) {
// ------------------------------------------------------------------------------------------------
// Importer constructor.
Importer::Importer()
: pimpl( new ImporterPimpl ) {
Importer::Importer() :
pimpl(new ImporterPimpl) {
pimpl->mScene = nullptr;
pimpl->mErrorString = "";
@ -652,8 +653,7 @@ const aiScene* Importer::ReadFile( const char* _pFile, unsigned int pFlags) {
// Get file size for progress handler
IOStream *fileIO = pimpl->mIOHandler->Open(pFile);
uint32_t fileSize = 0;
if (fileIO)
{
if (fileIO) {
fileSize = static_cast<uint32_t>(fileIO->FileSize());
pimpl->mIOHandler->Close(fileIO);
}
@ -738,7 +738,8 @@ const aiScene* Importer::ReadFile( const char* _pFile, unsigned int pFlags) {
#endif
ASSIMP_LOG_ERROR(pimpl->mErrorString);
delete pimpl->mScene; pimpl->mScene = nullptr;
delete pimpl->mScene;
pimpl->mScene = nullptr;
}
#endif // ! ASSIMP_CATCH_GLOBAL_EXCEPTIONS
@ -748,7 +749,6 @@ const aiScene* Importer::ReadFile( const char* _pFile, unsigned int pFlags) {
return pimpl->mScene;
}
// ------------------------------------------------------------------------------------------------
// Apply post-processing to the currently bound scene
const aiScene *Importer::ApplyPostProcessing(unsigned int pFlags) {
@ -781,8 +781,7 @@ const aiScene* Importer::ApplyPostProcessing(unsigned int pFlags) {
}
#endif // no validation
#ifdef ASSIMP_BUILD_DEBUG
if (pimpl->bExtraVerbose)
{
if (pimpl->bExtraVerbose) {
#ifdef ASSIMP_BUILD_NO_VALIDATEDS_PROCESS
ASSIMP_LOG_ERROR("Verbose Import is not available due to build settings");
#endif // no validation
@ -870,8 +869,7 @@ const aiScene* Importer::ApplyCustomizedPostProcessing( BaseProcess *rootProcess
#ifndef ASSIMP_BUILD_NO_VALIDATEDS_PROCESS
// The ValidateDS process plays an exceptional role. It isn't contained in the global
// list of post-processing steps, so we need to call it manually.
if ( requestValidation )
{
if (requestValidation) {
ValidateDSProcess ds;
ds.ExecuteOnScene(this);
if (!pimpl->mScene) {
@ -880,8 +878,7 @@ const aiScene* Importer::ApplyCustomizedPostProcessing( BaseProcess *rootProcess
}
#endif // no validation
#ifdef ASSIMP_BUILD_DEBUG
if ( pimpl->bExtraVerbose )
{
if (pimpl->bExtraVerbose) {
#ifdef ASSIMP_BUILD_NO_VALIDATEDS_PROCESS
ASSIMP_LOG_ERROR("Verbose Import is not available due to build settings");
#endif // no validation
@ -947,7 +944,6 @@ const aiImporterDesc* Importer::GetImporterInfo(size_t index) const {
return pimpl->mImporter[index]->GetInfo();
}
// ------------------------------------------------------------------------------------------------
BaseImporter *Importer::GetImporter(size_t index) const {
ai_assert(nullptr != pimpl);
@ -975,7 +971,8 @@ size_t Importer::GetImporterIndex (const char* szExtension) const {
ASSIMP_BEGIN_EXCEPTION_REGION();
// skip over wildcard and dot characters at string head --
for ( ; *szExtension == '*' || *szExtension == '.'; ++szExtension );
for (; *szExtension == '*' || *szExtension == '.'; ++szExtension)
;
std::string ext(szExtension);
if (ext.empty()) {
@ -1106,8 +1103,7 @@ aiMatrix4x4 Importer::GetPropertyMatrix(const char* szName, const aiMatrix4x4& i
// ------------------------------------------------------------------------------------------------
// Get the memory requirements of a single node
inline
void AddNodeWeight(unsigned int& iScene,const aiNode* pcNode) {
inline void AddNodeWeight(unsigned int &iScene, const aiNode *pcNode) {
if (nullptr == pcNode) {
return;
}

View File

@ -44,10 +44,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef INCLUDED_AI_IMPORTER_H
#define INCLUDED_AI_IMPORTER_H
#include <map>
#include <vector>
#include <string>
#include <assimp/matrix4x4.h>
#include <map>
#include <string>
#include <vector>
struct aiScene;
@ -58,7 +58,6 @@ namespace Assimp {
class BaseProcess;
class SharedPostProcessInfo;
//! @cond never
// ---------------------------------------------------------------------------
/** @brief Internal PIMPL implementation for Assimp::Importer
@ -70,7 +69,7 @@ namespace Assimp {
class ImporterPimpl {
public:
// Data type to store the key hash
typedef unsigned int KeyType;
using KeyType = unsigned int;
// typedefs for our four configuration maps.
// We don't need more, so there is no need for a generic solution
@ -126,9 +125,7 @@ public:
ImporterPimpl() AI_NO_EXCEPT;
};
inline
ImporterPimpl::ImporterPimpl() AI_NO_EXCEPT :
mIOHandler( nullptr ),
inline ImporterPimpl::ImporterPimpl() AI_NO_EXCEPT : mIOHandler(nullptr),
mIsDefaultHandler(false),
mProgressHandler(nullptr),
mIsDefaultProgressHandler(false),
@ -214,8 +211,7 @@ public:
unsigned int AddLoadRequest(
const std::string &file,
unsigned int steps = 0,
const PropertyMap *map = nullptr
);
const PropertyMap *map = nullptr);
// -------------------------------------------------------------------
/** Get an imported scene.
@ -227,8 +223,7 @@ public:
* @return nullptr if there is no scene with this file name
* in the queue of the scene hasn't been loaded yet. */
aiScene *GetImport(
unsigned int which
);
unsigned int which);
// -------------------------------------------------------------------
/** Waits until all scenes have been loaded. This returns

View File

@ -4,7 +4,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -45,149 +44,48 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef AI_POLYTOOLS_H_INCLUDED
#define AI_POLYTOOLS_H_INCLUDED
#include <assimp/material.h>
#include <assimp/ai_assert.h>
#include <assimp/material.h>
#include <assimp/vector3.h>
namespace Assimp {
// -------------------------------------------------------------------------------
/** Compute the signed area of a triangle.
* The function accepts an unconstrained template parameter for use with
* both aiVector3D and aiVector2D, but generally ignores the third coordinate.*/
template <typename T>
inline double GetArea2D(const T& v1, const T& v2, const T& v3)
{
return 0.5 * (v1.x * ((double)v3.y - v2.y) + v2.x * ((double)v1.y - v3.y) + v3.x * ((double)v2.y - v1.y));
template<class T>
class TBoundingBox2D {
T mMin, mMax;
TBoundingBox2D( const T &min, const T &max ) :
mMin( min ),
mMax( max ) {
// empty
}
};
using BoundingBox2D = TBoundingBox2D<aiVector2D>;
// -------------------------------------------------------------------------------
/** Test if a given point p2 is on the left side of the line formed by p0-p1.
* The function accepts an unconstrained template parameter for use with
* both aiVector3D and aiVector2D, but generally ignores the third coordinate.*/
template <typename T>
inline bool OnLeftSideOfLine2D(const T& p0, const T& p1,const T& p2)
{
return GetArea2D(p0,p2,p1) > 0;
}
/// Compute the normal of an arbitrary polygon in R3.
///
/// The code is based on Newell's formula, that is a polygons normal is the ratio
/// of its area when projected onto the three coordinate axes.
///
/// @param out Receives the output normal
/// @param num Number of input vertices
/// @param x X data source. x[ofs_x*n] is the n'th element.
/// @param y Y data source. y[ofs_y*n] is the y'th element
/// @param z Z data source. z[ofs_z*n] is the z'th element
///
/// @note The data arrays must have storage for at least num+2 elements. Using
/// this method is much faster than the 'other' NewellNormal()
// -------------------------------------------------------------------------------
/** Test if a given point is inside a given triangle in R2.
* The function accepts an unconstrained template parameter for use with
* both aiVector3D and aiVector2D, but generally ignores the third coordinate.*/
template <typename T>
inline bool PointInTriangle2D(const T& p0, const T& p1,const T& p2, const T& pp)
{
// Point in triangle test using baryzentric coordinates
const aiVector2D v0 = p1 - p0;
const aiVector2D v1 = p2 - p0;
const aiVector2D v2 = pp - p0;
template <size_t ofs_x, size_t ofs_y, size_t ofs_z, typename TReal>
inline void NewellNormal(aiVector3t<TReal> &out, size_t num, TReal *x, TReal *y, TReal *z, size_t bufferSize) {
ai_assert(bufferSize > num);
double dot00 = v0 * v0;
double dot01 = v0 * v1;
double dot02 = v0 * v2;
double dot11 = v1 * v1;
double dot12 = v1 * v2;
const double invDenom = 1 / (dot00 * dot11 - dot01 * dot01);
dot11 = (dot11 * dot02 - dot01 * dot12) * invDenom;
dot00 = (dot00 * dot12 - dot01 * dot02) * invDenom;
return (dot11 > 0) && (dot00 > 0) && (dot11 + dot00 < 1);
if (nullptr == x || nullptr == y || nullptr == z || 0 == bufferSize || 0 == num) {
return;
}
// -------------------------------------------------------------------------------
/** Check whether the winding order of a given polygon is counter-clockwise.
* The function accepts an unconstrained template parameter, but is intended
* to be used only with aiVector2D and aiVector3D (z axis is ignored, only
* x and y are taken into account).
* @note Code taken from http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Ian/applet1.html and translated to C++
*/
template <typename T>
inline bool IsCCW(T* in, size_t npoints) {
double aa, bb, cc, b, c, theta;
double convex_turn;
double convex_sum = 0;
ai_assert(npoints >= 3);
for (size_t i = 0; i < npoints - 2; i++) {
aa = ((in[i+2].x - in[i].x) * (in[i+2].x - in[i].x)) +
((-in[i+2].y + in[i].y) * (-in[i+2].y + in[i].y));
bb = ((in[i+1].x - in[i].x) * (in[i+1].x - in[i].x)) +
((-in[i+1].y + in[i].y) * (-in[i+1].y + in[i].y));
cc = ((in[i+2].x - in[i+1].x) *
(in[i+2].x - in[i+1].x)) +
((-in[i+2].y + in[i+1].y) *
(-in[i+2].y + in[i+1].y));
b = std::sqrt(bb);
c = std::sqrt(cc);
theta = std::acos((bb + cc - aa) / (2 * b * c));
if (OnLeftSideOfLine2D(in[i],in[i+2],in[i+1])) {
// if (convex(in[i].x, in[i].y,
// in[i+1].x, in[i+1].y,
// in[i+2].x, in[i+2].y)) {
convex_turn = AI_MATH_PI_F - theta;
convex_sum += convex_turn;
}
else {
convex_sum -= AI_MATH_PI_F - theta;
}
}
aa = ((in[1].x - in[npoints-2].x) *
(in[1].x - in[npoints-2].x)) +
((-in[1].y + in[npoints-2].y) *
(-in[1].y + in[npoints-2].y));
bb = ((in[0].x - in[npoints-2].x) *
(in[0].x - in[npoints-2].x)) +
((-in[0].y + in[npoints-2].y) *
(-in[0].y + in[npoints-2].y));
cc = ((in[1].x - in[0].x) * (in[1].x - in[0].x)) +
((-in[1].y + in[0].y) * (-in[1].y + in[0].y));
b = std::sqrt(bb);
c = std::sqrt(cc);
theta = std::acos((bb + cc - aa) / (2 * b * c));
//if (convex(in[npoints-2].x, in[npoints-2].y,
// in[0].x, in[0].y,
// in[1].x, in[1].y)) {
if (OnLeftSideOfLine2D(in[npoints-2],in[1],in[0])) {
convex_turn = AI_MATH_PI_F - theta;
convex_sum += convex_turn;
}
else {
convex_sum -= AI_MATH_PI_F - theta;
}
return convex_sum >= (2 * AI_MATH_PI_F);
}
// -------------------------------------------------------------------------------
/** Compute the normal of an arbitrary polygon in R3.
*
* The code is based on Newell's formula, that is a polygons normal is the ratio
* of its area when projected onto the three coordinate axes.
*
* @param out Receives the output normal
* @param num Number of input vertices
* @param x X data source. x[ofs_x*n] is the n'th element.
* @param y Y data source. y[ofs_y*n] is the y'th element
* @param z Z data source. z[ofs_z*n] is the z'th element
*
* @note The data arrays must have storage for at least num+2 elements. Using
* this method is much faster than the 'other' NewellNormal()
*/
template <int ofs_x, int ofs_y, int ofs_z, typename TReal>
inline void NewellNormal (aiVector3t<TReal>& out, int num, TReal* x, TReal* y, TReal* z)
{
// Duplicate the first two vertices at the end
x[(num + 0) * ofs_x] = x[0];
x[(num + 1) * ofs_x] = x[ofs_x];
@ -204,7 +102,7 @@ inline void NewellNormal (aiVector3t<TReal>& out, int num, TReal* x, TReal* y, T
TReal *yptr = y + ofs_y, *ylow = y, *yhigh = y + ofs_y * 2;
TReal *zptr = z + ofs_z, *zlow = z, *zhigh = z + ofs_z * 2;
for (int tmp=0; tmp < num; tmp++) {
for (size_t tmp = 0; tmp < num; ++tmp ) {
sum_xy += (*xptr) * ((*yhigh) - (*ylow));
sum_yz += (*yptr) * ((*zhigh) - (*zlow));
sum_zx += (*zptr) * ((*xhigh) - (*xlow));
@ -224,6 +122,69 @@ inline void NewellNormal (aiVector3t<TReal>& out, int num, TReal* x, TReal* y, T
out = aiVector3t<TReal>(sum_yz, sum_zx, sum_xy);
}
} // ! Assimp
// -------------------------------------------------------------------------------
// -------------------------------------------------------------------------------
template <class T>
inline aiMatrix4x4t<T> DerivePlaneCoordinateSpace(const aiVector3t<T> *vertices, size_t numVertices, bool &ok, aiVector3t<T> &norOut) {
const aiVector3t<T> *out = vertices;
aiMatrix4x4t<T> m;
ok = true;
const size_t s = numVertices;
const aiVector3t<T> &any_point = out[numVertices - 1u];
aiVector3t<T> nor;
// The input polygon is arbitrarily shaped, therefore we might need some tries
// until we find a suitable normal. Note that Newell's algorithm would give
// a more robust result, but this variant also gives us a suitable first
// axis for the 2D coordinate space on the polygon plane, exploiting the
// fact that the input polygon is nearly always a quad.
bool done = false;
size_t idx = 0;
for (size_t i = 0; !done && i < s - 2; done || ++i) {
idx = i;
for (size_t j = i + 1; j < s - 1; ++j) {
nor = -((out[i] - any_point) ^ (out[j] - any_point));
if (std::fabs(nor.Length()) > 1e-8f) {
done = true;
break;
}
}
}
if (!done) {
ok = false;
return m;
}
nor.Normalize();
norOut = nor;
aiVector3t<T> r = (out[idx] - any_point);
r.Normalize();
// Reconstruct orthonormal basis
// XXX use Gram Schmidt for increased robustness
aiVector3t<T> u = r ^ nor;
u.Normalize();
m.a1 = r.x;
m.a2 = r.y;
m.a3 = r.z;
m.b1 = u.x;
m.b2 = u.y;
m.b3 = u.z;
m.c1 = -nor.x;
m.c2 = -nor.y;
m.c3 = -nor.z;
return m;
}
} // namespace Assimp
#endif

View File

@ -5,8 +5,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -45,11 +43,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the FindDegenerates post-process step.
*/
// internal headers
#include "ProcessHelper.h"
#include "FindDegenerates.h"
#include "ProcessHelper.h"
#include <assimp/Exceptional.h>
using namespace Assimp;
@ -61,9 +57,9 @@ static void updateSceneGraph(aiNode* pNode, unsigned const index);
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
FindDegeneratesProcess::FindDegeneratesProcess()
: mConfigRemoveDegenerates( false )
, mConfigCheckAreaOfTriangle( false ){
FindDegeneratesProcess::FindDegeneratesProcess() :
mConfigRemoveDegenerates(false),
mConfigCheckAreaOfTriangle(false) {
// empty
}
@ -91,8 +87,7 @@ void FindDegeneratesProcess::SetupProperties(const Importer* pImp) {
// Executes the post processing step on the given imported data.
void FindDegeneratesProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("FindDegeneratesProcess begin");
for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
{
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
//Do not process point cloud, ExecuteOnMesh works only with faces data
if ((pScene->mMeshes[i]->mPrimitiveTypes != aiPrimitiveType::aiPrimitiveType_POINT) && ExecuteOnMesh(pScene->mMeshes[i])) {
removeMesh(pScene, i);
@ -239,8 +234,7 @@ bool FindDegeneratesProcess::ExecuteOnMesh( aiMesh* mesh) {
}
// We need to update the primitive flags array of the mesh.
switch (face.mNumIndices)
{
switch (face.mNumIndices) {
case 1u:
mesh->mPrimitiveTypes |= aiPrimitiveType_POINT;
break;
@ -261,8 +255,7 @@ evil_jump_outside:
// If AI_CONFIG_PP_FD_REMOVE is true, remove degenerated faces from the import
if (mConfigRemoveDegenerates && deg) {
unsigned int n = 0;
for (unsigned int a = 0; a < mesh->mNumFaces; ++a)
{
for (unsigned int a = 0; a < mesh->mNumFaces; ++a) {
aiFace &face_src = mesh->mFaces[a];
if (!remove_me[a]) {
aiFace &face_dest = mesh->mFaces[n++];
@ -276,8 +269,7 @@ evil_jump_outside:
face_src.mNumIndices = 0;
face_src.mIndices = nullptr;
}
}
else {
} else {
// Otherwise delete it if we don't need this face
delete[] face_src.mIndices;
face_src.mIndices = nullptr;

View File

@ -47,65 +47,46 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* The triangulation algorithm will handle concave or convex polygons.
* Self-intersecting or non-planar polygons are not rejected, but
* they're probably not triangulated correctly.
*
* DEBUG SWITCHES - do not enable any of them in release builds:
*
* AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
* - generates vertex colors to represent the face winding order.
* the first vertex of a polygon becomes red, the last blue.
* AI_BUILD_TRIANGULATE_DEBUG_POLYS
* - dump all polygons and their triangulation sequences to
* a file
*/
#ifndef ASSIMP_BUILD_NO_TRIANGULATE_PROCESS
#include "PostProcessing/TriangulateProcess.h"
#include "PostProcessing/ProcessHelper.h"
#include "Common/PolyTools.h"
#include "PostProcessing/ProcessHelper.h"
#include "contrib/poly2tri/poly2tri/poly2tri.h"
#include <memory>
#include <cstdint>
#include <memory>
//#define AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
//#define AI_BUILD_TRIANGULATE_DEBUG_POLYS
#define POLY_GRID_Y 40
#define POLY_GRID_X 70
#define POLY_GRID_XPAD 20
#define POLY_OUTPUT_FILE "assimp_polygons_debug.txt"
using namespace Assimp;
namespace Assimp {
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
TriangulateProcess::TriangulateProcess()
{
TriangulateProcess::TriangulateProcess() {
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
TriangulateProcess::~TriangulateProcess()
{
TriangulateProcess::~TriangulateProcess() {
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool TriangulateProcess::IsActive( unsigned int pFlags) const
{
bool TriangulateProcess::IsActive(unsigned int pFlags) const {
return (pFlags & aiProcess_Triangulate) != 0;
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void TriangulateProcess::Execute( aiScene* pScene)
{
void TriangulateProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("TriangulateProcess begin");
bool bHas = false;
for( unsigned int a = 0; a < pScene->mNumMeshes; a++)
{
for (unsigned int a = 0; a < pScene->mNumMeshes; a++) {
if (pScene->mMeshes[a]) {
if (TriangulateMesh(pScene->mMeshes[a])) {
bHas = true;
@ -120,113 +101,40 @@ void TriangulateProcess::Execute( aiScene* pScene)
}
// ------------------------------------------------------------------------------------------------
// Triangulates the given mesh.
bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
{
// Now we have aiMesh::mPrimitiveTypes, so this is only here for test cases
if (!pMesh->mPrimitiveTypes) {
static bool validateNumIndices(aiMesh *mesh) {
bool bNeed = false;
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
const aiFace& face = pMesh->mFaces[a];
for (unsigned int a = 0; a < mesh->mNumFaces; a++) {
const aiFace &face = mesh->mFaces[a];
if (face.mNumIndices != 3) {
bNeed = true;
break;
}
}
if (!bNeed)
return false;
}
else if (!(pMesh->mPrimitiveTypes & aiPrimitiveType_POLYGON)) {
return false;
}
// Find out how many output faces we'll get
uint32_t numOut = 0, max_out = 0;
bool get_normals = true;
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
aiFace& face = pMesh->mFaces[a];
return bNeed;
}
// ------------------------------------------------------------------------------------------------
static void calulateNumOutputFaces(aiMesh *mesh, size_t &numOut, size_t &maxOut, bool &getNormals) {
numOut = maxOut = 0;
getNormals = true;
for (unsigned int a = 0; a < mesh->mNumFaces; a++) {
aiFace &face = mesh->mFaces[a];
if (face.mNumIndices <= 4) {
get_normals = false;
getNormals = false;
}
if (face.mNumIndices <= 3) {
numOut++;
}
else {
} else {
numOut += face.mNumIndices - 2;
max_out = std::max(max_out,face.mNumIndices);
maxOut = std::max(maxOut, static_cast<size_t>(face.mNumIndices));
}
}
}
// Just another check whether aiMesh::mPrimitiveTypes is correct
ai_assert(numOut != pMesh->mNumFaces);
aiVector3D *nor_out = nullptr;
// if we don't have normals yet, but expect them to be a cheap side
// product of triangulation anyway, allocate storage for them.
if (!pMesh->mNormals && get_normals) {
// XXX need a mechanism to inform the GenVertexNormals process to treat these normals as preprocessed per-face normals
// nor_out = pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
}
// the output mesh will contain triangles, but no polys anymore
pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON;
aiFace* out = new aiFace[numOut](), *curOut = out;
std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */
std::vector<aiVector2D> temp_verts(max_out+2);
// Apply vertex colors to represent the face winding?
#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
if (!pMesh->mColors[0])
pMesh->mColors[0] = new aiColor4D[pMesh->mNumVertices];
else
new(pMesh->mColors[0]) aiColor4D[pMesh->mNumVertices];
aiColor4D* clr = pMesh->mColors[0];
#endif
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
FILE* fout = fopen(POLY_OUTPUT_FILE,"a");
#endif
const aiVector3D* verts = pMesh->mVertices;
// use std::unique_ptr to avoid slow std::vector<bool> specialiations
std::unique_ptr<bool[]> done(new bool[max_out]);
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) {
aiFace& face = pMesh->mFaces[a];
unsigned int* idx = face.mIndices;
int num = (int)face.mNumIndices, ear = 0, tmp, prev = num-1, next = 0, max = num;
// Apply vertex colors to represent the face winding?
#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
for (unsigned int i = 0; i < face.mNumIndices; ++i) {
aiColor4D& c = clr[idx[i]];
c.r = (i+1) / (float)max;
c.b = 1.f - c.r;
}
#endif
aiFace* const last_face = curOut;
// if it's a simple point,line or triangle: just copy it
if( face.mNumIndices <= 3)
{
aiFace& nface = *curOut++;
nface.mNumIndices = face.mNumIndices;
nface.mIndices = face.mIndices;
face.mIndices = nullptr;
continue;
}
// optimized code for quadrilaterals
else if ( face.mNumIndices == 4) {
// ------------------------------------------------------------------------------------------------
static void quad2Triangles(const aiFace &face, const aiVector3D *verts, aiFace *curOut) {
// quads can have at maximum one concave vertex. Determine
// this vertex (if it exists) and start tri-fanning from
// it.
@ -271,261 +179,162 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
sface.mIndices[0] = temp[start_vertex];
sface.mIndices[1] = temp[(start_vertex + 2) % 4];
sface.mIndices[2] = temp[(start_vertex + 3) % 4];
// prevent double deletion of the indices field
face.mIndices = nullptr;
continue;
}
else
{
// A polygon with more than 3 vertices can be either concave or convex.
// Usually everything we're getting is convex and we could easily
// triangulate by tri-fanning. However, LightWave is probably the only
// modeling suite to make extensive use of highly concave, monster polygons ...
// so we need to apply the full 'ear cutting' algorithm to get it right.
// RERQUIREMENT: polygon is expected to be simple and *nearly* planar.
// We project it onto a plane to get a 2d triangle.
// Collect all vertices of of the polygon.
for (tmp = 0; tmp < max; ++tmp) {
temp_verts3d[tmp] = verts[idx[tmp]];
}
// Get newell normal of the polygon. Store it for future use if it's a polygon-only mesh
aiVector3D n;
NewellNormal<3,3,3>(n,max,&temp_verts3d.front().x,&temp_verts3d.front().y,&temp_verts3d.front().z);
if (nor_out) {
for (tmp = 0; tmp < max; ++tmp)
nor_out[idx[tmp]] = n;
// ------------------------------------------------------------------------------------------------
bool getContourFromePolyline(aiFace &face, aiMesh *pMesh, std::vector<p2t::Point *> &contour,
aiMatrix4x4 &m, aiVector3D &vmin, aiVector3D &vmax, ai_real &zcoord) {
aiVector3D normal;
bool ok = true;
m = DerivePlaneCoordinateSpace<ai_real>(pMesh->mVertices, pMesh->mNumVertices, ok, normal);
if (!ok) {
false;
}
for (unsigned int i = 0; i < face.mNumIndices; ++i) {
unsigned int index = face.mIndices[i];
// Select largest normal coordinate to ignore for projection
const float ax = (n.x>0 ? n.x : -n.x);
const float ay = (n.y>0 ? n.y : -n.y);
const float az = (n.z>0 ? n.z : -n.z);
const aiVector3D vv = m * pMesh->mVertices[index];
// keep Z offset in the plane coordinate system. Ignoring precision issues
// (which are present, of course), this should be the same value for
// all polygon vertices (assuming the polygon is planar).
unsigned int ac = 0, bc = 1; /* no z coord. projection to xy */
float inv = n.z;
if (ax > ay) {
if (ax > az) { /* no x coord. projection to yz */
ac = 1; bc = 2;
inv = n.x;
}
}
else if (ay > az) { /* no y coord. projection to zy */
ac = 2; bc = 0;
inv = n.y;
}
// Swap projection axes to take the negated projection vector into account
if (inv < 0.f) {
std::swap(ac,bc);
}
for (tmp =0; tmp < max; ++tmp) {
temp_verts[tmp].x = verts[idx[tmp]][ac];
temp_verts[tmp].y = verts[idx[tmp]][bc];
done[tmp] = false;
}
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
// plot the plane onto which we mapped the polygon to a 2D ASCII pic
aiVector2D bmin,bmax;
ArrayBounds(&temp_verts[0],max,bmin,bmax);
char grid[POLY_GRID_Y][POLY_GRID_X+POLY_GRID_XPAD];
std::fill_n((char*)grid,POLY_GRID_Y*(POLY_GRID_X+POLY_GRID_XPAD),' ');
for (int i =0; i < max; ++i) {
const aiVector2D& v = (temp_verts[i] - bmin) / (bmax-bmin);
const size_t x = static_cast<size_t>(v.x*(POLY_GRID_X-1)), y = static_cast<size_t>(v.y*(POLY_GRID_Y-1));
char* loc = grid[y]+x;
if (grid[y][x] != ' ') {
for(;*loc != ' '; ++loc);
*loc++ = '_';
}
*(loc+::ai_snprintf(loc, POLY_GRID_XPAD,"%i",i)) = ' ';
}
for(size_t y = 0; y < POLY_GRID_Y; ++y) {
grid[y][POLY_GRID_X+POLY_GRID_XPAD-1] = '\0';
fprintf(fout,"%s\n",grid[y]);
}
fprintf(fout,"\ntriangulation sequence: ");
#endif
//
// FIXME: currently this is the slow O(kn) variant with a worst case
// complexity of O(n^2) (I think). Can be done in O(n).
while (num > 3) {
// Find the next ear of the polygon
int num_found = 0;
for (ear = next;;prev = ear,ear = next) {
// break after we looped two times without a positive match
for (next=ear+1;done[(next>=max?next=0:next)];++next);
if (next < ear) {
if (++num_found == 2) {
break;
}
}
const aiVector2D* pnt1 = &temp_verts[ear],
*pnt0 = &temp_verts[prev],
*pnt2 = &temp_verts[next];
// Must be a convex point. Assuming ccw winding, it must be on the right of the line between p-1 and p+1.
if (OnLeftSideOfLine2D(*pnt0,*pnt2,*pnt1)) {
continue;
}
// and no other point may be contained in this triangle
for ( tmp = 0; tmp < max; ++tmp) {
// We need to compare the actual values because it's possible that multiple indexes in
// the polygon are referring to the same position. concave_polygon.obj is a sample
//
// FIXME: Use 'epsiloned' comparisons instead? Due to numeric inaccuracies in
// PointInTriangle() I'm guessing that it's actually possible to construct
// input data that would cause us to end up with no ears. The problem is,
// which epsilon? If we chose a too large value, we'd get wrong results
const aiVector2D& vtmp = temp_verts[tmp];
if ( vtmp != *pnt1 && vtmp != *pnt2 && vtmp != *pnt0 && PointInTriangle2D(*pnt0,*pnt1,*pnt2,vtmp)) {
break;
}
}
if (tmp != max) {
continue;
}
// this vertex is an ear
break;
}
if (num_found == 2) {
// Due to the 'two ear theorem', every simple polygon with more than three points must
// have 2 'ears'. Here's definitely something wrong ... but we don't give up yet.
//
// Instead we're continuing with the standard tri-fanning algorithm which we'd
// use if we had only convex polygons. That's life.
ASSIMP_LOG_ERROR("Failed to triangulate polygon (no ear found). Probably not a simple polygon?");
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
fprintf(fout,"critical error here, no ear found! ");
#endif
num = 0;
break;
/*curOut -= (max-num); // undo all previous work
for (tmp = 0; tmp < max-2; ++tmp) {
aiFace& nface = *curOut++;
nface.mNumIndices = 3;
if (!nface.mIndices)
nface.mIndices = new unsigned int[3];
nface.mIndices[0] = 0;
nface.mIndices[1] = tmp+1;
nface.mIndices[2] = tmp+2;
}
num = 0;
break;*/
}
aiFace& nface = *curOut++;
nface.mNumIndices = 3;
if (!nface.mIndices) {
nface.mIndices = new unsigned int[3];
}
// setup indices for the new triangle ...
nface.mIndices[0] = prev;
nface.mIndices[1] = ear;
nface.mIndices[2] = next;
// exclude the ear from most further processing
done[ear] = true;
--num;
}
if (num > 0) {
// We have three indices forming the last 'ear' remaining. Collect them.
aiFace& nface = *curOut++;
nface.mNumIndices = 3;
if (!nface.mIndices) {
nface.mIndices = new unsigned int[3];
}
for (tmp = 0; done[tmp]; ++tmp);
nface.mIndices[0] = tmp;
for (++tmp; done[tmp]; ++tmp);
nface.mIndices[1] = tmp;
for (++tmp; done[tmp]; ++tmp);
nface.mIndices[2] = tmp;
}
}
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
for(aiFace* f = last_face; f != curOut; ++f) {
unsigned int* i = f->mIndices;
fprintf(fout," (%i %i %i)",i[0],i[1],i[2]);
}
fprintf(fout,"\n*********************************************************************\n");
fflush(fout);
#endif
for(aiFace* f = last_face; f != curOut; ) {
unsigned int* i = f->mIndices;
// drop dumb 0-area triangles - deactivated for now:
//FindDegenerates post processing step can do the same thing
//if (std::fabs(GetArea2D(temp_verts[i[0]],temp_verts[i[1]],temp_verts[i[2]])) < 1e-5f) {
// ASSIMP_LOG_VERBOSE_DEBUG("Dropping triangle with area 0");
// --curOut;
// delete[] f->mIndices;
// f->mIndices = nullptr;
// for(aiFace* ff = f; ff != curOut; ++ff) {
// ff->mNumIndices = (ff+1)->mNumIndices;
// ff->mIndices = (ff+1)->mIndices;
// (ff+1)->mIndices = nullptr;
// }
// continue;
// XXX this should be guarded, but we somehow need to pick a suitable
// epsilon
// if(coord != -1.0f) {
// assert(std::fabs(coord - vv.z) < 1e-3f);
// }
zcoord += vv.z;
vmin = std::min(vv, vmin);
vmax = std::max(vv, vmax);
i[0] = idx[i[0]];
i[1] = idx[i[1]];
i[2] = idx[i[2]];
++f;
contour.push_back(new p2t::Point(vv.x, vv.y));
}
delete[] face.mIndices;
face.mIndices = nullptr;
zcoord /= pMesh->mNumVertices;
// Further improve the projection by mapping the entire working set into
// [0,1] range. This gives us a consistent data range so all epsilons
// used below can be constants.
vmax -= vmin;
const aiVector2D one_vec(1, 1);
for (p2t::Point* &vv : contour) {
vv->x = (vv->x - vmin.x) / vmax.x;
vv->y = (vv->y - vmin.y) / vmax.y;
// sanity rounding
aiVector2D cur_vv((ai_real) vv->x, (ai_real)vv->y);
cur_vv = std::max(cur_vv, aiVector2D());
cur_vv = std::min(cur_vv, one_vec);
}
#ifdef AI_BUILD_TRIANGULATE_DEBUG_POLYS
fclose(fout);
#endif
aiMatrix4x4 mult;
mult.a1 = static_cast<ai_real>(1.0) / vmax.x;
mult.b2 = static_cast<ai_real>(1.0) / vmax.y;
// kill the old faces
delete [] pMesh->mFaces;
mult.a4 = -vmin.x * mult.a1;
mult.b4 = -vmin.y * mult.b2;
mult.c4 = -zcoord;
m = mult * m;
// ... and store the new ones
pMesh->mFaces = out;
pMesh->mNumFaces = (unsigned int)(curOut-out); /* not necessarily equal to numOut */
return true;
}
// ------------------------------------------------------------------------------------------------
// Triangulates the given mesh.
bool TriangulateProcess::TriangulateMesh(aiMesh *pMesh) {
// Now we have aiMesh::mPrimitiveTypes, so this is only here for test cases
if (!pMesh->mPrimitiveTypes) {
if (!validateNumIndices(pMesh)) {
ASSIMP_LOG_DEBUG("Error while validating number of indices.");
return false;
}
} else if (!(pMesh->mPrimitiveTypes & aiPrimitiveType_POLYGON)) {
ASSIMP_LOG_DEBUG("???!");
return false;
}
// Find out how many output faces we'll get
size_t numOut = 0, max_out = 0;
bool getNormals = true;
calulateNumOutputFaces(pMesh, numOut, max_out, getNormals);
if (numOut == pMesh->mNumFaces) {
ASSIMP_LOG_DEBUG("Error while generating contour.");
return false;
}
// the output mesh will contain triangles, but no polys anymore
pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON;
aiFace *out = new aiFace[numOut](), *curOut = out;
const size_t Capa = max_out + 2;
std::vector<aiVector3D> temp_verts3d(max_out + 2); /* temporary storage for vertices */
std::vector<aiVector2D> temp_verts(max_out + 2);
// Apply vertex colors to represent the face winding?
const aiVector3D *verts = pMesh->mVertices;
// use std::unique_ptr to avoid slow std::vector<bool> specialiations
std::unique_ptr<bool[]> done(new bool[max_out]);
for (unsigned int a = 0; a < pMesh->mNumFaces; a++) {
aiFace &face = pMesh->mFaces[a];
// if it's a simple point,line or triangle: just copy it
if (face.mNumIndices <= 3) {
aiFace &nface = *curOut++;
nface.mNumIndices = face.mNumIndices;
nface.mIndices = face.mIndices;
face.mIndices = nullptr;
} else if (face.mNumIndices == 4) {
// optimized code for quadrilaterals
quad2Triangles(face, verts, curOut);
face.mIndices = nullptr;
} else {
std::vector<p2t::Point *> contour;
aiMatrix4x4 m;
aiVector3D vmin, vmax;
ai_real zcoord = -1;
if (!getContourFromePolyline(face, pMesh, contour, m, vmin, vmax, zcoord)) {
ASSIMP_LOG_DEBUG("Error while generating contour.");
continue;
}
p2t::CDT cdt(contour);
cdt.Triangulate();
const std::vector<p2t::Triangle *> tris = cdt.GetTriangles();
const aiMatrix4x4 matInv = m.Inverse();
for (p2t::Triangle *tri : tris) {
curOut->mNumIndices = 3;
curOut->mIndices = new unsigned int[curOut->mNumIndices];
for (int i = 0; i < 3; ++i) {
const aiVector2D v = aiVector2D(static_cast<ai_real>(tri->GetPoint(i)->x), static_cast<ai_real>(tri->GetPoint(i)->y));
// ai_assert(v.x <= 1.0 && v.x >= 0.0 && v.y <= 1.0 && v.y >= 0.0);
const aiVector3D v3 = matInv * aiVector3D(vmin.x + v.x * vmax.x, vmin.y + v.y * vmax.y, zcoord);
temp_verts3d.emplace_back(v3);
curOut->mIndices[i] = (unsigned int) temp_verts3d.size()-1;
}
curOut++;
}
face.mIndices = nullptr;
}
}
delete[] pMesh->mFaces;
pMesh->mFaces = out;
pMesh->mNumVertices = (unsigned int)temp_verts3d.size();
delete[] pMesh->mVertices;
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
for (size_t i = 0; i < temp_verts3d.size(); ++i) {
pMesh->mVertices[i] = temp_verts3d[i];
}
pMesh->mNumFaces = (unsigned int)(curOut - out); /* not necessarily equal to numOut */
return true;
}
} // namespace Assimp
#endif // !! ASSIMP_BUILD_NO_TRIANGULATE_PROCESS

Binary file not shown.

View File

@ -1,5 +1,8 @@
find_package( Doxygen REQUIRED )
set(SPHINX_SOURCE ${CMAKE_CURRENT_SOURCE_DIR})
set(SPHINX_BUILD ${CMAKE_CURRENT_BINARY_DIR}/docs/sphinx)
set( HTML_OUTPUT "AssimpDoc_Html" CACHE STRING "Output directory for generated HTML documentation. Defaults to AssimpDoc_Html." )
# Enable Microsoft CHM help style only on Windows

View File

@ -1484,7 +1484,7 @@ MAN_LINKS = NO
# generate an XML file that captures the structure of
# the code including all documentation.
GENERATE_XML = NO
GENERATE_XML = YES
# The XML_OUTPUT tag is used to specify where the XML pages will be put.
# If a relative path is entered the value of OUTPUT_DIRECTORY will be

View File

@ -47,8 +47,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# pragma GCC system_header
#endif
#include <stdint.h>
#include <string.h>
#include <cstdint>
#include <cstring>
// ------------------------------------------------------------------------------------------------
// Hashing function taken from

View File

@ -52,9 +52,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#pragma GCC system_header
#endif
#include <stdexcept>
#include <assimp/StreamReader.h>
#include <assimp/ParsingUtils.h>
#include <assimp/StreamReader.h>
#include <stdexcept>
namespace Assimp {
@ -79,7 +79,7 @@ for(LineSplitter splitter(stream);splitter;++splitter) {
// ------------------------------------------------------------------------------------------------
class LineSplitter {
public:
typedef size_t line_idx;
using line_idx = size_t;
// -----------------------------------------
/** construct from existing stream reader
@ -144,21 +144,19 @@ private:
bool mSwallow, mSkip_empty_lines, mTrim;
};
AI_FORCE_INLINE
LineSplitter::LineSplitter(StreamReaderLE& stream, bool skip_empty_lines, bool trim )
: mIdx(0)
, mCur()
, mStream(stream)
, mSwallow()
, mSkip_empty_lines(skip_empty_lines)
, mTrim(trim) {
AI_FORCE_INLINE LineSplitter::LineSplitter(StreamReaderLE &stream, bool skip_empty_lines, bool trim) :
mIdx(0),
mCur(),
mStream(stream),
mSwallow(),
mSkip_empty_lines(skip_empty_lines),
mTrim(trim) {
mCur.reserve(1024);
operator++();
mIdx = 0;
}
AI_FORCE_INLINE
LineSplitter::~LineSplitter() {
AI_FORCE_INLINE LineSplitter::~LineSplitter() {
// empty
}
@ -178,7 +176,8 @@ LineSplitter& LineSplitter::operator++() {
while (mStream.GetRemainingSize() && (s = mStream.GetI1(), 1)) {
if (s == '\n' || s == '\r') {
if (mSkip_empty_lines) {
while (mStream.GetRemainingSize() && ((s = mStream.GetI1()) == ' ' || s == '\r' || s == '\n'));
while (mStream.GetRemainingSize() && ((s = mStream.GetI1()) == ' ' || s == '\r' || s == '\n'))
;
if (mStream.GetRemainingSize()) {
mStream.IncPtr(-1);
}
@ -188,7 +187,8 @@ LineSplitter& LineSplitter::operator++() {
mStream.IncPtr(-1);
}
if (mTrim) {
while (mStream.GetRemainingSize() && ((s = mStream.GetI1()) == ' ' || s == '\t'));
while (mStream.GetRemainingSize() && ((s = mStream.GetI1()) == ' ' || s == '\t'))
;
if (mStream.GetRemainingSize()) {
mStream.IncPtr(-1);
}
@ -203,8 +203,7 @@ LineSplitter& LineSplitter::operator++() {
return *this;
}
AI_FORCE_INLINE
LineSplitter &LineSplitter::operator++(int) {
AI_FORCE_INLINE LineSplitter &LineSplitter::operator++(int) {
return ++(*this);
}
@ -226,8 +225,7 @@ const char *LineSplitter::operator[] (size_t idx) const {
}
template <size_t N>
AI_FORCE_INLINE
void LineSplitter::get_tokens(const char* (&tokens)[N]) const {
AI_FORCE_INLINE void LineSplitter::get_tokens(const char *(&tokens)[N]) const {
const char *s = operator->()->c_str();
SkipSpaces(&s);
@ -237,7 +235,8 @@ void LineSplitter::get_tokens(const char* (&tokens)[N]) const {
}
tokens[i] = s;
for (; *s && !IsSpace(*s); ++s);
for (; *s && !IsSpace(*s); ++s)
;
SkipSpaces(&s);
}
}

View File

@ -119,7 +119,7 @@ public:
/** @brief Normalize the vector with extra check for zero vectors */
aiVector3t& NormalizeSafe();
/** @brief Componentwise multiplication of two vectors
/** @brief Component-wise multiplication of two vectors
*
* Note that vec*vec yields the dot product.
* @param o Second factor */
@ -129,7 +129,7 @@ public:
};
typedef aiVector3t<ai_real> aiVector3D;
using aiVector3D = aiVector3t<ai_real>;
#else

View File

@ -5,8 +5,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -306,4 +304,5 @@ aiVector3t<TReal> operator - ( const aiVector3t<TReal>& v) {
// ------------------------------------------------------------------------------------------------
#endif // __cplusplus
#endif // AI_VECTOR3D_INL_INC

View File

@ -96,6 +96,7 @@ SET( COMMON
unit/Common/utSpatialSort.cpp
unit/Common/utAssertHandler.cpp
unit/Common/utXmlParser.cpp
unit/Common/utPolyTools.cpp
)
SET( IMPORTERS

View File

@ -0,0 +1,92 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
#include "UnitTestPCH.h"
#include "Common/PolyTools.h"
#include <assimp/defs.h>
using namespace Assimp;
class utPolyTools : public ::testing::Test {
// empty
};
TEST_F( utPolyTools, NewellNormalTest ) {
aiVector3t<ai_real> out;
static const size_t Num = 4;
static const size_t Capa = Num + 2;
ai_real x[Capa], y[Capa], z[Capa];
x[0] = 0;
x[1] = 1;
x[2] = 2;
x[3] = 3;
y[0] = 1;
y[1] = 2;
y[2] = 3;
y[3] = 4;
z[0] = z[1] = z[2] = z[3] = 0;
NewellNormal<3, 3, 3>(out, 4, x, y, z, Capa);
}
TEST_F(utPolyTools, DerivePlaneCoordinateSpaceTest) {
const aiVector3D vertices_ok[3] = {
aiVector3D(-1, -1, 0),
aiVector3D(0, 1, 0),
aiVector3D(1, -1, 0)
};
aiVector3D normal;
bool ok = true;
aiMatrix4x4 m_ok = DerivePlaneCoordinateSpace<ai_real>(vertices_ok, 3, ok, normal);
EXPECT_TRUE(ok);
EXPECT_FLOAT_EQ(normal.x, 0.0f);
EXPECT_FLOAT_EQ(normal.y, 0.0f);
EXPECT_FLOAT_EQ(normal.z, 1.0f);
const aiVector3D vertices_not_ok[3] = {
aiVector3D(-1, -1, 0),
aiVector3D(-1, -1, 0),
aiVector3D(-1, -1, 0)
};
aiMatrix4x4 m_not_ok = DerivePlaneCoordinateSpace<ai_real>(vertices_not_ok, 3, ok, normal);
EXPECT_FALSE(ok);
}

View File

@ -5,8 +5,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,

View File

@ -49,8 +49,8 @@ using namespace Assimp;
class TriangulateProcessTest : public ::testing::Test {
public:
virtual void SetUp();
virtual void TearDown();
void SetUp() override;
void TearDown() override;
protected:
aiMesh *pcMesh;
@ -132,6 +132,6 @@ TEST_F(TriangulateProcessTest, testTriangulation) {
}
}
// we should have no valid normal vectors now necause we aren't a pure polygon mesh
// we should have no valid normal vectors now because we aren't a pure polygon mesh
EXPECT_TRUE(pcMesh->mNormals == NULL);
}

View File

@ -43,9 +43,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef AV_ANIMEVALUATOR_H_INCLUDED
#define AV_ANIMEVALUATOR_H_INCLUDED
#include <assimp/matrix4x4.h>
#include <tuple>
#include <vector>
struct aiAnimation;
namespace AssimpView {
/**
@ -74,7 +78,7 @@ public:
* the aiAnimation. */
const std::vector<aiMatrix4x4> &GetTransformations() const { return mTransforms; }
protected:
private:
const aiAnimation *mAnim;
double mLastTime;
std::vector<std::tuple<unsigned int, unsigned int, unsigned int>> mLastPositions;

File diff suppressed because it is too large Load Diff

View File

@ -47,7 +47,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef AV_SCENEANIMATOR_H_INCLUDED
#define AV_SCENEANIMATOR_H_INCLUDED
#include <assimp/scene.h>
#include <map>
#include <string>
namespace AssimpView {
@ -72,13 +75,23 @@ struct SceneAnimNode {
//! Default construction
SceneAnimNode() :
mName(), mParent(nullptr), mChildren(), mLocalTransform(), mGlobalTransform(), mChannelIndex(-1) {
mName(),
mParent(nullptr),
mChildren(),
mLocalTransform(),
mGlobalTransform(),
mChannelIndex(-1) {
// empty
}
//! Construction from a given name
SceneAnimNode(const std::string &pName) :
mName(pName), mParent(nullptr), mChildren(), mLocalTransform(), mGlobalTransform(), mChannelIndex(-1) {
mName(pName),
mParent(nullptr),
mChildren(),
mLocalTransform(),
mGlobalTransform(),
mChannelIndex(-1) {
// empty
}
@ -125,7 +138,7 @@ public:
// ----------------------------------------------------------------------------
/** Calculates the node transformations for the scene. Call this to get
* uptodate results before calling one of the getters.
* up-to-date results before calling one of the getters.
* @param pTime Current time. Can be an arbitrary range.
*/
void Calculate(double pTime);
@ -136,7 +149,7 @@ public:
* The returned matrix is in the node's parent's local space, just like the
* original node's transformation matrix. If the node is not animated, the
* node's original transformation is returned so that you can safely use or
* assign it to the node itsself. If there is no node with the given name,
* assign it to the node itself. If there is no node with the given name,
* the identity matrix is returned. All transformations are updated whenever
* Calculate() is called.
* @param pNodeName Name of the node
@ -151,7 +164,7 @@ public:
* The returned matrix is in world space, which is the same coordinate space
* as the transformation of the scene's root node. If the node is not animated,
* the node's original transformation is returned so that you can safely use or
* assign it to the node itsself. If there is no node with the given name, the
* assign it to the node itself. If there is no node with the given name, the
* identity matrix is returned. All transformations are updated whenever
* Calculate() is called.
* @param pNodeName Name of the node
@ -190,7 +203,7 @@ public:
/** @brief Get the current animation or NULL
*/
aiAnimation *CurrentAnim() const {
return static_cast<unsigned int>(mCurrentAnimIndex) < mScene->mNumAnimations ? mScene->mAnimations[mCurrentAnimIndex] : NULL;
return static_cast<unsigned int>(mCurrentAnimIndex) < mScene->mNumAnimations ? mScene->mAnimations[mCurrentAnimIndex] : nullptr;
}
protected: