Pull from upstream, 5/17/2016

pull/890/head
Richard Selneck 2016-05-17 08:44:38 -04:00
commit fc5464eb38
42 changed files with 9539 additions and 206 deletions

View File

@ -60,7 +60,8 @@ __Importers__:
- Ogre XML
- Q3D
- ASSBIN (Assimp custom format)
- glTF
- glTF (partial)
- 3MF
Additionally, some formats are supported by dependency on non-free code or external SDKs (not built by default):
@ -76,7 +77,8 @@ __Exporters__:
- 3DS
- JSON (for WebGl, via https://github.com/acgessler/assimp2json)
- ASSBIN
- glTF
- STEP
- glTF (partial)
### Building ###
Take a look into the `INSTALL` file. Our build system is CMake, if you used CMake before there is a good chance you know what to do.

View File

@ -67,6 +67,7 @@ namespace AssxmlExport {
// -----------------------------------------------------------------------------------
static int ioprintf( IOStream * io, const char *format, ... ) {
using namespace std;
if ( nullptr == io ) {
return -1;
}
@ -77,7 +78,7 @@ static int ioprintf( IOStream * io, const char *format, ... ) {
::memset( sz, '\0', Size );
va_list va;
va_start( va, format );
int nSize = std::vsnprintf( sz, Size-1, format, va );
int nSize = vsnprintf( sz, Size-1, format, va );
ai_assert( nSize < Size );
va_end( va );

View File

@ -613,6 +613,16 @@ ADD_ASSIMP_IMPORTER(GLTF
glTFExporter.cpp
)
ADD_ASSIMP_IMPORTER(3MF
D3MFImporter.h
D3MFImporter.cpp
D3MFOpcPackage.h
D3MFOpcPackage.cpp
)
SET( Step_SRCS
StepExporter.h
StepExporter.cpp

View File

@ -0,0 +1,387 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2016, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#include "D3MFImporter.h"
#include "../include/assimp/scene.h"
#include "../contrib/unzip/unzip.h"
#include "../include/assimp/IOStream.hpp"
#include "../include/assimp/IOSystem.hpp"
#include "../include/assimp/DefaultLogger.hpp"
#include "irrXMLWrapper.h"
#include "StringComparison.h"
#include <string>
#include <sstream>
#include <vector>
#include <map>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include <memory>
#include "../include/assimp/ai_assert.h"
#include "D3MFOpcPackage.h"
#ifndef ASSIMP_BUILD_NO_3MF_IMPORTER
namespace Assimp {
namespace D3MF {
namespace XmlTag {
const std::string model = "model";
const std::string metadata = "metadata";
const std::string resources = "resources";
const std::string object = "object";
const std::string mesh = "mesh";
const std::string vertices = "vertices";
const std::string vertex = "vertex";
const std::string triangles = "triangles";
const std::string triangle = "triangle";
const std::string x = "x";
const std::string y = "y";
const std::string z = "z";
const std::string v1 = "v1";
const std::string v2 = "v2";
const std::string v3 = "v3";
const std::string id = "id";
const std::string name = "name";
const std::string type = "type";
const std::string build = "build";
const std::string item = "item";
const std::string objectid = "objectid";
const std::string transform = "transform";
}
class XmlSerializer
{
public:
XmlSerializer(XmlReader* xmlReader)
: xmlReader(xmlReader)
{
}
void ImportXml(aiScene* scene)
{
scene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT;
scene->mRootNode = new aiNode();
std::vector<aiNode*> children;
while(ReadToEndElement(D3MF::XmlTag::model))
{
if(xmlReader->getNodeName() == D3MF::XmlTag::object)
{
children.push_back(ReadObject(scene));
}
else if(xmlReader->getNodeName() == D3MF::XmlTag::build)
{
}
}
if(scene->mRootNode->mName.length == 0)
scene->mRootNode->mName.Set("3MF");
scene->mNumMeshes = static_cast<unsigned int>(meshes.size());
scene->mMeshes = new aiMesh*[scene->mNumMeshes]();
std::copy(meshes.begin(), meshes.end(), scene->mMeshes);
scene->mRootNode->mNumChildren = static_cast<unsigned int>(children.size());
scene->mRootNode->mChildren = new aiNode*[scene->mRootNode->mNumChildren]();
std::copy(children.begin(), children.end(), scene->mRootNode->mChildren);
}
private:
aiNode* ReadObject(aiScene* scene)
{
ScopeGuard<aiNode> node(new aiNode());
std::vector<unsigned long> meshIds;
int id = std::atoi(xmlReader->getAttributeValue(D3MF::XmlTag::id.c_str()));
std::string name(xmlReader->getAttributeValue(D3MF::XmlTag::name.c_str()));
std::string type(xmlReader->getAttributeValue(D3MF::XmlTag::type.c_str()));
node->mParent = scene->mRootNode;
node->mName.Set(name);
unsigned long meshIdx = meshes.size();
while(ReadToEndElement(D3MF::XmlTag::object))
{
if(xmlReader->getNodeName() == D3MF::XmlTag::mesh)
{
auto mesh = ReadMesh();
mesh->mName.Set(name);
meshes.push_back(mesh);
meshIds.push_back(meshIdx);
meshIdx++;
}
}
node->mNumMeshes = static_cast<unsigned int>(meshIds.size());
node->mMeshes = new unsigned int[node->mNumMeshes];
std::copy(meshIds.begin(), meshIds.end(), node->mMeshes);
return node.dismiss();
}
aiMesh* ReadMesh()
{
aiMesh* mesh = new aiMesh();
while(ReadToEndElement(D3MF::XmlTag::mesh))
{
if(xmlReader->getNodeName() == D3MF::XmlTag::vertices)
{
ImportVertices(mesh);
}
else if(xmlReader->getNodeName() == D3MF::XmlTag::triangles)
{
ImportTriangles(mesh);
}
}
return mesh;
}
void ImportVertices(aiMesh* mesh)
{
std::vector<aiVector3D> vertices;
while(ReadToEndElement(D3MF::XmlTag::vertices))
{
if(xmlReader->getNodeName() == D3MF::XmlTag::vertex)
{
vertices.push_back(ReadVertex());
}
}
mesh->mNumVertices = static_cast<unsigned int>(vertices.size());
mesh->mVertices = new aiVector3D[mesh->mNumVertices];
std::copy(vertices.begin(), vertices.end(), mesh->mVertices);
}
aiVector3D ReadVertex()
{
aiVector3D vertex;
vertex.x = std::strtof(xmlReader->getAttributeValue(D3MF::XmlTag::x.c_str()), nullptr);
vertex.y = std::strtof(xmlReader->getAttributeValue(D3MF::XmlTag::y.c_str()), nullptr);
vertex.z = std::strtof(xmlReader->getAttributeValue(D3MF::XmlTag::z.c_str()), nullptr);
return vertex;
}
void ImportTriangles(aiMesh* mesh)
{
std::vector<aiFace> faces;
while(ReadToEndElement(D3MF::XmlTag::triangles))
{
if(xmlReader->getNodeName() == D3MF::XmlTag::triangle)
{
faces.push_back(ReadTriangle());
}
}
mesh->mNumFaces = static_cast<unsigned int>(faces.size());
mesh->mFaces = new aiFace[mesh->mNumFaces];
mesh->mPrimitiveTypes = aiPrimitiveType_TRIANGLE;
std::copy(faces.begin(), faces.end(), mesh->mFaces);
}
aiFace ReadTriangle()
{
aiFace face;
face.mNumIndices = 3;
face.mIndices = new unsigned int[face.mNumIndices];
face.mIndices[0] = static_cast<unsigned int>(std::atoi(xmlReader->getAttributeValue(D3MF::XmlTag::v1.c_str())));
face.mIndices[1] = static_cast<unsigned int>(std::atoi(xmlReader->getAttributeValue(D3MF::XmlTag::v2.c_str())));
face.mIndices[2] = static_cast<unsigned int>(std::atoi(xmlReader->getAttributeValue(D3MF::XmlTag::v3.c_str())));
return face;
}
private:
bool ReadToStartElement(const std::string& startTag)
{
while(xmlReader->read())
{
if (xmlReader->getNodeType() == irr::io::EXN_ELEMENT && xmlReader->getNodeName() == startTag)
{
return true;
}
else if (xmlReader->getNodeType() == irr::io::EXN_ELEMENT_END &&
xmlReader->getNodeName() == startTag)
{
return false;
}
}
//DefaultLogger::get()->error("unexpected EOF, expected closing <" + closeTag + "> tag");
return false;
}
bool ReadToEndElement(const std::string& closeTag)
{
while(xmlReader->read())
{
if (xmlReader->getNodeType() == irr::io::EXN_ELEMENT) {
return true;
}
else if (xmlReader->getNodeType() == irr::io::EXN_ELEMENT_END
&& xmlReader->getNodeName() == closeTag)
{
return false;
}
}
DefaultLogger::get()->error("unexpected EOF, expected closing <" + closeTag + "> tag");
return false;
}
private:
std::vector<aiMesh*> meshes;
XmlReader* xmlReader;
};
} //namespace D3MF
static const aiImporterDesc desc = {
"3mf Importer",
"",
"",
"http://3mf.io/",
aiImporterFlags_SupportBinaryFlavour | aiImporterFlags_SupportCompressedFlavour,
0,
0,
0,
0,
"3mf"
};
D3MFImporter::D3MFImporter()
{
}
D3MFImporter::~D3MFImporter()
{
}
bool D3MFImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const
{
const std::string extension = GetExtension(pFile);
if(extension == "3mf")
{
return true;
}
else if(!extension.length() || checkSig)
{
if(!pIOHandler)
return true;
}
return false;
}
void D3MFImporter::SetupProperties(const Importer *pImp)
{
}
const aiImporterDesc *D3MFImporter::GetInfo() const
{
return &desc;
}
void D3MFImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler)
{
D3MF::D3MFOpcPackage opcPackage(pIOHandler, pFile);
std::unique_ptr<CIrrXML_IOStreamReader> xmlStream(new CIrrXML_IOStreamReader(opcPackage.RootStream()));
std::unique_ptr<D3MF::XmlReader> xmlReader(irr::io::createIrrXMLReader(xmlStream.get()));
D3MF::XmlSerializer xmlSerializer(xmlReader.get());
xmlSerializer.ImportXml(pScene);
}
}
#endif // ASSIMP_BUILD_NO_3MF_IMPORTER

View File

@ -0,0 +1,68 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2016, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#ifndef AI_D3MFLOADER_H_INCLUDED
#define AI_D3MFLOADER_H_INCLUDED
#include <vector>
#include <cstdint>
#include "BaseImporter.h"
namespace Assimp {
class D3MFImporter : public BaseImporter
{
public:
D3MFImporter();
~D3MFImporter();
// BaseImporter interface
public:
bool CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const;
void SetupProperties(const Importer *pImp);
const aiImporterDesc *GetInfo() const;
protected:
void InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler);
};
}
#endif // AI_D3MFLOADER_H_INCLUDED

View File

@ -0,0 +1,598 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2016, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#include "D3MFOpcPackage.h"
#include <memory>
#include <vector>
#include <map>
#include <algorithm>
#include <cassert>
#include <cstdlib>
#include "../contrib/unzip/unzip.h"
#include "../include/assimp/IOStream.hpp"
#include "../include/assimp/IOSystem.hpp"
#include "../include/assimp/DefaultLogger.hpp"
#include "../include/assimp/ai_assert.h"
#include "Exceptional.h"
#ifndef ASSIMP_BUILD_NO_3MF_IMPORTER
namespace Assimp {
namespace D3MF {
namespace XmlTag {
const std::string CONTENT_TYPES_ARCHIVE = "[Content_Types].xml";
const std::string ROOT_RELATIONSHIPS_ARCHIVE = "_rels/.rels";
const std::string SCHEMA_CONTENTTYPES = "http://schemas.openxmlformats.org/package/2006/content-types";
const std::string SCHEMA_RELATIONSHIPS = "http://schemas.openxmlformats.org/package/2006/relationships";
const std::string RELS_RELATIONSHIP_CONTAINER = "Relationships";
const std::string RELS_RELATIONSHIP_NODE = "Relationship";
const std::string RELS_ATTRIB_TARGET = "Target";
const std::string RELS_ATTRIB_TYPE = "Type";
const std::string RELS_ATTRIB_ID = "Id";
const std::string PACKAGE_START_PART_RELATIONSHIP_TYPE = "http://schemas.microsoft.com/3dmanufacturing/2013/01/3dmodel";
const std::string PACKAGE_PRINT_TICKET_RELATIONSHIP_TYPE = "http://schemas.microsoft.com/3dmanufacturing/2013/01/printticket";
const std::string PACKAGE_TEXTURE_RELATIONSHIP_TYPE = "http://schemas.microsoft.com/3dmanufacturing/2013/01/3dtexture";
const std::string PACKAGE_CORE_PROPERTIES_RELATIONSHIP_TYPE = "http://schemas.openxmlformats.org/package/2006/relationships/metadata/core-properties";
const std::string PACKAGE_THUMBNAIL_RELATIONSHIP_TYPE = "http://schemas.openxmlformats.org/package/2006/relationships/metadata/thumbnail";
}
class IOSystem2Unzip {
public:
static voidpf open(voidpf opaque, const char* filename, int mode);
static uLong read(voidpf opaque, voidpf stream, void* buf, uLong size);
static uLong write(voidpf opaque, voidpf stream, const void* buf, uLong size);
static long tell(voidpf opaque, voidpf stream);
static long seek(voidpf opaque, voidpf stream, uLong offset, int origin);
static int close(voidpf opaque, voidpf stream);
static int testerror(voidpf opaque, voidpf stream);
static zlib_filefunc_def get(IOSystem* pIOHandler);
};
voidpf IOSystem2Unzip::open(voidpf opaque, const char* filename, int mode) {
IOSystem* io_system = reinterpret_cast<IOSystem*>(opaque);
const char* mode_fopen = NULL;
if((mode & ZLIB_FILEFUNC_MODE_READWRITEFILTER)==ZLIB_FILEFUNC_MODE_READ) {
mode_fopen = "rb";
} else {
if(mode & ZLIB_FILEFUNC_MODE_EXISTING) {
mode_fopen = "r+b";
} else {
if(mode & ZLIB_FILEFUNC_MODE_CREATE) {
mode_fopen = "wb";
}
}
}
return (voidpf) io_system->Open(filename, mode_fopen);
}
uLong IOSystem2Unzip::read(voidpf /*opaque*/, voidpf stream, void* buf, uLong size) {
IOStream* io_stream = (IOStream*) stream;
return io_stream->Read(buf, 1, size);
}
uLong IOSystem2Unzip::write(voidpf /*opaque*/, voidpf stream, const void* buf, uLong size) {
IOStream* io_stream = (IOStream*) stream;
return io_stream->Write(buf, 1, size);
}
long IOSystem2Unzip::tell(voidpf /*opaque*/, voidpf stream) {
IOStream* io_stream = (IOStream*) stream;
return io_stream->Tell();
}
long IOSystem2Unzip::seek(voidpf /*opaque*/, voidpf stream, uLong offset, int origin) {
IOStream* io_stream = (IOStream*) stream;
aiOrigin assimp_origin;
switch (origin) {
default:
case ZLIB_FILEFUNC_SEEK_CUR:
assimp_origin = aiOrigin_CUR;
break;
case ZLIB_FILEFUNC_SEEK_END:
assimp_origin = aiOrigin_END;
break;
case ZLIB_FILEFUNC_SEEK_SET:
assimp_origin = aiOrigin_SET;
break;
}
return (io_stream->Seek(offset, assimp_origin) == aiReturn_SUCCESS ? 0 : -1);
}
int IOSystem2Unzip::close(voidpf opaque, voidpf stream) {
IOSystem* io_system = (IOSystem*) opaque;
IOStream* io_stream = (IOStream*) stream;
io_system->Close(io_stream);
return 0;
}
int IOSystem2Unzip::testerror(voidpf /*opaque*/, voidpf /*stream*/) {
return 0;
}
zlib_filefunc_def IOSystem2Unzip::get(IOSystem* pIOHandler) {
zlib_filefunc_def mapping;
mapping.zopen_file = open;
mapping.zread_file = read;
mapping.zwrite_file = write;
mapping.ztell_file = tell;
mapping.zseek_file = seek;
mapping.zclose_file = close;
mapping.zerror_file = testerror;
mapping.opaque = reinterpret_cast<voidpf>(pIOHandler);
return mapping;
}
class ZipFile : public IOStream
{
friend class D3MFZipArchive;
public:
explicit ZipFile(size_t size);
~ZipFile();
size_t Read(void* pvBuffer, size_t pSize, size_t pCount );
size_t Write(const void* /*pvBuffer*/, size_t /*pSize*/, size_t /*pCount*/);
size_t FileSize() const;
aiReturn Seek(size_t /*pOffset*/, aiOrigin /*pOrigin*/);
size_t Tell() const;
void Flush();
private:
void* m_Buffer;
size_t m_Size;
};
ZipFile::ZipFile(size_t size) : m_Size(size) {
ai_assert(m_Size != 0);
m_Buffer = malloc(m_Size);
}
ZipFile::~ZipFile() {
free(m_Buffer);
m_Buffer = NULL;
}
size_t ZipFile::Read(void* pvBuffer, size_t pSize, size_t pCount) {
const size_t size = pSize * pCount;
assert(size <= m_Size);
std::memcpy(pvBuffer, m_Buffer, size);
return size;
}
size_t ZipFile::Write(const void* /*pvBuffer*/, size_t /*pSize*/, size_t /*pCount*/) {
return 0;
}
size_t ZipFile::FileSize() const {
return m_Size;
}
aiReturn ZipFile::Seek(size_t /*pOffset*/, aiOrigin /*pOrigin*/) {
return aiReturn_FAILURE;
}
size_t ZipFile::Tell() const {
return 0;
}
void ZipFile::Flush() {
// empty
}
class D3MFZipArchive : public IOSystem
{
public:
static const unsigned int FileNameSize = 256;
public:
D3MFZipArchive(IOSystem* pIOHandler, const std::string & rFile);
~D3MFZipArchive();
bool Exists(const char* pFile) const;
char getOsSeparator() const;
IOStream* Open(const char* pFile, const char* pMode = "rb");
void Close(IOStream* pFile);
bool isOpen() const;
void getFileList(std::vector<std::string> &rFileList);
private:
bool mapArchive();
private:
unzFile m_ZipFileHandle;
std::map<std::string, ZipFile*> m_ArchiveMap;
};
// ------------------------------------------------------------------------------------------------
// Constructor.
D3MFZipArchive::D3MFZipArchive(IOSystem* pIOHandler, const std::string& rFile)
: m_ZipFileHandle(NULL), m_ArchiveMap()
{
if (! rFile.empty())
{
zlib_filefunc_def mapping = IOSystem2Unzip::get(pIOHandler);
m_ZipFileHandle = unzOpen2(rFile.c_str(), &mapping);
if(m_ZipFileHandle != NULL) {
mapArchive();
}
}
}
// ------------------------------------------------------------------------------------------------
// Destructor.
D3MFZipArchive::~D3MFZipArchive() {
for( std::map<std::string, ZipFile*>::iterator it(m_ArchiveMap.begin()), end(m_ArchiveMap.end()); it != end; ++it ) {
delete it->second;
}
m_ArchiveMap.clear();
if(m_ZipFileHandle != NULL) {
unzClose(m_ZipFileHandle);
m_ZipFileHandle = NULL;
}
}
// ------------------------------------------------------------------------------------------------
// Returns true, if the archive is already open.
bool D3MFZipArchive::isOpen() const {
return (m_ZipFileHandle != NULL);
}
// ------------------------------------------------------------------------------------------------
// Returns true, if the filename is part of the archive.
bool D3MFZipArchive::Exists(const char* pFile) const {
ai_assert(pFile != NULL);
bool exist = false;
if (pFile != NULL) {
std::string rFile(pFile);
std::map<std::string, ZipFile*>::const_iterator it = m_ArchiveMap.find(rFile);
if(it != m_ArchiveMap.end()) {
exist = true;
}
}
return exist;
}
// ------------------------------------------------------------------------------------------------
// Returns the separator delimiter.
char D3MFZipArchive::getOsSeparator() const {
#ifndef _WIN32
return '/';
#else
return '\\';
#endif
}
// ------------------------------------------------------------------------------------------------
// Opens a file, which is part of the archive.
IOStream *D3MFZipArchive::Open(const char* pFile, const char* /*pMode*/) {
ai_assert(pFile != NULL);
IOStream* result = NULL;
std::map<std::string, ZipFile*>::iterator it = m_ArchiveMap.find(pFile);
if(it != m_ArchiveMap.end()) {
result = static_cast<IOStream*>(it->second);
}
return result;
}
// ------------------------------------------------------------------------------------------------
// Close a filestream.
void D3MFZipArchive::Close(IOStream *pFile) {
ai_assert(pFile != NULL);
// We don't do anything in case the file would be opened again in the future
}
// ------------------------------------------------------------------------------------------------
// Returns the file-list of the archive.
void D3MFZipArchive::getFileList(std::vector<std::string> &rFileList) {
rFileList.clear();
for(std::map<std::string, ZipFile*>::iterator it(m_ArchiveMap.begin()), end(m_ArchiveMap.end()); it != end; ++it) {
rFileList.push_back(it->first);
}
}
// ------------------------------------------------------------------------------------------------
// Maps the archive content.
bool D3MFZipArchive::mapArchive() {
bool success = false;
if(m_ZipFileHandle != NULL) {
if(m_ArchiveMap.empty()) {
// At first ensure file is already open
if(unzGoToFirstFile(m_ZipFileHandle) == UNZ_OK) {
// Loop over all files
do {
char filename[FileNameSize];
unz_file_info fileInfo;
if(unzGetCurrentFileInfo(m_ZipFileHandle, &fileInfo, filename, FileNameSize, NULL, 0, NULL, 0) == UNZ_OK) {
// The file has EXACTLY the size of uncompressed_size. In C
// you need to mark the last character with '\0', so add
// another character
if(fileInfo.uncompressed_size != 0 && unzOpenCurrentFile(m_ZipFileHandle) == UNZ_OK) {
std::pair<std::map<std::string, ZipFile*>::iterator, bool> result = m_ArchiveMap.insert(std::make_pair(filename, new ZipFile(fileInfo.uncompressed_size)));
if(unzReadCurrentFile(m_ZipFileHandle, result.first->second->m_Buffer, fileInfo.uncompressed_size) == (long int) fileInfo.uncompressed_size) {
if(unzCloseCurrentFile(m_ZipFileHandle) == UNZ_OK) {
// Nothing to do anymore...
}
}
}
}
} while(unzGoToNextFile(m_ZipFileHandle) != UNZ_END_OF_LIST_OF_FILE);
}
}
success = true;
}
return success;
}
// ------------------------------------------------------------------------------------------------
struct OpcPackageRelationship
{
std::string id;
std::string type;
std::string target;
};
typedef std::shared_ptr<OpcPackageRelationship> OpcPackageRelationshipPtr;
class OpcPackageRelationshipReader
{
public:
OpcPackageRelationshipReader(XmlReader* xmlReader)
{
while(xmlReader->read())
{
if(xmlReader->getNodeType() == irr::io::EXN_ELEMENT &&
xmlReader->getNodeName() == XmlTag::RELS_RELATIONSHIP_CONTAINER)
{
ParseRootNode(xmlReader);
}
}
}
void ParseRootNode(XmlReader* xmlReader)
{
ParseAttributes(xmlReader);
while(xmlReader->read())
{
if(xmlReader->getNodeType() == irr::io::EXN_ELEMENT &&
xmlReader->getNodeName() == XmlTag::RELS_RELATIONSHIP_NODE)
{
ParseChildNode(xmlReader);
}
}
}
void ParseAttributes(XmlReader*)
{
}
void ParseChildNode(XmlReader* xmlReader)
{
OpcPackageRelationshipPtr relPtr(new OpcPackageRelationship());
relPtr->id = xmlReader->getAttributeValue(XmlTag::RELS_ATTRIB_ID.c_str());
relPtr->type = xmlReader->getAttributeValue(XmlTag::RELS_ATTRIB_TYPE.c_str());
relPtr->target = xmlReader->getAttributeValue(XmlTag::RELS_ATTRIB_TARGET.c_str());
m_relationShips.push_back(relPtr);
}
std::vector<OpcPackageRelationshipPtr> m_relationShips;
};
// ------------------------------------------------------------------------------------------------
D3MFOpcPackage::D3MFOpcPackage(IOSystem* pIOHandler, const std::string& rFile)
: m_RootStream(nullptr)
{
zipArchive.reset(new D3MF::D3MFZipArchive( pIOHandler, rFile ));
if(!zipArchive->isOpen())
throw DeadlyImportError("Failed to open file " + rFile+ ".");
std::vector<std::string> fileList;
zipArchive->getFileList(fileList);
for(auto& file: fileList){
if(file == D3MF::XmlTag::ROOT_RELATIONSHIPS_ARCHIVE)
{
//PkgRelationshipReader pkgRelReader(file, archive);
ai_assert(zipArchive->Exists(file.c_str()));
IOStream *fileStream = zipArchive->Open(file.c_str());
ai_assert(fileStream != nullptr);
std::string rootFile = ReadPackageRootRelationship(fileStream);
if(rootFile.size() > 0 && rootFile[0] == '/')
rootFile = rootFile.substr(1);
DefaultLogger::get()->debug(rootFile);
m_RootStream = zipArchive->Open(rootFile.c_str());
ai_assert(m_RootStream != nullptr);
// const size_t size = zipArchive->FileSize();
// m_Data.resize( size );
// const size_t readSize = pMapFile->Read( &m_Data[0], sizeof( char ), size );
// if ( readSize != size )
// {
// m_Data.clear();
// return false;
// }
zipArchive->Close( fileStream );
}
else if( file == D3MF::XmlTag::CONTENT_TYPES_ARCHIVE)
{
}
}
}
D3MFOpcPackage::~D3MFOpcPackage()
{
}
IOStream* D3MFOpcPackage::RootStream() const
{
return m_RootStream;
}
std::string D3MFOpcPackage::ReadPackageRootRelationship(IOStream* stream)
{
std::unique_ptr<CIrrXML_IOStreamReader> xmlStream(new CIrrXML_IOStreamReader(stream));
std::unique_ptr<XmlReader> xml(irr::io::createIrrXMLReader(xmlStream.get()));
OpcPackageRelationshipReader reader(xml.get());
auto itr = std::find_if(reader.m_relationShips.begin(), reader.m_relationShips.end(), [](const OpcPackageRelationshipPtr& rel){
return rel->type == XmlTag::PACKAGE_START_PART_RELATIONSHIP_TYPE;
});
if(itr == reader.m_relationShips.end())
throw DeadlyImportError("Cannot find" + XmlTag::PACKAGE_START_PART_RELATIONSHIP_TYPE);
return (*itr)->target;
}
} //namespace D3MF
}
#endif //ASSIMP_BUILD_NO_3MF_IMPORTER

View File

@ -0,0 +1,76 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2016, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
#ifndef D3MFOPCPACKAGE_H
#define D3MFOPCPACKAGE_H
#include <string>
#include <memory>
#include "../include/assimp/IOSystem.hpp"
#include "irrXMLWrapper.h"
namespace Assimp {
namespace D3MF {
typedef irr::io::IrrXMLReader XmlReader;
typedef std::shared_ptr<XmlReader> XmlReaderPtr;
class D3MFZipArchive;
class D3MFOpcPackage
{
public:
D3MFOpcPackage(IOSystem* pIOHandler, const std::string& rFile);
~D3MFOpcPackage();
IOStream* RootStream() const;
private:
std::string ReadPackageRootRelationship(IOStream* stream);
private:
IOStream* m_RootStream;
std::unique_ptr<D3MFZipArchive> zipArchive;
};
}
}
#endif // D3MFOPCPACKAGE_H

View File

@ -48,6 +48,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "BaseImporter.h"
#include "IRRShared.h"
#ifndef ASSIMP_BUILD_NO_IRRMESH_IMPORTER
namespace Assimp {
// ---------------------------------------------------------------------------
@ -92,4 +94,6 @@ protected:
} // end of namespace Assimp
#endif // ASSIMP_BUILD_NO_IRRMESH_IMPORTER
#endif // AI_IRRMESHIMPORTER_H_INC

View File

@ -179,6 +179,9 @@ corresponding preprocessor flag to selectively disable formats.
#ifndef ASSIMP_BUILD_NO_C4D_IMPORTER
# include "C4DImporter.h"
#endif
#ifndef ASSIMP_BUILD_NO_3MF_IMPORTER
# include "D3MFImporter.h"
#endif
namespace Assimp {
@ -319,6 +322,9 @@ void GetImporterInstanceList(std::vector< BaseImporter* >& out)
#if ( !defined ASSIMP_BUILD_NO_C4D_IMPORTER )
out.push_back( new C4DImporter() );
#endif
#if ( !defined ASSIMP_BUILD_NO_3MF_IMPORTER )
out.push_back(new D3MFImporter() );
#endif
}
/** will delete all registered importers. */

View File

@ -43,6 +43,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "DefaultIOSystem.h"
#include <assimp/DefaultLogger.hpp>
#include "MakeVerboseFormat.h"
#include "StringComparison.h"
#include <openddlparser/OpenDDLParser.h>
#include <assimp/scene.h>
@ -50,6 +51,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <vector>
static const std::string OpenGexExt = "ogex";
static const aiImporterDesc desc = {
"Open Game Engine Exchange",
"",
@ -60,7 +63,7 @@ static const aiImporterDesc desc = {
0,
0,
0,
"ogex"
OpenGexExt.c_str()
};
namespace Grammar {
@ -87,6 +90,7 @@ namespace Grammar {
static const std::string ColorType = "Color";
static const std::string ParamType = "Param";
static const std::string TextureType = "Texture";
static const std::string AttenType = "Atten";
static const std::string DiffuseColorToken = "diffuse";
static const std::string SpecularColorToken = "specular";
@ -119,8 +123,9 @@ namespace Grammar {
IndexArrayToken,
MaterialToken,
ColorToken,
Paramtype,
ParamToken,
TextureToken,
AttenToken
};
static const std::string ValidMetricToken[ 4 ] = {
@ -131,7 +136,7 @@ namespace Grammar {
};
static int isValidMetricType( const char *token ) {
if( NULL == token ) {
if( nullptr == token ) {
return false;
}
@ -165,6 +170,10 @@ namespace Grammar {
return LightNodeToken;
} else if ( GeometryObjectType == tokenType ) {
return GeometryObjectToken;
} else if ( CameraObjectType == tokenType ) {
return CameraObjectToken;
} else if ( LightObjectType == tokenType ) {
return LightObjectToken;
} else if( TransformType == tokenType ) {
return TransformToken;
} else if( MeshType == tokenType ) {
@ -177,8 +186,12 @@ namespace Grammar {
return MaterialToken;
} else if ( ColorType == tokenType ) {
return ColorToken;
} else if ( ParamType == tokenType ) {
return ParamToken;
} else if( TextureType == tokenType ) {
return TextureToken;
} else if ( AttenType == tokenType ) {
return AttenToken;
}
return NoneType;
@ -191,12 +204,27 @@ namespace OpenGEX {
USE_ODDLPARSER_NS
//------------------------------------------------------------------------------------------------
static void propId2StdString( Property *prop, std::string &name, std::string &key ) {
name = key = "";
if ( nullptr == prop ) {
return;
}
if ( nullptr != prop->m_key ) {
name = prop->m_key->m_buffer;
if ( Value::ddl_string == prop->m_value->m_type ) {
key = prop->m_value->getString();
}
}
}
//------------------------------------------------------------------------------------------------
OpenGEXImporter::VertexContainer::VertexContainer()
: m_numVerts( 0 )
, m_vertices(NULL)
, m_vertices( nullptr )
, m_numNormals( 0 )
, m_normals(NULL)
, m_normals( nullptr )
, m_numUVComps()
, m_textureCoords()
{
@ -228,16 +256,18 @@ OpenGEXImporter::RefInfo::~RefInfo() {
//------------------------------------------------------------------------------------------------
OpenGEXImporter::OpenGEXImporter()
: m_root( NULL )
: m_root( nullptr )
, m_nodeChildMap()
, m_meshCache()
, m_mesh2refMap()
, m_ctx( NULL )
, m_ctx( nullptr )
, m_metrics()
, m_currentNode( NULL )
, m_currentNode( nullptr )
, m_currentVertices()
, m_currentMesh( NULL )
, m_currentMaterial( NULL )
, m_currentMesh( nullptr )
, m_currentMaterial( nullptr )
, m_currentLight( nullptr )
, m_currentCamera( nullptr )
, m_tokenType( Grammar::NoneType )
, m_materialCache()
, m_cameraCache()
@ -256,7 +286,7 @@ OpenGEXImporter::~OpenGEXImporter() {
bool OpenGEXImporter::CanRead( const std::string &file, IOSystem *pIOHandler, bool checkSig ) const {
bool canRead( false );
if( !checkSig ) {
canRead = SimpleExtensionCheck( file, "ogex" );
canRead = SimpleExtensionCheck( file, OpenGexExt.c_str() );
} else {
static const char *token[] = { "Metric", "GeometryNode", "VertexArray (attrib", "IndexArray" };
canRead = BaseImporter::SearchFileHeaderForToken( pIOHandler, file, token, 4 );
@ -287,6 +317,8 @@ void OpenGEXImporter::InternReadFile( const std::string &filename, aiScene *pSce
}
copyMeshes( pScene );
copyCameras( pScene );
copyLights( pScene );
resolveReferences();
createNodeTree( pScene );
}
@ -298,14 +330,14 @@ const aiImporterDesc *OpenGEXImporter::GetInfo() const {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::SetupProperties( const Importer *pImp ) {
if( NULL == pImp ) {
if( nullptr == pImp ) {
return;
}
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleNodes( DDLNode *node, aiScene *pScene ) {
if( NULL == node ) {
if( nullptr == node ) {
return;
}
@ -348,6 +380,14 @@ void OpenGEXImporter::handleNodes( DDLNode *node, aiScene *pScene ) {
handleGeometryObject( *it, pScene );
break;
case Grammar::CameraObjectToken:
handleCameraObject( *it, pScene );
break;
case Grammar::LightObjectToken:
handleLightObject( *it, pScene );
break;
case Grammar::TransformToken:
handleTransformNode( *it, pScene );
break;
@ -372,6 +412,10 @@ void OpenGEXImporter::handleNodes( DDLNode *node, aiScene *pScene ) {
handleColorNode( *it, pScene );
break;
case Grammar::ParamToken:
handleParamNode( *it, pScene );
break;
case Grammar::TextureToken:
handleTextureNode( *it, pScene );
break;
@ -384,7 +428,7 @@ void OpenGEXImporter::handleNodes( DDLNode *node, aiScene *pScene ) {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleMetricNode( DDLNode *node, aiScene *pScene ) {
if( NULL == node || NULL == m_ctx ) {
if( nullptr == node || nullptr == m_ctx ) {
return;
}
@ -393,14 +437,14 @@ void OpenGEXImporter::handleMetricNode( DDLNode *node, aiScene *pScene ) {
}
Property *prop( node->getProperties() );
while( NULL != prop ) {
if( NULL != prop->m_key ) {
while( nullptr != prop ) {
if( nullptr != prop->m_key ) {
if( Value::ddl_string == prop->m_value->m_type ) {
std::string valName( ( char* ) prop->m_value->m_data );
int type( Grammar::isValidMetricType( valName.c_str() ) );
if( Grammar::NoneType != type ) {
Value *val( node->getValue() );
if( NULL != val ) {
if( nullptr != val ) {
if( Value::ddl_float == val->m_type ) {
m_metrics[ type ].m_floatValue = val->getFloat();
} else if( Value::ddl_int32 == val->m_type ) {
@ -447,10 +491,10 @@ static void getRefNames( DDLNode *node, std::vector<std::string> &names ) {
ai_assert( NULL != node );
Reference *ref = node->getReferences();
if( NULL != ref ) {
if( nullptr != ref ) {
for( size_t i = 0; i < ref->m_numRefs; i++ ) {
Name *currentName( ref->m_referencedName[ i ] );
if( NULL != currentName && NULL != currentName->m_id ) {
if( nullptr != currentName && nullptr != currentName->m_id ) {
const std::string name( currentName->m_id->m_buffer );
if( !name.empty() ) {
names.push_back( name );
@ -462,23 +506,27 @@ static void getRefNames( DDLNode *node, std::vector<std::string> &names ) {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleObjectRefNode( DDLNode *node, aiScene *pScene ) {
if( NULL == m_currentNode ) {
if( nullptr == m_currentNode ) {
throw DeadlyImportError( "No parent node for name." );
return;
}
std::vector<std::string> objRefNames;
getRefNames( node, objRefNames );
// when we are dealing with a geometry node prepare the mesh cache
if ( m_tokenType == Grammar::GeometryNodeToken ) {
m_currentNode->mNumMeshes = objRefNames.size();
m_currentNode->mMeshes = new unsigned int[ objRefNames.size() ];
if ( !objRefNames.empty() ) {
m_unresolvedRefStack.push_back( new RefInfo( m_currentNode, RefInfo::MeshRef, objRefNames ) );
}
}
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleMaterialRefNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if( NULL == m_currentNode ) {
if( nullptr == m_currentNode ) {
throw DeadlyImportError( "No parent node for name." );
return;
}
@ -506,7 +554,18 @@ void OpenGEXImporter::handleCameraNode( DDLNode *node, aiScene *pScene ) {
aiCamera *camera( new aiCamera );
const size_t camIdx( m_cameraCache.size() );
m_cameraCache.push_back( camera );
m_currentCamera = camera;
aiNode *newNode = new aiNode;
pushNode( newNode, pScene );
m_tokenType = Grammar::CameraNodeToken;
m_currentNode = newNode;
handleNodes( node, pScene );
popNode();
m_currentCamera->mName.Set( newNode->mName.C_Str() );
}
//------------------------------------------------------------------------------------------------
@ -514,6 +573,7 @@ void OpenGEXImporter::handleLightNode( ODDLParser::DDLNode *node, aiScene *pScen
aiLight *light( new aiLight );
const size_t lightIdx( m_lightCache.size() );
m_lightCache.push_back( light );
m_currentLight = light;
aiNode *newNode = new aiNode;
m_tokenType = Grammar::LightNodeToken;
@ -524,7 +584,7 @@ void OpenGEXImporter::handleLightNode( ODDLParser::DDLNode *node, aiScene *pScen
popNode();
light->mName.Set( newNode->mName.C_Str() );
m_currentLight->mName.Set( newNode->mName.C_Str() );
}
//------------------------------------------------------------------------------------------------
@ -536,26 +596,41 @@ void OpenGEXImporter::handleGeometryObject( DDLNode *node, aiScene *pScene ) {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleCameraObject( ODDLParser::DDLNode *node, aiScene *pScene ) {
// parameters will be parsed normally in the tree, so just go for it
handleNodes( node, pScene );
handleNodes( node, pScene );
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleLightObject( ODDLParser::DDLNode *node, aiScene *pScene ) {
Property *prop( node->findPropertyByName( "type" ) );
if ( nullptr != prop ) {
if ( nullptr != prop->m_value ) {
std::string typeStr( prop->m_value->getString() );
if ( "point" == typeStr ) {
m_currentLight->mType = aiLightSource_POINT;
} else if ( "spot" == typeStr ) {
m_currentLight->mType = aiLightSource_SPOT;
} else if ( "infinite" == typeStr ) {
m_currentLight->mType = aiLightSource_DIRECTIONAL;
}
}
}
// parameters will be parsed normally in the tree, so just go for it
handleNodes( node, pScene );
}
//------------------------------------------------------------------------------------------------
static void setMatrix( aiNode *node, DataArrayList *transformData ) {
ai_assert( NULL != node );
ai_assert( NULL != transformData );
ai_assert( nullptr != node );
ai_assert( nullptr != transformData );
float m[ 16 ];
size_t i( 1 );
Value *next( transformData->m_dataList->m_next );
m[ 0 ] = transformData->m_dataList->getFloat();
while( next != NULL ) {
while( next != nullptr ) {
m[ i ] = next->getFloat();
next = next->m_next;
i++;
@ -584,13 +659,13 @@ static void setMatrix( aiNode *node, DataArrayList *transformData ) {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleTransformNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if( NULL == m_currentNode ) {
if( nullptr == m_currentNode ) {
throw DeadlyImportError( "No parent node for name." );
return;
}
DataArrayList *transformData( node->getDataArrayList() );
if( NULL != transformData ) {
if( nullptr != transformData ) {
if( transformData->m_numItems != 16 ) {
throw DeadlyImportError( "Invalid number of data for transform matrix." );
return;
@ -599,21 +674,6 @@ void OpenGEXImporter::handleTransformNode( ODDLParser::DDLNode *node, aiScene *p
}
}
//------------------------------------------------------------------------------------------------
static void propId2StdString( Property *prop, std::string &name, std::string &key ) {
name = key = "";
if( NULL == prop ) {
return;
}
if( NULL != prop->m_key ) {
name = prop->m_key->m_buffer;
if( Value::ddl_string == prop->m_value->m_type ) {
key = prop->m_value->getString();
}
}
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleMeshNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
m_currentMesh = new aiMesh;
@ -621,7 +681,7 @@ void OpenGEXImporter::handleMeshNode( ODDLParser::DDLNode *node, aiScene *pScene
m_meshCache.push_back( m_currentMesh );
Property *prop = node->getProperties();
if( NULL != prop ) {
if( nullptr != prop ) {
std::string propName, propKey;
propId2StdString( prop, propName, propKey );
if( "primitive" == propName ) {
@ -642,7 +702,7 @@ void OpenGEXImporter::handleMeshNode( ODDLParser::DDLNode *node, aiScene *pScene
handleNodes( node, pScene );
DDLNode *parent( node->getParent() );
if( NULL != parent ) {
if( nullptr != parent ) {
const std::string &name = parent->getName();
m_mesh2refMap[ name ] = meshidx;
}
@ -658,7 +718,7 @@ enum MeshAttribute {
//------------------------------------------------------------------------------------------------
static MeshAttribute getAttributeByName( const char *attribName ) {
ai_assert( NULL != attribName );
ai_assert( nullptr != attribName );
if( 0 == strncmp( "position", attribName, strlen( "position" ) ) ) {
return Position;
@ -673,8 +733,8 @@ static MeshAttribute getAttributeByName( const char *attribName ) {
//------------------------------------------------------------------------------------------------
static void fillVector3( aiVector3D *vec3, Value *vals ) {
ai_assert( NULL != vec3 );
ai_assert( NULL != vals );
ai_assert( nullptr != vec3 );
ai_assert( nullptr != vals );
float x( 0.0f ), y( 0.0f ), z( 0.0f );
Value *next( vals );
@ -682,7 +742,7 @@ static void fillVector3( aiVector3D *vec3, Value *vals ) {
next = next->m_next;
y = next->getFloat();
next = next->m_next;
if( NULL != next ) {
if( nullptr != next ) {
z = next->getFloat();
}
@ -692,13 +752,13 @@ static void fillVector3( aiVector3D *vec3, Value *vals ) {
//------------------------------------------------------------------------------------------------
static size_t countDataArrayListItems( DataArrayList *vaList ) {
size_t numItems( 0 );
if( NULL == vaList ) {
if( nullptr == vaList ) {
return numItems;
}
DataArrayList *next( vaList );
while( NULL != next ) {
if( NULL != vaList->m_dataList ) {
while( nullptr != next ) {
if( nullptr != vaList->m_dataList ) {
numItems++;
}
next = next->m_next;
@ -718,13 +778,13 @@ static void copyVectorArray( size_t numItems, DataArrayList *vaList, aiVector3D
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleVertexArrayNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if( NULL == node ) {
if( nullptr == node ) {
throw DeadlyImportError( "No parent node for name." );
return;
}
Property *prop( node->getProperties() );
if( NULL != prop ) {
if( nullptr != prop ) {
std::string propName, propKey;
propId2StdString( prop, propName, propKey );
MeshAttribute attribType( getAttributeByName( propKey.c_str() ) );
@ -733,7 +793,7 @@ void OpenGEXImporter::handleVertexArrayNode( ODDLParser::DDLNode *node, aiScene
}
DataArrayList *vaList = node->getDataArrayList();
if( NULL == vaList ) {
if( nullptr == vaList ) {
return;
}
@ -757,18 +817,18 @@ void OpenGEXImporter::handleVertexArrayNode( ODDLParser::DDLNode *node, aiScene
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleIndexArrayNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if( NULL == node ) {
if( nullptr == node ) {
throw DeadlyImportError( "No parent node for name." );
return;
}
if( NULL == m_currentMesh ) {
if( nullptr == m_currentMesh ) {
throw DeadlyImportError( "No current mesh for index data found." );
return;
}
DataArrayList *vaList = node->getDataArrayList();
if( NULL == vaList ) {
if( nullptr == vaList ) {
return;
}
@ -777,9 +837,16 @@ void OpenGEXImporter::handleIndexArrayNode( ODDLParser::DDLNode *node, aiScene *
m_currentMesh->mFaces = new aiFace[ numItems ];
m_currentMesh->mNumVertices = numItems * 3;
m_currentMesh->mVertices = new aiVector3D[ m_currentMesh->mNumVertices ];
bool hasNormalCoords( false );
if ( m_currentVertices.m_numNormals > 0 ) {
m_currentMesh->mNormals = new aiVector3D[ m_currentMesh->mNumVertices ];
m_currentMesh->mNumUVComponents[ 0 ] = 3;
hasNormalCoords = true;
}
bool hasTexCoords( false );
if ( m_currentVertices.m_numUVComps[ 0 ] > 0 ) {
m_currentMesh->mTextureCoords[ 0 ] = new aiVector3D[ m_currentMesh->mNumVertices ];
hasTexCoords = true;
}
unsigned int index( 0 );
for( size_t i = 0; i < m_currentMesh->mNumFaces; i++ ) {
@ -790,15 +857,17 @@ void OpenGEXImporter::handleIndexArrayNode( ODDLParser::DDLNode *node, aiScene *
for( size_t indices = 0; indices < current.mNumIndices; indices++ ) {
const int idx( next->getUnsignedInt32() );
ai_assert( static_cast<size_t>( idx ) <= m_currentVertices.m_numVerts );
aiVector3D &pos = ( m_currentVertices.m_vertices[ idx ] );
aiVector3D &normal = ( m_currentVertices.m_normals[ idx ] );
aiVector3D &tex = ( m_currentVertices.m_textureCoords[ 0 ][ idx ] );
ai_assert( index < m_currentMesh->mNumVertices );
aiVector3D &pos = ( m_currentVertices.m_vertices[ idx ] );
m_currentMesh->mVertices[ index ].Set( pos.x, pos.y, pos.z );
if ( hasNormalCoords ) {
aiVector3D &normal = ( m_currentVertices.m_normals[ idx ] );
m_currentMesh->mNormals[ index ].Set( normal.x, normal.y, normal.z );
}
if ( hasTexCoords ) {
aiVector3D &tex = ( m_currentVertices.m_textureCoords[ 0 ][ idx ] );
m_currentMesh->mTextureCoords[ 0 ][ index ].Set( tex.x, tex.y, tex.z );
}
current.mIndices[ indices ] = index;
index++;
@ -810,7 +879,7 @@ void OpenGEXImporter::handleIndexArrayNode( ODDLParser::DDLNode *node, aiScene *
//------------------------------------------------------------------------------------------------
static void getColorRGB( aiColor3D *pColor, DataArrayList *colList ) {
if( NULL == pColor || NULL == colList ) {
if( nullptr == pColor || nullptr == colList ) {
return;
}
@ -828,12 +897,13 @@ enum ColorType {
NoneColor = 0,
DiffuseColor,
SpecularColor,
EmissionColor
EmissionColor,
LightColor
};
//------------------------------------------------------------------------------------------------
static ColorType getColorType( Text *id ) {
if ( NULL == id ) {
if ( nullptr == id ) {
return NoneColor;
}
@ -843,6 +913,8 @@ static ColorType getColorType( Text *id ) {
return SpecularColor;
} else if( *id == Grammar::EmissionColorToken ) {
return EmissionColor;
} else if ( *id == "light" ) {
return LightColor;
}
return NoneColor;
@ -858,15 +930,15 @@ void OpenGEXImporter::handleMaterialNode( ODDLParser::DDLNode *node, aiScene *pS
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleColorNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if( NULL == node ) {
if( nullptr == node ) {
return;
}
Property *prop = node->findPropertyByName( "attrib" );
if( NULL != prop ) {
if( NULL != prop->m_value ) {
if( nullptr != prop ) {
if( nullptr != prop->m_value ) {
DataArrayList *colList( node->getDataArrayList() );
if( NULL == colList ) {
if( nullptr == colList ) {
return;
}
aiColor3D col;
@ -878,6 +950,8 @@ void OpenGEXImporter::handleColorNode( ODDLParser::DDLNode *node, aiScene *pScen
m_currentMaterial->AddProperty( &col, 1, AI_MATKEY_COLOR_SPECULAR );
} else if( EmissionColor == colType ) {
m_currentMaterial->AddProperty( &col, 1, AI_MATKEY_COLOR_EMISSIVE );
} else if ( LightColor == colType ) {
m_currentLight->mColorDiffuse = col;
}
}
}
@ -885,15 +959,15 @@ void OpenGEXImporter::handleColorNode( ODDLParser::DDLNode *node, aiScene *pScen
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleTextureNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if( NULL == node ) {
if( nullptr == node ) {
return;
}
Property *prop = node->findPropertyByName( "attrib" );
if( NULL != prop ) {
if( NULL != prop->m_value ) {
if( nullptr != prop ) {
if( nullptr != prop->m_value ) {
Value *val( node->getValue() );
if( NULL != val ) {
if( nullptr != val ) {
aiString tex;
tex.Set( val->getString() );
if( prop->m_value->getString() == Grammar::DiffuseTextureToken ) {
@ -903,10 +977,8 @@ void OpenGEXImporter::handleTextureNode( ODDLParser::DDLNode *node, aiScene *pSc
} else if( prop->m_value->getString() == Grammar::EmissionTextureToken ) {
m_currentMaterial->AddProperty( &tex, AI_MATKEY_TEXTURE_EMISSIVE( 0 ) );
} else if( prop->m_value->getString() == Grammar::OpacyTextureToken ) {
m_currentMaterial->AddProperty( &tex, AI_MATKEY_TEXTURE_OPACITY( 0 ) );
} else if( prop->m_value->getString() == Grammar::TransparencyTextureToken ) {
// ToDo!
// m_currentMaterial->AddProperty( &tex, AI_MATKEY_TEXTURE_DIFFUSE( 0 ) );
@ -920,8 +992,58 @@ void OpenGEXImporter::handleTextureNode( ODDLParser::DDLNode *node, aiScene *pSc
}
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleParamNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if ( nullptr == node ) {
return;
}
Property *prop = node->findPropertyByName( "attrib" );
if ( nullptr == prop ) {
return;
}
if ( nullptr != prop->m_value ) {
Value *val( node->getValue() );
if ( nullptr == val ) {
return;
}
const float floatVal( val->getFloat() );
if ( prop->m_value != nullptr ) {
if ( 0 == ASSIMP_strincmp( "fov", prop->m_value->getString(), 3 ) ) {
m_currentCamera->mHorizontalFOV = floatVal;
} else if ( 0 == ASSIMP_strincmp( "near", prop->m_value->getString(), 3 ) ) {
m_currentCamera->mClipPlaneNear = floatVal;
} else if ( 0 == ASSIMP_strincmp( "far", prop->m_value->getString(), 3 ) ) {
m_currentCamera->mClipPlaneFar = floatVal;
}
}
}
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::handleAttenNode( ODDLParser::DDLNode *node, aiScene *pScene ) {
if ( nullptr == node ) {
return;
}
Property *prop = node->findPropertyByName( "curve" );
if ( nullptr != prop ) {
if ( nullptr != prop->m_value ) {
Value *val( node->getValue() );
const float floatVal( val->getFloat() );
if ( 0 == strncmp( "scale", prop->m_value->getString(), strlen( "scale" ) ) ) {
//if ( "scale" == prop->m_value->getString() ) {
m_currentLight->mAttenuationQuadratic = floatVal;
}
}
}
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::copyMeshes( aiScene *pScene ) {
ai_assert( nullptr != pScene );
if( m_meshCache.empty() ) {
return;
}
@ -931,6 +1053,32 @@ void OpenGEXImporter::copyMeshes( aiScene *pScene ) {
std::copy( m_meshCache.begin(), m_meshCache.end(), pScene->mMeshes );
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::copyCameras( aiScene *pScene ) {
ai_assert( nullptr != pScene );
if ( m_cameraCache.empty() ) {
return;
}
pScene->mNumCameras = m_cameraCache.size();
pScene->mCameras = new aiCamera*[ pScene->mNumCameras ];
std::copy( m_cameraCache.begin(), m_cameraCache.end(), pScene->mCameras );
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::copyLights( aiScene *pScene ) {
ai_assert( nullptr != pScene );
if ( m_lightCache.empty() ) {
return;
}
pScene->mNumLights = m_lightCache.size();
pScene->mLights = new aiLight*[ pScene->mNumLights ];
std::copy( m_lightCache.begin(), m_lightCache.end(), pScene->mLights );
}
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::resolveReferences() {
if( m_unresolvedRefStack.empty() ) {
@ -962,7 +1110,7 @@ void OpenGEXImporter::resolveReferences() {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::createNodeTree( aiScene *pScene ) {
if( NULL == m_root ) {
if( nullptr == m_root ) {
return;
}
@ -977,10 +1125,13 @@ void OpenGEXImporter::createNodeTree( aiScene *pScene ) {
//------------------------------------------------------------------------------------------------
void OpenGEXImporter::pushNode( aiNode *node, aiScene *pScene ) {
ai_assert( NULL != pScene );
ai_assert( nullptr != pScene );
if( NULL != node ) {
ChildInfo *info( NULL );
if ( NULL == node ) {
return;
}
ChildInfo *info( nullptr );
if( m_nodeStack.empty() ) {
node->mParent = pScene->mRootNode;
NodeChildMap::iterator it( m_nodeChildMap.find( node->mParent ) );
@ -994,7 +1145,7 @@ void OpenGEXImporter::pushNode( aiNode *node, aiScene *pScene ) {
info->m_children.push_back( node );
} else {
aiNode *parent( m_nodeStack.back() );
ai_assert( NULL != parent );
ai_assert( nullptr != parent );
node->mParent = parent;
NodeChildMap::iterator it( m_nodeChildMap.find( node->mParent ) );
if( m_nodeChildMap.end() == it ) {
@ -1007,12 +1158,11 @@ void OpenGEXImporter::pushNode( aiNode *node, aiScene *pScene ) {
}
m_nodeStack.push_back( node );
}
}
//------------------------------------------------------------------------------------------------
aiNode *OpenGEXImporter::popNode() {
if( m_nodeStack.empty() ) {
return NULL;
return nullptr;
}
aiNode *node( top() );
@ -1024,7 +1174,7 @@ aiNode *OpenGEXImporter::popNode() {
//------------------------------------------------------------------------------------------------
aiNode *OpenGEXImporter::top() const {
if( m_nodeStack.empty() ) {
return NULL;
return nullptr;
}
return m_nodeStack.back();

View File

@ -125,7 +125,12 @@ protected:
void handleMaterialNode( ODDLParser::DDLNode *node, aiScene *pScene );
void handleColorNode( ODDLParser::DDLNode *node, aiScene *pScene );
void handleTextureNode( ODDLParser::DDLNode *node, aiScene *pScene );
void handleParamNode( ODDLParser::DDLNode *node, aiScene *pScene );
void handleAttenNode( ODDLParser::DDLNode *node, aiScene *pScene );
void copyMeshes( aiScene *pScene );
void copyCameras( aiScene *pScene );
void copyLights( aiScene *pScene );
void resolveReferences();
void pushNode( aiNode *node, aiScene *pScene );
aiNode *popNode();
@ -186,6 +191,8 @@ private:
VertexContainer m_currentVertices;
aiMesh *m_currentMesh;
aiMaterial *m_currentMaterial;
aiLight *m_currentLight;
aiCamera *m_currentCamera;
int m_tokenType;
std::vector<aiMaterial*> m_materialCache;
std::vector<aiCamera*> m_cameraCache;

View File

@ -309,10 +309,10 @@ void PlyExporter::WriteMeshVertsBinary(const aiMesh* m, unsigned int components)
for (unsigned int n = PLY_EXPORT_HAS_TEXCOORDS, c = 0; (components & n) && c != AI_MAX_NUMBER_OF_TEXTURECOORDS; n <<= 1, ++c) {
if (m->HasTextureCoords(c)) {
mOutput.write(reinterpret_cast<const char*>(&m->mTextureCoords[c][i].x), 6);
mOutput.write(reinterpret_cast<const char*>(&m->mTextureCoords[c][i].x), 8);
}
else {
mOutput.write(reinterpret_cast<const char*>(&defaultUV.x), 6);
mOutput.write(reinterpret_cast<const char*>(&defaultUV.x), 8);
}
}

View File

@ -914,11 +914,13 @@ void SIBImporter::InternReadFile(const std::string& pFile,
for (size_t n=0;n<sib.lights.size();n++)
{
aiLight* light = sib.lights[n];
if ( nullptr != light ) {
aiNode* node = new aiNode;
root->mChildren[ childIdx++ ] = node;
node->mName = light->mName;
node->mParent = root;
}
}
}
#endif // !! ASSIMP_BUILD_NO_SIB_IMPORTER

View File

@ -596,11 +596,6 @@ namespace STEP {
LazyObject(DB& db, uint64_t id, uint64_t line, const char* type,const char* args);
~LazyObject();
LazyObject( LazyObject const& ) = delete;
LazyObject operator=( LazyObject const& ) = delete;
LazyObject( LazyObject && ) = delete;
LazyObject operator=( LazyObject && ) = delete;
public:
Object& operator * () {

View File

@ -1211,6 +1211,11 @@ void SceneCombiner::Copy (aiNode** _dest, const aiNode* src)
// and reallocate all arrays
GetArrayCopy( dest->mMeshes, dest->mNumMeshes );
CopyPtrArray( dest->mChildren, src->mChildren,dest->mNumChildren);
// need to set the mParent fields to the created aiNode.
for( unsigned int i = 0; i < dest->mNumChildren; i ++ ) {
dest->mChildren[i]->mParent = dest;
}
}
// ------------------------------------------------------------------------------------------------

View File

@ -90,7 +90,7 @@ void SplitByBoneCountProcess::Execute( aiScene* pScene)
// early out
bool isNecessary = false;
for( size_t a = 0; a < pScene->mNumMeshes; ++a)
for( unsigned int a = 0; a < pScene->mNumMeshes; ++a)
if( pScene->mMeshes[a]->mNumBones > mMaxBoneCount )
isNecessary = true;
@ -107,7 +107,7 @@ void SplitByBoneCountProcess::Execute( aiScene* pScene)
// build a new array of meshes for the scene
std::vector<aiMesh*> meshes;
for( size_t a = 0; a < pScene->mNumMeshes; ++a)
for( unsigned int a = 0; a < pScene->mNumMeshes; ++a)
{
aiMesh* srcMesh = pScene->mMeshes[a];
@ -118,9 +118,9 @@ void SplitByBoneCountProcess::Execute( aiScene* pScene)
if( !newMeshes.empty() )
{
// store new meshes and indices of the new meshes
for( size_t b = 0; b < newMeshes.size(); ++b)
for( unsigned int b = 0; b < newMeshes.size(); ++b)
{
mSubMeshIndices[a].push_back( meshes.size());
mSubMeshIndices[a].push_back( static_cast<unsigned int>(meshes.size()));
meshes.push_back( newMeshes[b]);
}
@ -130,13 +130,13 @@ void SplitByBoneCountProcess::Execute( aiScene* pScene)
else
{
// Mesh is kept unchanged - store it's new place in the mesh array
mSubMeshIndices[a].push_back( meshes.size());
mSubMeshIndices[a].push_back( static_cast<unsigned int>(meshes.size()));
meshes.push_back( srcMesh);
}
}
// rebuild the scene's mesh array
pScene->mNumMeshes = meshes.size();
pScene->mNumMeshes = static_cast<unsigned int>(meshes.size());
delete [] pScene->mMeshes;
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
std::copy( meshes.begin(), meshes.end(), pScene->mMeshes);
@ -157,33 +157,33 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
// necessary optimisation: build a list of all affecting bones for each vertex
// TODO: (thom) maybe add a custom allocator here to avoid allocating tens of thousands of small arrays
typedef std::pair<size_t, float> BoneWeight;
typedef std::pair<unsigned int, float> BoneWeight;
std::vector< std::vector<BoneWeight> > vertexBones( pMesh->mNumVertices);
for( size_t a = 0; a < pMesh->mNumBones; ++a)
for( unsigned int a = 0; a < pMesh->mNumBones; ++a)
{
const aiBone* bone = pMesh->mBones[a];
for( size_t b = 0; b < bone->mNumWeights; ++b)
for( unsigned int b = 0; b < bone->mNumWeights; ++b)
vertexBones[ bone->mWeights[b].mVertexId ].push_back( BoneWeight( a, bone->mWeights[b].mWeight));
}
size_t numFacesHandled = 0;
unsigned int numFacesHandled = 0;
std::vector<bool> isFaceHandled( pMesh->mNumFaces, false);
while( numFacesHandled < pMesh->mNumFaces )
{
// which bones are used in the current submesh
size_t numBones = 0;
unsigned int numBones = 0;
std::vector<bool> isBoneUsed( pMesh->mNumBones, false);
// indices of the faces which are going to go into this submesh
std::vector<size_t> subMeshFaces;
std::vector<unsigned int> subMeshFaces;
subMeshFaces.reserve( pMesh->mNumFaces);
// accumulated vertex count of all the faces in this submesh
size_t numSubMeshVertices = 0;
unsigned int numSubMeshVertices = 0;
// a small local array of new bones for the current face. State of all used bones for that face
// can only be updated AFTER the face is completely analysed. Thanks to imre for the fix.
std::vector<size_t> newBonesAtCurrentFace;
std::vector<unsigned int> newBonesAtCurrentFace;
// add faces to the new submesh as long as all bones affecting the faces' vertices fit in the limit
for( size_t a = 0; a < pMesh->mNumFaces; ++a)
for( unsigned int a = 0; a < pMesh->mNumFaces; ++a)
{
// skip if the face is already stored in a submesh
if( isFaceHandled[a] )
@ -191,12 +191,12 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
const aiFace& face = pMesh->mFaces[a];
// check every vertex if its bones would still fit into the current submesh
for( size_t b = 0; b < face.mNumIndices; ++b )
for( unsigned int b = 0; b < face.mNumIndices; ++b )
{
const std::vector<BoneWeight>& vb = vertexBones[face.mIndices[b]];
for( size_t c = 0; c < vb.size(); ++c)
for( unsigned int c = 0; c < vb.size(); ++c)
{
size_t boneIndex = vb[c].first;
unsigned int boneIndex = vb[c].first;
// if the bone is already used in this submesh, it's ok
if( isBoneUsed[boneIndex] )
continue;
@ -214,7 +214,7 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
// mark all new bones as necessary
while( !newBonesAtCurrentFace.empty() )
{
size_t newIndex = newBonesAtCurrentFace.back();
unsigned int newIndex = newBonesAtCurrentFace.back();
newBonesAtCurrentFace.pop_back(); // this also avoids the deallocation which comes with a clear()
if( isBoneUsed[newIndex] )
continue;
@ -242,7 +242,7 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
// create all the arrays for this mesh if the old mesh contained them
newMesh->mNumVertices = numSubMeshVertices;
newMesh->mNumFaces = subMeshFaces.size();
newMesh->mNumFaces = static_cast<unsigned int>(subMeshFaces.size());
newMesh->mVertices = new aiVector3D[newMesh->mNumVertices];
if( pMesh->HasNormals() )
newMesh->mNormals = new aiVector3D[newMesh->mNumVertices];
@ -251,13 +251,13 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
newMesh->mTangents = new aiVector3D[newMesh->mNumVertices];
newMesh->mBitangents = new aiVector3D[newMesh->mNumVertices];
}
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a )
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a )
{
if( pMesh->HasTextureCoords( a) )
newMesh->mTextureCoords[a] = new aiVector3D[newMesh->mNumVertices];
newMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a];
}
for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a )
for( unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a )
{
if( pMesh->HasVertexColors( a) )
newMesh->mColors[a] = new aiColor4D[newMesh->mNumVertices];
@ -265,9 +265,9 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
// and copy over the data, generating faces with linear indices along the way
newMesh->mFaces = new aiFace[subMeshFaces.size()];
size_t nvi = 0; // next vertex index
std::vector<size_t> previousVertexIndices( numSubMeshVertices, std::numeric_limits<size_t>::max()); // per new vertex: its index in the source mesh
for( size_t a = 0; a < subMeshFaces.size(); ++a )
unsigned int nvi = 0; // next vertex index
std::vector<unsigned int> previousVertexIndices( numSubMeshVertices, std::numeric_limits<unsigned int>::max()); // per new vertex: its index in the source mesh
for( unsigned int a = 0; a < subMeshFaces.size(); ++a )
{
const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]];
aiFace& dstFace = newMesh->mFaces[a];
@ -275,9 +275,9 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
dstFace.mIndices = new unsigned int[dstFace.mNumIndices];
// accumulate linearly all the vertices of the source face
for( size_t b = 0; b < dstFace.mNumIndices; ++b )
for( unsigned int b = 0; b < dstFace.mNumIndices; ++b )
{
size_t srcIndex = srcFace.mIndices[b];
unsigned int srcIndex = srcFace.mIndices[b];
dstFace.mIndices[b] = nvi;
previousVertexIndices[nvi] = srcIndex;
@ -289,12 +289,12 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
newMesh->mTangents[nvi] = pMesh->mTangents[srcIndex];
newMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex];
}
for( size_t c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c )
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++c )
{
if( pMesh->HasTextureCoords( c) )
newMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex];
}
for( size_t c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c )
for( unsigned int c = 0; c < AI_MAX_NUMBER_OF_COLOR_SETS; ++c )
{
if( pMesh->HasVertexColors( c) )
newMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex];
@ -310,8 +310,8 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
newMesh->mNumBones = 0;
newMesh->mBones = new aiBone*[numBones];
std::vector<size_t> mappedBoneIndex( pMesh->mNumBones, std::numeric_limits<size_t>::max());
for( size_t a = 0; a < pMesh->mNumBones; ++a )
std::vector<unsigned int> mappedBoneIndex( pMesh->mNumBones, std::numeric_limits<unsigned int>::max());
for( unsigned int a = 0; a < pMesh->mNumBones; ++a )
{
if( !isBoneUsed[a] )
continue;
@ -329,21 +329,21 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
ai_assert( newMesh->mNumBones == numBones );
// iterate over all new vertices and count which bones affected its old vertex in the source mesh
for( size_t a = 0; a < numSubMeshVertices; ++a )
for( unsigned int a = 0; a < numSubMeshVertices; ++a )
{
size_t oldIndex = previousVertexIndices[a];
unsigned int oldIndex = previousVertexIndices[a];
const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[oldIndex];
for( size_t b = 0; b < bonesOnThisVertex.size(); ++b )
for( unsigned int b = 0; b < bonesOnThisVertex.size(); ++b )
{
size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
if( newBoneIndex != std::numeric_limits<size_t>::max() )
unsigned int newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
if( newBoneIndex != std::numeric_limits<unsigned int>::max() )
newMesh->mBones[newBoneIndex]->mNumWeights++;
}
}
// allocate all bone weight arrays accordingly
for( size_t a = 0; a < newMesh->mNumBones; ++a )
for( unsigned int a = 0; a < newMesh->mNumBones; ++a )
{
aiBone* bone = newMesh->mBones[a];
ai_assert( bone->mNumWeights > 0 );
@ -352,18 +352,18 @@ void SplitByBoneCountProcess::SplitMesh( const aiMesh* pMesh, std::vector<aiMesh
}
// now copy all the bone vertex weights for all the vertices which made it into the new submesh
for( size_t a = 0; a < numSubMeshVertices; ++a)
for( unsigned int a = 0; a < numSubMeshVertices; ++a)
{
// find the source vertex for it in the source mesh
size_t previousIndex = previousVertexIndices[a];
unsigned int previousIndex = previousVertexIndices[a];
// these bones were affecting it
const std::vector<BoneWeight>& bonesOnThisVertex = vertexBones[previousIndex];
// all of the bones affecting it should be present in the new submesh, or else
// the face it comprises shouldn't be present
for( size_t b = 0; b < bonesOnThisVertex.size(); ++b)
for( unsigned int b = 0; b < bonesOnThisVertex.size(); ++b)
{
size_t newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
ai_assert( newBoneIndex != std::numeric_limits<size_t>::max() );
unsigned int newBoneIndex = mappedBoneIndex[ bonesOnThisVertex[b].first ];
ai_assert( newBoneIndex != std::numeric_limits<unsigned int>::max() );
aiVertexWeight* dstWeight = newMesh->mBones[newBoneIndex]->mWeights + newMesh->mBones[newBoneIndex]->mNumWeights;
newMesh->mBones[newBoneIndex]->mNumWeights++;
@ -383,22 +383,22 @@ void SplitByBoneCountProcess::UpdateNode( aiNode* pNode) const
// rebuild the node's mesh index list
if( pNode->mNumMeshes > 0 )
{
std::vector<size_t> newMeshList;
for( size_t a = 0; a < pNode->mNumMeshes; ++a)
std::vector<unsigned int> newMeshList;
for( unsigned int a = 0; a < pNode->mNumMeshes; ++a)
{
size_t srcIndex = pNode->mMeshes[a];
const std::vector<size_t>& replaceMeshes = mSubMeshIndices[srcIndex];
unsigned int srcIndex = pNode->mMeshes[a];
const std::vector<unsigned int>& replaceMeshes = mSubMeshIndices[srcIndex];
newMeshList.insert( newMeshList.end(), replaceMeshes.begin(), replaceMeshes.end());
}
delete pNode->mMeshes;
pNode->mNumMeshes = newMeshList.size();
pNode->mNumMeshes = static_cast<unsigned int>(newMeshList.size());
pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes);
}
// do that also recursively for all children
for( size_t a = 0; a < pNode->mNumChildren; ++a )
for( unsigned int a = 0; a < pNode->mNumChildren; ++a )
{
UpdateNode( pNode->mChildren[a]);
}

View File

@ -101,7 +101,7 @@ public:
size_t mMaxBoneCount;
/// Per mesh index: Array of indices of the new submeshes.
std::vector< std::vector<size_t> > mSubMeshIndices;
std::vector< std::vector<unsigned int> > mSubMeshIndices;
};
} // end of namespace Assimp

View File

@ -355,6 +355,10 @@ namespace glTF
{ return false; }
virtual ~Object() {}
//! Maps special IDs to another ID, where needed. Subclasses may override it (statically)
static const char* TranslateId(Asset& r, const char* id)
{ return id; }
};
@ -484,6 +488,8 @@ namespace glTF
bool IsSpecial() const
{ return mIsSpecial; }
static const char* TranslateId(Asset& r, const char* id);
};
@ -759,6 +765,7 @@ namespace glTF
virtual void WriteObjects(AssetWriter& writer) = 0;
};
template<class T>
class LazyDict;
@ -766,6 +773,7 @@ namespace glTF
template<class T>
void WriteLazyDict(LazyDict<T>& d, AssetWriter& w);
//! Manages lazy loading of the glTF top-level objects, and keeps a reference to them by ID
//! It is the owner the loaded objects, so when it is destroyed it also deletes them
template<class T>

View File

@ -184,6 +184,8 @@ Ref<T> LazyDict<T>::Get(unsigned int i)
template<class T>
Ref<T> LazyDict<T>::Get(const char* id)
{
id = T::TranslateId(mAsset, id);
typename Dict::iterator it = mObjsById.find(id);
if (it != mObjsById.end()) { // already created?
return Ref<T>(mObjs, it->second);
@ -191,7 +193,7 @@ Ref<T> LazyDict<T>::Get(const char* id)
// read it from the JSON object
if (!mDict) {
return Ref<T>(); // section is missing
throw DeadlyImportError("GLTF: Missing section \"" + std::string(mDictId) + "\"");
}
Value::MemberIterator obj = mDict->FindMember(id);
@ -242,6 +244,15 @@ inline Buffer::Buffer()
: byteLength(0), type(Type_arraybuffer), mIsSpecial(false)
{ }
inline const char* Buffer::TranslateId(Asset& r, const char* id)
{
// Compatibility with old spec
if (r.extensionsUsed.KHR_binary_glTF && strcmp(id, "KHR_binary_glTF") == 0) {
return "binary_glTF";
}
return id;
}
inline void Buffer::Read(Value& obj, Asset& r)
{
@ -266,10 +277,16 @@ inline void Buffer::Read(Value& obj, Asset& r)
this->mData.reset(data);
if (statedLength > 0 && this->byteLength != statedLength) {
throw DeadlyImportError("GLTF: buffer length mismatch");
throw DeadlyImportError("GLTF: buffer \"" + id + "\", expected " + std::to_string(statedLength) +
" bytes, but found " + std::to_string(dataURI.dataLength));
}
}
else { // assume raw data
if (statedLength != dataURI.dataLength) {
throw DeadlyImportError("GLTF: buffer \"" + id + "\", expected " + std::to_string(statedLength) +
" bytes, but found " + std::to_string(dataURI.dataLength));
}
this->mData.reset(new uint8_t[dataURI.dataLength]);
memcmp(dataURI.data, this->mData.get(), dataURI.dataLength);
}
@ -589,14 +606,16 @@ inline void Material::Read(Value& material, Asset& r)
else if (strcmp(t, "CONSTANT") == 0) technique = Technique_CONSTANT;
}
ReadMaterialProperty(r, *ext, "ambient", this->ambient);
ReadMaterialProperty(r, *ext, "diffuse", this->diffuse);
ReadMaterialProperty(r, *ext, "specular", this->specular);
if (Value* values = FindObject(*ext, "values")) {
ReadMaterialProperty(r, *values, "ambient", this->ambient);
ReadMaterialProperty(r, *values, "diffuse", this->diffuse);
ReadMaterialProperty(r, *values, "specular", this->specular);
ReadMember(*ext, "doubleSided", doubleSided);
ReadMember(*ext, "transparent", transparent);
ReadMember(*ext, "transparency", transparency);
ReadMember(*ext, "shininess", shininess);
ReadMember(*values, "doubleSided", doubleSided);
ReadMember(*values, "transparent", transparent);
ReadMember(*values, "transparency", transparency);
ReadMember(*values, "shininess", shininess);
}
}
}
}

View File

@ -305,7 +305,7 @@ namespace glTF {
}
AssetWriter::AssetWriter(Asset& a)
inline AssetWriter::AssetWriter(Asset& a)
: mDoc()
, mAsset(a)
, mAl(mDoc.GetAllocator())
@ -326,7 +326,7 @@ namespace glTF {
}
}
void AssetWriter::WriteFile(const char* path)
inline void AssetWriter::WriteFile(const char* path)
{
bool isBinary = mAsset.extensionsUsed.KHR_binary_glTF;
@ -363,7 +363,7 @@ namespace glTF {
}
}
void AssetWriter::WriteBinaryData(IOStream* outfile, size_t sceneLength)
inline void AssetWriter::WriteBinaryData(IOStream* outfile, size_t sceneLength)
{
//
// write the body data
@ -413,7 +413,7 @@ namespace glTF {
}
void AssetWriter::WriteMetadata()
inline void AssetWriter::WriteMetadata()
{
Value asset;
asset.SetObject();
@ -425,7 +425,7 @@ namespace glTF {
mDoc.AddMember("asset", asset, mAl);
}
void AssetWriter::WriteExtensionsUsed()
inline void AssetWriter::WriteExtensionsUsed()
{
Value exts;
exts.SetArray();

View File

@ -44,6 +44,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_GLTF_EXPORTER
#include "glTFExporter.h"
#include "Exceptional.h"
#include "StringComparison.h"
#include "ByteSwapper.h"
@ -54,7 +55,6 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assimp/material.h>
#include <assimp/scene.h>
#include <memory>
#include <memory>
#include "glTFAssetWriter.h"

View File

@ -53,6 +53,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "MakeVerboseFormat.h"
#include "glTFAsset.h"
// This is included here so WriteLazyDict<T>'s definition is found.
#include "glTFAssetWriter.h"
using namespace Assimp;
using namespace glTF;
@ -212,14 +214,14 @@ void glTFImporter::ImportMaterials(glTF::Asset& r)
}
inline void SetFace(aiFace& face, int a)
static inline void SetFace(aiFace& face, int a)
{
face.mNumIndices = 1;
face.mIndices = new unsigned int[1];
face.mIndices[0] = a;
}
inline void SetFace(aiFace& face, int a, int b)
static inline void SetFace(aiFace& face, int a, int b)
{
face.mNumIndices = 2;
face.mIndices = new unsigned int[2];
@ -227,7 +229,7 @@ inline void SetFace(aiFace& face, int a, int b)
face.mIndices[1] = b;
}
inline void SetFace(aiFace& face, int a, int b, int c)
static inline void SetFace(aiFace& face, int a, int b, int c)
{
face.mNumIndices = 3;
face.mIndices = new unsigned int[3];
@ -236,6 +238,18 @@ inline void SetFace(aiFace& face, int a, int b, int c)
face.mIndices[2] = c;
}
static inline bool CheckValidFacesIndices(aiFace* faces, unsigned nFaces, unsigned nVerts)
{
for (unsigned i = 0; i < nFaces; ++i) {
for (unsigned j = 0; j < faces[i].mNumIndices; ++j) {
unsigned idx = faces[i].mIndices[j];
if (idx >= nVerts)
return false;
}
}
return true;
}
void glTFImporter::ImportMeshes(glTF::Asset& r)
{
std::vector<aiMesh*> meshes;
@ -292,6 +306,11 @@ void glTFImporter::ImportMeshes(glTF::Asset& r)
for (size_t tc = 0; tc < attr.texcoord.size() && tc <= AI_MAX_NUMBER_OF_TEXTURECOORDS; ++tc) {
attr.texcoord[tc]->ExtractData(aim->mTextureCoords[tc]);
aim->mNumUVComponents[tc] = attr.texcoord[tc]->GetNumComponents();
aiVector3D* values = aim->mTextureCoords[tc];
for (unsigned int i = 0; i < aim->mNumVertices; ++i) {
values[i].y = 1 - values[i].y; // Flip Y coords
}
}
@ -302,7 +321,7 @@ void glTFImporter::ImportMeshes(glTF::Asset& r)
unsigned int count = prim.indices->count;
Accessor::Indexer data = prim.indices->GetIndexer();
assert(data.IsValid());
ai_assert(data.IsValid());
switch (prim.mode) {
case PrimitiveMode_POINTS: {
@ -367,6 +386,7 @@ void glTFImporter::ImportMeshes(glTF::Asset& r)
if (faces) {
aim->mFaces = faces;
aim->mNumFaces = nFaces;
ai_assert(CheckValidFacesIndices(faces, nFaces, aim->mNumVertices));
}
}
@ -464,7 +484,7 @@ aiNode* ImportNode(aiScene* pScene, glTF::Asset& r, std::vector<unsigned int>& m
}
}
aiMatrix4x4 matrix = ainode->mTransformation;
aiMatrix4x4& matrix = ainode->mTransformation;
if (node.matrix.isPresent) {
CopyValue(node.matrix.value, matrix);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,116 @@
Metric (key = "distance") {float {1.0}}
Metric (key = "angle") {float {1.0}}
Metric (key = "time") {float {1.0}}
Metric (key = "up") {string {"z"}}
GeometryNode $node1
{
Name {string {"Cube"}}
ObjectRef {ref {$geometry1}}
MaterialRef (index = 0) {ref {$material1}}
Transform
{
float[16]
{
{1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0}
}
}
}
LightNode $node2
{
Name {string {"Lamp"}}
ObjectRef {ref {$light1}}
Transform
{
float[16]
{
{-0.29086464643478394, 0.9551711678504944, -0.05518905818462372, 0.0,
-0.7711008191108704, -0.1998833566904068, 0.6045247316360474, 0.0,
0.5663931965827942, 0.21839119493961334, 0.7946722507476807, 0.0,
4.076245307922363, 1.0054539442062378, 5.903861999511719, 1.0}
}
}
}
CameraNode $node3
{
Name {string {"Camera"}}
ObjectRef {ref {$camera1}}
Transform
{
float[16]
{
{0.6858805418014526, 0.7276337742805481, -0.010816780850291252, 0.0,
-0.31737011671066284, 0.31246861815452576, 0.8953432440757751, 0.0,
0.6548618674278259, -0.6106656193733215, 0.4452453553676605, 0.0,
7.481131553649902, -6.5076398849487305, 5.34366512298584, 1.0}
}
}
}
GeometryObject $geometry1 // Cube
{
Mesh (primitive = "triangles")
{
VertexArray (attrib = "position")
{
float[3] // 24
{
{1.0, 0.9999999403953552, -1.0}, {1.0, -1.0, -1.0}, {-1.0000001192092896, -0.9999998211860657, -1.0}, {-0.9999996423721313, 1.0000003576278687, -1.0}, {1.0000004768371582, 0.999999463558197, 1.0}, {-0.9999999403953552, 1.0, 1.0}, {-1.0000003576278687, -0.9999996423721313, 1.0}, {0.9999993443489075, -1.0000005960464478, 1.0},
{1.0, 0.9999999403953552, -1.0}, {1.0000004768371582, 0.999999463558197, 1.0}, {0.9999993443489075, -1.0000005960464478, 1.0}, {1.0, -1.0, -1.0}, {1.0, -1.0, -1.0}, {0.9999993443489075, -1.0000005960464478, 1.0}, {-1.0000003576278687, -0.9999996423721313, 1.0}, {-1.0000001192092896, -0.9999998211860657, -1.0},
{-1.0000001192092896, -0.9999998211860657, -1.0}, {-1.0000003576278687, -0.9999996423721313, 1.0}, {-0.9999999403953552, 1.0, 1.0}, {-0.9999996423721313, 1.0000003576278687, -1.0}, {1.0000004768371582, 0.999999463558197, 1.0}, {1.0, 0.9999999403953552, -1.0}, {-0.9999996423721313, 1.0000003576278687, -1.0}, {-0.9999999403953552, 1.0, 1.0}
}
}
VertexArray (attrib = "normal")
{
float[3] // 24
{
{0.0, 0.0, -1.0}, {0.0, 0.0, -1.0}, {0.0, 0.0, -1.0}, {0.0, 0.0, -1.0}, {0.0, -0.0, 1.0}, {0.0, -0.0, 1.0}, {0.0, -0.0, 1.0}, {0.0, -0.0, 1.0},
{1.0, -2.8312206268310547e-07, 4.470341252726939e-08}, {1.0, -2.8312206268310547e-07, 4.470341252726939e-08}, {1.0, -2.8312206268310547e-07, 4.470341252726939e-08}, {1.0, -2.8312206268310547e-07, 4.470341252726939e-08}, {-2.8312206268310547e-07, -1.0, -1.0430819230577981e-07}, {-2.8312206268310547e-07, -1.0, -1.0430819230577981e-07}, {-2.8312206268310547e-07, -1.0, -1.0430819230577981e-07}, {-2.8312206268310547e-07, -1.0, -1.0430819230577981e-07},
{-1.0, 2.2351744632942427e-07, -1.341104365337742e-07}, {-1.0, 2.2351744632942427e-07, -1.341104365337742e-07}, {-1.0, 2.2351744632942427e-07, -1.341104365337742e-07}, {-1.0, 2.2351744632942427e-07, -1.341104365337742e-07}, {2.384185791015625e-07, 1.0, 2.086162567138672e-07}, {2.384185791015625e-07, 1.0, 2.086162567138672e-07}, {2.384185791015625e-07, 1.0, 2.086162567138672e-07}, {2.384185791015625e-07, 1.0, 2.086162567138672e-07}
}
}
IndexArray
{
unsigned_int32[3] // 12
{
{0, 1, 2}, {0, 2, 3}, {4, 5, 6}, {4, 6, 7}, {8, 9, 10}, {8, 10, 11}, {12, 13, 14}, {12, 14, 15}, {16, 17, 18}, {16, 18, 19}, {20, 21, 22}, {20, 22, 23}
}
}
}
}
LightObject $light1 (type = "point") // Lamp
{
Color (attrib = "light") {float[3] {{1.0, 1.0, 1.0}}}
Atten (curve = "inverse_square")
{
Param (attrib = "scale") {float {5.47722400800463}}
}
}
CameraObject $camera1 // Camera
{
Param (attrib = "fov") {float {0.8575560450553894}}
Param (attrib = "near") {float {0.10000000149011612}}
Param (attrib = "far") {float {100.0}}
}
Material $material1
{
Name {string {"Material"}}
Color (attrib = "diffuse") {float[3] {{0.6400000190734865, 0.6400000190734865, 0.6400000190734865}}}
Color (attrib = "specular") {float[3] {{0.5, 0.5, 0.5}}}
Param (attrib = "specular_power") {float {50}}
}

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

Binary file not shown.

After

Width:  |  Height:  |  Size: 840 B

View File

@ -0,0 +1,269 @@
{
"accessors": {
"accessor_21": {
"bufferView": "bufferView_29",
"byteOffset": 0,
"byteStride": 0,
"componentType": 5123,
"count": 36,
"type": "SCALAR"
},
"accessor_23": {
"bufferView": "bufferView_30",
"byteOffset": 0,
"byteStride": 12,
"componentType": 5126,
"count": 24,
"max": [
0.5,
0.5,
0.5
],
"min": [
-0.5,
-0.5,
-0.5
],
"type": "VEC3"
},
"accessor_25": {
"bufferView": "bufferView_30",
"byteOffset": 288,
"byteStride": 12,
"componentType": 5126,
"count": 24,
"max": [
1,
1,
1
],
"min": [
-1,
-1,
-1
],
"type": "VEC3"
},
"accessor_27": {
"bufferView": "bufferView_30",
"byteOffset": 576,
"byteStride": 8,
"componentType": 5126,
"count": 24,
"max": [
6,
1
],
"min": [
0,
0
],
"type": "VEC2"
}
},
"animations": {},
"asset": {
"generator": "collada2gltf@027f74366341d569dea42e9a68b7104cc3892054",
"premultipliedAlpha": true,
"profile": {
"api": "WebGL",
"version": "1.0.2"
},
"version": "1.0"
},
"bufferViews": {
"bufferView_29": {
"buffer": "BoxTextured",
"byteLength": 72,
"byteOffset": 0,
"target": 34963
},
"bufferView_30": {
"buffer": "BoxTextured",
"byteLength": 768,
"byteOffset": 72,
"target": 34962
}
},
"buffers": {
"BoxTextured": {
"byteLength": 840,
"type": "arraybuffer",
"uri": "BoxTextured.bin"
}
},
"extensionsUsed": [
"KHR_materials_common"
],
"images": {
"Image0001": {
"name": "Image0001",
"uri": "CesiumLogoFlat.png"
}
},
"materials": {
"Effect-Texture": {
"extensions": {
"KHR_materials_common": {
"doubleSided": false,
"jointCount": 0,
"technique": "PHONG",
"transparent": false,
"values": {
"diffuse": "texture_Image0001",
"shininess": 256,
"specular": [
0.2,
0.2,
0.2,
1
]
}
}
},
"name": "Texture"
}
},
"meshes": {
"Geometry-mesh002": {
"name": "Mesh",
"primitives": [
{
"attributes": {
"NORMAL": "accessor_25",
"POSITION": "accessor_23",
"TEXCOORD_0": "accessor_27"
},
"indices": "accessor_21",
"material": "Effect-Texture",
"mode": 4
}
]
}
},
"nodes": {
"Geometry-mesh002Node": {
"children": [],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"meshes": [
"Geometry-mesh002"
],
"name": "Mesh"
},
"groupLocator030Node": {
"children": [
"txtrLocator026Node"
],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"name": "Texture_Group"
},
"node_3": {
"children": [
"Geometry-mesh002Node",
"groupLocator030Node"
],
"matrix": [
1,
0,
0,
0,
0,
0,
-1,
0,
0,
1,
0,
0,
0,
0,
0,
1
],
"name": "Y_UP_Transform"
},
"txtrLocator026Node": {
"children": [],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"name": "Cesium_Logo_Flat__Image___Texture_"
}
},
"samplers": {
"sampler_0": {
"magFilter": 9729,
"minFilter": 9987,
"wrapS": 10497,
"wrapT": 10497
}
},
"scene": "defaultScene",
"scenes": {
"defaultScene": {
"nodes": [
"node_3"
]
}
},
"skins": {},
"textures": {
"texture_Image0001": {
"format": 6408,
"internalFormat": 6408,
"sampler": "sampler_0",
"source": "Image0001",
"target": 3553,
"type": 5121
}
}
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 840 B

View File

@ -0,0 +1,339 @@
{
"accessors": {
"accessor_21": {
"bufferView": "bufferView_29",
"byteOffset": 0,
"byteStride": 0,
"componentType": 5123,
"count": 36,
"type": "SCALAR"
},
"accessor_23": {
"bufferView": "bufferView_30",
"byteOffset": 0,
"byteStride": 12,
"componentType": 5126,
"count": 24,
"max": [
0.5,
0.5,
0.5
],
"min": [
-0.5,
-0.5,
-0.5
],
"type": "VEC3"
},
"accessor_25": {
"bufferView": "bufferView_30",
"byteOffset": 288,
"byteStride": 12,
"componentType": 5126,
"count": 24,
"max": [
1,
1,
1
],
"min": [
-1,
-1,
-1
],
"type": "VEC3"
},
"accessor_27": {
"bufferView": "bufferView_30",
"byteOffset": 576,
"byteStride": 8,
"componentType": 5126,
"count": 24,
"max": [
6,
1
],
"min": [
0,
0
],
"type": "VEC2"
}
},
"animations": {},
"asset": {
"generator": "collada2gltf@027f74366341d569dea42e9a68b7104cc3892054",
"premultipliedAlpha": true,
"profile": {
"api": "WebGL",
"version": "1.0.2"
},
"version": "1.0"
},
"bufferViews": {
"bufferView_29": {
"buffer": "BoxTextured",
"byteLength": 72,
"byteOffset": 0,
"target": 34963
},
"bufferView_30": {
"buffer": "BoxTextured",
"byteLength": 768,
"byteOffset": 72,
"target": 34962
}
},
"buffers": {
"BoxTextured": {
"byteLength": 840,
"type": "arraybuffer",
"uri": "BoxTextured.bin"
}
},
"images": {
"Image0001": {
"name": "Image0001",
"uri": "CesiumLogoFlat.png"
}
},
"materials": {
"Effect-Texture": {
"name": "Texture",
"technique": "technique0",
"values": {
"diffuse": "texture_Image0001",
"shininess": 256,
"specular": [
0.2,
0.2,
0.2,
1
]
}
}
},
"meshes": {
"Geometry-mesh002": {
"name": "Mesh",
"primitives": [
{
"attributes": {
"NORMAL": "accessor_25",
"POSITION": "accessor_23",
"TEXCOORD_0": "accessor_27"
},
"indices": "accessor_21",
"material": "Effect-Texture",
"mode": 4
}
]
}
},
"nodes": {
"Geometry-mesh002Node": {
"children": [],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"meshes": [
"Geometry-mesh002"
],
"name": "Mesh"
},
"groupLocator030Node": {
"children": [
"txtrLocator026Node"
],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"name": "Texture_Group"
},
"node_3": {
"children": [
"Geometry-mesh002Node",
"groupLocator030Node"
],
"matrix": [
1,
0,
0,
0,
0,
0,
-1,
0,
0,
1,
0,
0,
0,
0,
0,
1
],
"name": "Y_UP_Transform"
},
"txtrLocator026Node": {
"children": [],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"name": "Cesium_Logo_Flat__Image___Texture_"
}
},
"programs": {
"program_0": {
"attributes": [
"a_normal",
"a_position",
"a_texcoord0"
],
"fragmentShader": "BoxTextured0FS",
"vertexShader": "BoxTextured0VS"
}
},
"samplers": {
"sampler_0": {
"magFilter": 9729,
"minFilter": 9987,
"wrapS": 10497,
"wrapT": 10497
}
},
"scene": "defaultScene",
"scenes": {
"defaultScene": {
"nodes": [
"node_3"
]
}
},
"shaders": {
"BoxTextured0FS": {
"type": 35632,
"uri": "BoxTextured0FS.glsl"
},
"BoxTextured0VS": {
"type": 35633,
"uri": "BoxTextured0VS.glsl"
}
},
"skins": {},
"techniques": {
"technique0": {
"attributes": {
"a_normal": "normal",
"a_position": "position",
"a_texcoord0": "texcoord0"
},
"parameters": {
"diffuse": {
"type": 35678
},
"modelViewMatrix": {
"semantic": "MODELVIEW",
"type": 35676
},
"normal": {
"semantic": "NORMAL",
"type": 35665
},
"normalMatrix": {
"semantic": "MODELVIEWINVERSETRANSPOSE",
"type": 35675
},
"position": {
"semantic": "POSITION",
"type": 35665
},
"projectionMatrix": {
"semantic": "PROJECTION",
"type": 35676
},
"shininess": {
"type": 5126
},
"specular": {
"type": 35666
},
"texcoord0": {
"semantic": "TEXCOORD_0",
"type": 35664
}
},
"program": "program_0",
"states": {
"enable": [
2929,
2884
]
},
"uniforms": {
"u_diffuse": "diffuse",
"u_modelViewMatrix": "modelViewMatrix",
"u_normalMatrix": "normalMatrix",
"u_projectionMatrix": "projectionMatrix",
"u_shininess": "shininess",
"u_specular": "specular"
}
}
},
"textures": {
"texture_Image0001": {
"format": 6408,
"internalFormat": 6408,
"sampler": "sampler_0",
"source": "Image0001",
"target": 3553,
"type": 5121
}
}
}

View File

@ -0,0 +1,18 @@
precision highp float;
varying vec3 v_normal;
varying vec2 v_texcoord0;
uniform sampler2D u_diffuse;
uniform vec4 u_specular;
uniform float u_shininess;
void main(void) {
vec3 normal = normalize(v_normal);
vec4 color = vec4(0., 0., 0., 0.);
vec4 diffuse = vec4(0., 0., 0., 1.);
vec4 specular;
diffuse = texture2D(u_diffuse, v_texcoord0);
specular = u_specular;
diffuse.xyz *= max(dot(normal,vec3(0.,0.,1.)), 0.);
color.xyz += diffuse.xyz;
color = vec4(color.rgb * diffuse.a, diffuse.a);
gl_FragColor = color;
}

View File

@ -0,0 +1,15 @@
precision highp float;
attribute vec3 a_position;
attribute vec3 a_normal;
varying vec3 v_normal;
uniform mat3 u_normalMatrix;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
attribute vec2 a_texcoord0;
varying vec2 v_texcoord0;
void main(void) {
vec4 pos = u_modelViewMatrix * vec4(a_position,1.0);
v_normal = u_normalMatrix * a_normal;
v_texcoord0 = a_texcoord0;
gl_Position = u_projectionMatrix * pos;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 648 B

View File

@ -0,0 +1,17 @@
precision highp float;
varying vec3 v_normal;
uniform vec4 u_diffuse;
uniform vec4 u_specular;
uniform float u_shininess;
void main(void) {
vec3 normal = normalize(v_normal);
vec4 color = vec4(0., 0., 0., 0.);
vec4 diffuse = vec4(0., 0., 0., 1.);
vec4 specular;
diffuse = u_diffuse;
specular = u_specular;
diffuse.xyz *= max(dot(normal,vec3(0.,0.,1.)), 0.);
color.xyz += diffuse.xyz;
color = vec4(color.rgb * diffuse.a, diffuse.a);
gl_FragColor = color;
}

View File

@ -0,0 +1,12 @@
precision highp float;
attribute vec3 a_position;
attribute vec3 a_normal;
varying vec3 v_normal;
uniform mat3 u_normalMatrix;
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
void main(void) {
vec4 pos = u_modelViewMatrix * vec4(a_position,1.0);
v_normal = u_normalMatrix * a_normal;
gl_Position = u_projectionMatrix * pos;
}

View File

@ -0,0 +1,276 @@
{
"accessors": {
"accessor_21": {
"bufferView": "bufferView_29",
"byteOffset": 0,
"byteStride": 0,
"componentType": 5123,
"count": 36,
"type": "SCALAR"
},
"accessor_23": {
"bufferView": "bufferView_30",
"byteOffset": 0,
"byteStride": 12,
"componentType": 5126,
"count": 24,
"max": [
0.5,
0.5,
0.5
],
"min": [
-0.5,
-0.5,
-0.5
],
"type": "VEC3"
},
"accessor_25": {
"bufferView": "bufferView_30",
"byteOffset": 288,
"byteStride": 12,
"componentType": 5126,
"count": 24,
"max": [
1,
1,
1
],
"min": [
-1,
-1,
-1
],
"type": "VEC3"
}
},
"animations": {},
"asset": {
"generator": "collada2gltf@027f74366341d569dea42e9a68b7104cc3892054",
"premultipliedAlpha": true,
"profile": {
"api": "WebGL",
"version": "1.0.2"
},
"version": "1.0"
},
"bufferViews": {
"bufferView_29": {
"buffer": "Box",
"byteLength": 72,
"byteOffset": 0,
"target": 34963
},
"bufferView_30": {
"buffer": "Box",
"byteLength": 576,
"byteOffset": 72,
"target": 34962
}
},
"buffers": {
"Box": {
"byteLength": 648,
"type": "arraybuffer",
"uri": "Box.bin"
}
},
"materials": {
"Effect-Red": {
"name": "Red",
"technique": "technique0",
"values": {
"diffuse": [
0.8,
0,
0,
1
],
"shininess": 256,
"specular": [
0.2,
0.2,
0.2,
1
]
}
}
},
"meshes": {
"Geometry-mesh002": {
"name": "Mesh",
"primitives": [
{
"attributes": {
"NORMAL": "accessor_25",
"POSITION": "accessor_23"
},
"indices": "accessor_21",
"material": "Effect-Red",
"mode": 4
}
]
}
},
"nodes": {
"BottomBox": {
"children": [],
"matrix": [
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1,
0,
0,
0,
0,
1
],
"meshes": [
"Geometry-mesh002"
],
"name": "BottomBox"
},
"TopBox": {
"children": [],
"matrix": [
0.5,
0,
0,
0,
0,
0.5,
0,
0,
0,
0,
0.5,
0,
0,
0,
1,
1
],
"meshes": [
"Geometry-mesh002"
],
"name": "TopBox"
},
"node_1": {
"children": [
"BottomBox",
"TopBox"
],
"matrix": [
1,
0,
0,
0,
0,
0,
-1,
0,
0,
1,
0,
0,
0,
0,
0,
1
],
"name": "Y_UP_Transform"
}
},
"programs": {
"program_0": {
"attributes": [
"a_normal",
"a_position"
],
"fragmentShader": "Box0FS",
"vertexShader": "Box0VS"
}
},
"scene": "defaultScene",
"scenes": {
"defaultScene": {
"nodes": [
"node_1"
]
}
},
"shaders": {
"Box0FS": {
"type": 35632,
"uri": "Box0FS.glsl"
},
"Box0VS": {
"type": 35633,
"uri": "Box0VS.glsl"
}
},
"skins": {},
"techniques": {
"technique0": {
"attributes": {
"a_normal": "normal",
"a_position": "position"
},
"parameters": {
"diffuse": {
"type": 35666
},
"modelViewMatrix": {
"semantic": "MODELVIEW",
"type": 35676
},
"normal": {
"semantic": "NORMAL",
"type": 35665
},
"normalMatrix": {
"semantic": "MODELVIEWINVERSETRANSPOSE",
"type": 35675
},
"position": {
"semantic": "POSITION",
"type": 35665
},
"projectionMatrix": {
"semantic": "PROJECTION",
"type": 35676
},
"shininess": {
"type": 5126
},
"specular": {
"type": 35666
}
},
"program": "program_0",
"states": {
"enable": [
2929,
2884
]
},
"uniforms": {
"u_diffuse": "diffuse",
"u_modelViewMatrix": "modelViewMatrix",
"u_normalMatrix": "normalMatrix",
"u_projectionMatrix": "projectionMatrix",
"u_shininess": "shininess",
"u_specular": "specular"
}
}
}
}

Binary file not shown.

View File

@ -53,7 +53,7 @@ import os
# pond.0.ply - loads with 40k identical triangles, causing postprocessing
# to have quadratic runtime.
# -------------------------------------------------------------------------------
files_to_ignore = ["pond.0.ply", "Example.ogex"]
files_to_ignore = ["pond.0.ply"]
# -------------------------------------------------------------------------------
# List of file extensions to be excluded from the regression suite