- fbx: work on reading normals, UVs and material channels.

pull/14/head
Alexander Gessler 2012-06-28 00:35:40 +02:00
parent f9e310edfb
commit fcdb2fc6b8
2 changed files with 261 additions and 147 deletions

View File

@ -50,152 +50,54 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "FBXUtil.h"
#include "FBXImporter.h"
namespace {
using namespace Assimp;
using namespace Assimp::FBX;
// ------------------------------------------------------------------------------------------------
// signal DOM construction error, this is always unrecoverable. Throws DeadlyImportError.
void DOMError(const std::string& message, const Token& token)
{
throw DeadlyImportError(Util::AddTokenText("FBX-DOM",message,&token));
}
// ------------------------------------------------------------------------------------------------
void DOMError(const std::string& message, const Element* element = NULL)
{
if(element) {
DOMError(message,element->KeyToken());
}
throw DeadlyImportError("FBX-DOM " + message);
}
// ------------------------------------------------------------------------------------------------
// extract a required element from a scope, abort if the element cannot be found
const Element& GetRequiredElement(const Scope& sc, const std::string& index, const Element* element = NULL)
{
const Element* el = sc[index];
if(!el) {
DOMError("did not find required element \"" + index + "\"",element);
}
return *el;
}
// ------------------------------------------------------------------------------------------------
// extract required compound scope
const Scope& GetRequiredScope(const Element& el)
{
const Scope* const s = el.Compound();
if(!s) {
DOMError("expected compound scope",&el);
}
return *s;
}
// ------------------------------------------------------------------------------------------------
// get token at a particular index
const Token& GetRequiredToken(const Element& el, unsigned int index)
{
const TokenList& t = el.Tokens();
if(t.size() > index) {
DOMError(Formatter::format( "missing token at index " ) << index,&el);
}
return *t[index];
}
// ------------------------------------------------------------------------------------------------
// read an array of float3 tuples
void ReadVectorDataArray(std::vector<aiVector3D>& out, const Element& el)
{
out.clear();
const TokenList& tok = el.Tokens();
const char* err;
const size_t dim = ParseTokenAsDim(*tok[0],err);
if(err) {
DOMError(err,&el);
}
// may throw bad_alloc if the input is rubbish, but this need
// not to be prevented - importing would fail but we wouldn't
// crash since assimp handles this case properly.
out.reserve(dim);
const Scope* const scope = el.Compound();
if(!scope) {
DOMError("expected vector3 data",&el);
}
const Element& a = GetRequiredElement(*scope,"a",&el);
if (a.Tokens().size() % 3 != 0) {
DOMError("number of floats is not a multiple of three",&el);
}
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
aiVector3D v;
v.x = ParseTokenAsFloat(**it++,err);
if(err) {
DOMError(err,&el);
}
v.y = ParseTokenAsFloat(**it++,err);
if(err) {
DOMError(err,&el);
}
v.z = ParseTokenAsFloat(**it++,err);
if(err) {
DOMError(err,&el);
}
out.push_back(v);
}
}
// ------------------------------------------------------------------------------------------------
// read an array of ints
void ReadIntDataArray(std::vector<int>& out, const Element& el)
{
out.clear();
const TokenList& tok = el.Tokens();
const char* err;
const size_t dim = ParseTokenAsDim(*tok[0],err);
if(err) {
DOMError(err,&el);
}
// see notes in ReadVectorDataArray()
out.reserve(dim);
const Scope* const scope = el.Compound();
if(!scope) {
DOMError("expected int data block",&el);
}
const Element& a = GetRequiredElement(*scope,"a",&el);
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
const int ival = ParseTokenAsInt(**it++,err);
if(err) {
DOMError(err,&el);
}
out.push_back(ival);
}
}
}
namespace Assimp {
namespace FBX {
namespace {
// ------------------------------------------------------------------------------------------------
// signal DOM construction error, this is always unrecoverable. Throws DeadlyImportError.
void DOMError(const std::string& message, const Token& token)
{
throw DeadlyImportError(Util::AddTokenText("FBX-DOM",message,&token));
}
// ------------------------------------------------------------------------------------------------
void DOMError(const std::string& message, const Element* element = NULL)
{
if(element) {
DOMError(message,element->KeyToken());
}
throw DeadlyImportError("FBX-DOM " + message);
}
// ------------------------------------------------------------------------------------------------
// extract required compound scope
const Scope& GetRequiredScope(const Element& el)
{
const Scope* const s = el.Compound();
if(!s) {
DOMError("expected compound scope",&el);
}
return *s;
}
// ------------------------------------------------------------------------------------------------
// get token at a particular index
const Token& GetRequiredToken(const Element& el, unsigned int index)
{
const TokenList& t = el.Tokens();
if(t.size() > index) {
DOMError(Formatter::format( "missing token at index " ) << index,&el);
}
return *t[index];
}
// ------------------------------------------------------------------------------------------------
// wrapper around ParseTokenAsID() with DOMError handling
uint64_t ParseTokenAsID(const Token& t)
@ -260,6 +162,97 @@ std::string ParseTokenAsString(const Token& t)
return i;
}
// ------------------------------------------------------------------------------------------------
// extract a required element from a scope, abort if the element cannot be found
const Element& GetRequiredElement(const Scope& sc, const std::string& index, const Element* element = NULL)
{
const Element* el = sc[index];
if(!el) {
DOMError("did not find required element \"" + index + "\"",element);
}
return *el;
}
// ------------------------------------------------------------------------------------------------
// read an array of float3 tuples
void ReadVectorDataArray(std::vector<aiVector3D>& out, const Element& el)
{
out.clear();
const TokenList& tok = el.Tokens();
const size_t dim = ParseTokenAsDim(*tok[0]);
// may throw bad_alloc if the input is rubbish, but this need
// not to be prevented - importing would fail but we wouldn't
// crash since assimp handles this case properly.
out.reserve(dim);
const Scope& scope = GetRequiredScope(el);
const Element& a = GetRequiredElement(scope,"a",&el);
if (a.Tokens().size() % 3 != 0) {
DOMError("number of floats is not a multiple of three (3)",&el);
}
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
aiVector3D v;
v.x = ParseTokenAsFloat(**it++);
v.y = ParseTokenAsFloat(**it++);
v.z = ParseTokenAsFloat(**it++);
out.push_back(v);
}
}
// ------------------------------------------------------------------------------------------------
// read an array of float2 tuples
void ReadVectorDataArray(std::vector<aiVector2D>& out, const Element& el)
{
out.clear();
const TokenList& tok = el.Tokens();
const size_t dim = ParseTokenAsDim(*tok[0]);
// see notes in ReadVectorDataArray() above
out.reserve(dim);
const Scope& scope = GetRequiredScope(el);
const Element& a = GetRequiredElement(scope,"a",&el);
if (a.Tokens().size() % 2 != 0) {
DOMError("number of floats is not a multiple of two (2)",&el);
}
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
aiVector2D v;
v.x = ParseTokenAsFloat(**it++);
v.y = ParseTokenAsFloat(**it++);
out.push_back(v);
}
}
// ------------------------------------------------------------------------------------------------
// read an array of ints
void ReadIntDataArray(std::vector<int>& out, const Element& el)
{
out.clear();
const TokenList& tok = el.Tokens();
const size_t dim = ParseTokenAsDim(*tok[0]);
// see notes in ReadVectorDataArray()
out.reserve(dim);
const Scope& scope = GetRequiredScope(el);
const Element& a = GetRequiredElement(scope,"a",&el);
for (TokenList::const_iterator it = a.Tokens().begin(), end = a.Tokens().end(); it != end; ) {
const int ival = ParseTokenAsInt(**it++);
out.push_back(ival);
}
}
} // end anon.
// ------------------------------------------------------------------------------------------------
LazyObject::LazyObject(const Element& element)
: element(element)
@ -364,11 +357,49 @@ MeshGeometry::MeshGeometry(const Element& element, const std::string& name)
const ElementCollection& LayerElementUV = sc->GetCollection("LayerElementUV");
const ElementCollection& LayerElementNormal = sc->GetCollection("LayerElementNormal");
ReadVectorDataArray(vertices,Vertices);
std::vector<aiVector3D> tempVerts;
ReadVectorDataArray(tempVerts,Vertices);
std::vector<int> tempFaces;
ReadIntDataArray(tempFaces,PolygonVertexIndex);
vertices.reserve(tempFaces.size());
faces.reserve(tempFaces.size() / 3);
mapping_offsets.resize(tempVerts.size());
mapping_counts.resize(tempVerts.size(),0);
mappings.resize(tempFaces.size());
// generate output vertices, computing an adjacency table to
// preserve the mapping from fbx indices to *this* indexing.
unsigned int count = 0;
BOOST_FOREACH(int index, tempFaces) {
const int absi = index < 0 ? -index : index;
vertices.push_back(tempVerts[absi]);
++count;
++mapping_counts[absi];
if (index < 0) {
faces.push_back(count);
count = 0;
}
}
unsigned int cursor = 0;
for (size_t i = 0, e = tempVerts.size(); i < e; ++i) {
mapping_offsets[i] = cursor;
cursor += mapping_counts[i];
mapping_counts[i] = 0;
}
cursor = 0;
BOOST_FOREACH(int index, tempFaces) {
const int absi = index < 0 ? -index : index;
mappings[mapping_offsets[absi] + mapping_counts[absi]++] = cursor;
}
// ignore all but the first layer, but warn about any further layers
for (ElementMap::const_iterator it = Layer.first; it != Layer.second; ++it) {
const TokenList& tokens = (*it).second->Tokens();
@ -427,8 +458,13 @@ void MeshGeometry::ReadLayerElement(const Scope& layerElement)
// ------------------------------------------------------------------------------------------------
void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scope& source)
{
const std::string& MappingInformationType = ParseTokenAsString(GetRequiredToken(GetRequiredElement(source,"MappingInformationType"),0));
const std::string& ReferenceInformationType = ParseTokenAsString(GetRequiredToken(GetRequiredElement(source,"ReferenceInformationType"),0));
const std::string& MappingInformationType = ParseTokenAsString(GetRequiredToken(
GetRequiredElement(source,"MappingInformationType"),0)
);
const std::string& ReferenceInformationType = ParseTokenAsString(GetRequiredToken(
GetRequiredElement(source,"ReferenceInformationType"),0)
);
if (type == "LayerElementUV") {
if(index >= AI_MAX_NUMBER_OF_TEXTURECOORDS) {
@ -438,14 +474,88 @@ void MeshGeometry::ReadVertexData(const std::string& type, int index, const Scop
return;
}
const std::vector<aiVector2D>& uv = uvs[index];
std::vector<aiVector2D>& uv_out = uvs[index];
uv_out.resize(vertices.size());
std::vector<aiVector2D> tempUV;
ReadVectorDataArray(tempUV,GetRequiredElement(source,"UV"));
if (MappingInformationType == "ByVertice" && ReferenceInformationType == "Direct") {
for (size_t i = 0, e = tempUV.size(); i < e; ++i) {
const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
for (unsigned int j = istart; j < iend; ++j) {
uv_out[mappings[j]] = tempUV[i];
}
}
}
else if (MappingInformationType == "ByVertice" && ReferenceInformationType == "IndexToDirect") {
std::vector<int> uvIndices;
ReadIntDataArray(uvIndices,GetRequiredElement(source,"UVIndex"));
for (size_t i = 0, e = uvIndices.size(); i < e; ++i) {
const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
for (unsigned int j = istart; j < iend; ++j) {
uv_out[mappings[j]] = tempUV[uvIndices[i]];
}
}
}
else {
FBXImporter::LogError(Formatter::format("ignoring normals, unrecognized access type: ")
<< MappingInformationType << "," << ReferenceInformationType);
}
}
else if (type == "LayerElementMaterial") {
materials.resize(vertices.size());
std::vector<int> tempMaterials;
ReadIntDataArray(tempMaterials,GetRequiredElement(source,"Materials"));
if (MappingInformationType == "AllSame") {
// easy - same material for all faces
materials.assign(vertices.size(),tempMaterials[0]);
}
else {
FBXImporter::LogError(Formatter::format("ignoring material assignments, unrecognized access type: ")
<< MappingInformationType << "," << ReferenceInformationType);
}
}
else if (type == "LayerElementNormal") {
std::vector<aiVector3D> tempNormals;
ReadVectorDataArray(normals,GetRequiredElement(source,"Normals"));
normals.resize(vertices.size());
if (MappingInformationType == "ByVertice" && ReferenceInformationType == "Direct") {
for (size_t i = 0, e = tempNormals.size(); i < e; ++i) {
const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
for (unsigned int j = istart; j < iend; ++j) {
normals[mappings[j]] = tempNormals[i];
}
}
}
else if (MappingInformationType == "ByVertice" && ReferenceInformationType == "IndexToDirect") {
std::vector<int> normalIndices;
ReadIntDataArray(normalIndices,GetRequiredElement(source,"NormalsIndex"));
for (size_t i = 0, e = normalIndices.size(); i < e; ++i) {
const unsigned int istart = mapping_offsets[i], iend = istart + mapping_counts[i];
for (unsigned int j = istart; j < iend; ++j) {
normals[mappings[j]] = tempNormals[normalIndices[i]];
}
}
}
else {
FBXImporter::LogError(Formatter::format("ignoring normals, unrecognized access type: ")
<< MappingInformationType << "," << ReferenceInformationType);
}
}
}

View File

@ -182,6 +182,10 @@ private:
std::vector<aiVector3D> normals;
std::vector<aiVector2D> uvs[AI_MAX_NUMBER_OF_TEXTURECOORDS];
std::vector<aiColor4D> colors[AI_MAX_NUMBER_OF_COLOR_SETS];
std::vector<unsigned int> mapping_counts;
std::vector<unsigned int> mapping_offsets;
std::vector<unsigned int> mappings;
};
// XXX again, unique_ptr would be useful. shared_ptr is too