- IFC: implement the IfcRevolvedAreaSolid and IfcCircleProfileDef entities. Improve vertical extrusion code.

git-svn-id: https://assimp.svn.sourceforge.net/svnroot/assimp/trunk@998 67173fc5-114c-0410-ac8e-9d2fd5bffc1f
pull/1/head
aramis_acg 2011-05-10 12:30:13 +00:00
parent c05acabea9
commit f64f0446db
4 changed files with 311 additions and 52 deletions

View File

@ -93,6 +93,7 @@ struct ConversionData
{
ConversionData(const STEP::DB& db, const IFC::IfcProject& proj, aiScene* out,const IFCImporter::Settings& settings)
: len_scale(1.0)
, angle_scale(1.0)
, db(db)
, proj(proj)
, out(out)
@ -104,7 +105,8 @@ struct ConversionData
std::for_each(materials.begin(),materials.end(),delete_fun<aiMaterial>());
}
float len_scale;
float len_scale, angle_scale;
bool plane_angle_in_radians;
const STEP::DB& db;
const IFC::IfcProject& proj;
@ -172,6 +174,7 @@ void ProcessSpatialStructures(ConversionData& conv);
aiNode* ProcessSpatialStructure(aiNode* parent, const IFC::IfcProduct& el ,ConversionData& conv);
void ProcessProductRepresentation(const IFC::IfcProduct& el, aiNode* nd, ConversionData& conv);
void MakeTreeRelative(ConversionData& conv);
void ConvertUnit(const EXPRESS::DataType* dt,ConversionData& conv);
} // anon
@ -369,25 +372,61 @@ float ConvertSIPrefix(const std::string& prefix)
}
// ------------------------------------------------------------------------------------------------
void SetUnits(ConversionData& conv)
void ConvertUnit(const IFC::IfcNamedUnit& unit,ConversionData& conv)
{
// see if we can determine the coordinate space used to express
for(size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i ) {
try {
const EXPRESS::ENTITY& e = conv.proj.UnitsInContext->Units[i]->To<IFC::ENTITY>();
const IFC::IfcSIUnit& si = conv.db.MustGetObject(e).To<IFC::IfcSIUnit>();
if(const IFC::IfcSIUnit* const si = unit.ToPtr<IFC::IfcSIUnit>()) {
if(si.UnitType == "LENGTHUNIT" && si.Prefix) {
conv.len_scale = ConvertSIPrefix(si.Prefix);
if(si->UnitType == "LENGTHUNIT") {
conv.len_scale = si->Prefix ? ConvertSIPrefix(si->Prefix) : 1.f;
IFCImporter::LogDebug("got units used for lengths");
}
if(si->UnitType == "PLANEANGLEUNIT") {
if (si->Name != "RADIAN") {
IFCImporter::LogWarn("expected base unit for angles to be radian");
}
}
}
else if(const IFC::IfcConversionBasedUnit* const convu = unit.ToPtr<IFC::IfcConversionBasedUnit>()) {
if(convu->UnitType == "PLANEANGLEUNIT") {
try {
conv.angle_scale = convu->ConversionFactor->ValueComponent->To<EXPRESS::REAL>();
ConvertUnit(convu->ConversionFactor->UnitComponent,conv);
IFCImporter::LogDebug("got units used for angles");
}
catch(std::bad_cast&) {
// not SI unit, not implemented
continue;
IFCImporter::LogError("skipping unknown IfcConversionBasedUnit.ValueComponent entry - expected REAL");
}
}
}
}
// ------------------------------------------------------------------------------------------------
void ConvertUnit(const EXPRESS::DataType* dt,ConversionData& conv)
{
try {
const EXPRESS::ENTITY& e = dt->To<IFC::ENTITY>();
const IFC::IfcNamedUnit& unit = e.ResolveSelect<IFC::IfcNamedUnit>(conv.db);
if(unit.UnitType != "LENGTHUNIT" && unit.UnitType != "PLANEANGLEUNIT") {
return;
}
ConvertUnit(unit,conv);
}
catch(std::bad_cast&) {
// not entity, somehow
IFCImporter::LogError("skipping unknown IfcUnit entry - expected entity");
}
}
// ------------------------------------------------------------------------------------------------
void SetUnits(ConversionData& conv)
{
// see if we can determine the coordinate space used to express.
for(size_t i = 0; i < conv.proj.UnitsInContext->Units.size(); ++i ) {
ConvertUnit(conv.proj.UnitsInContext->Units[i],conv);
}
}
// ------------------------------------------------------------------------------------------------
@ -502,6 +541,18 @@ void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement2D& in,
AssignMatrixAxes(out,x,y,aiVector3D(0.f,0.f,1.f));
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(aiVector3D& axis, aiVector3D& pos, const IFC::IfcAxis1Placement& in, ConversionData& conv)
{
ConvertCartesianPoint(pos,in.Location);
if (in.Axis) {
ConvertDirection(axis,in.Axis.Get());
}
else {
axis = aiVector3D(0.f,0.f,1.f);
}
}
// ------------------------------------------------------------------------------------------------
void ConvertAxisPlacement(aiMatrix4x4& out, const IFC::IfcAxis2Placement& in, ConversionData& conv)
{
@ -790,7 +841,7 @@ void ProcessOpenProfile(const IFC::IfcArbitraryOpenProfileDef& def, TempMesh& me
// ------------------------------------------------------------------------------------------------
void ProcessParametrizedProfile(const IFC::IfcParameterizedProfileDef& def, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcRectangleProfileDef* cprofile = def.ToPtr<IFC::IfcRectangleProfileDef>()) {
if(const IFC::IfcRectangleProfileDef* const cprofile = def.ToPtr<IFC::IfcRectangleProfileDef>()) {
const float x = cprofile->XDim*0.5f, y = cprofile->YDim*0.5f;
meshout.verts.reserve(meshout.verts.size()+4);
@ -800,6 +851,22 @@ void ProcessParametrizedProfile(const IFC::IfcParameterizedProfileDef& def, Temp
meshout.verts.push_back( aiVector3D( x,-y, 0.f ));
meshout.vertcnt.push_back(4);
}
else if( const IFC::IfcCircleProfileDef* const circle = def.ToPtr<IFC::IfcCircleProfileDef>()) {
if( const IFC::IfcCircleHollowProfileDef* const hollow = def.ToPtr<IFC::IfcCircleHollowProfileDef>()) {
// TODO
}
const size_t segments = 32;
const float delta = AI_MATH_TWO_PI_F/segments, radius = circle->Radius;
meshout.verts.reserve(segments);
float angle = 0.f;
for(size_t i = 0; i < segments; ++i, angle += delta) {
meshout.verts.push_back( aiVector3D( cos(angle)*radius, sin(angle)*radius, 0.f ));
}
meshout.vertcnt.push_back(segments);
}
else {
IFCImporter::LogWarn("skipping unknown IfcParameterizedProfileDef entity, type is " + def.GetClassName());
return;
@ -814,24 +881,145 @@ void ProcessParametrizedProfile(const IFC::IfcParameterizedProfileDef& def, Temp
}
// ------------------------------------------------------------------------------------------------
void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
bool ProcessProfile(const IFC::IfcProfileDef& prof, TempMesh& meshout, ConversionData& conv)
{
TempMesh meshout;
if(const IFC::IfcArbitraryClosedProfileDef* cprofile = solid.SweptArea->ToPtr<IFC::IfcArbitraryClosedProfileDef>()) {
if(const IFC::IfcArbitraryClosedProfileDef* const cprofile = prof.ToPtr<IFC::IfcArbitraryClosedProfileDef>()) {
ProcessClosedProfile(*cprofile,meshout,conv);
}
else if(const IFC::IfcArbitraryOpenProfileDef* copen = solid.SweptArea->ToPtr<IFC::IfcArbitraryOpenProfileDef>()) {
else if(const IFC::IfcArbitraryOpenProfileDef* const copen = prof.ToPtr<IFC::IfcArbitraryOpenProfileDef>()) {
ProcessOpenProfile(*copen,meshout,conv);
}
else if(const IFC::IfcParameterizedProfileDef* cparam = solid.SweptArea->ToPtr<IFC::IfcParameterizedProfileDef>()) {
else if(const IFC::IfcParameterizedProfileDef* const cparam = prof.ToPtr<IFC::IfcParameterizedProfileDef>()) {
ProcessParametrizedProfile(*cparam,meshout,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcProfileDef entity, type is " + solid.SweptArea->GetClassName());
IFCImporter::LogWarn("skipping unknown IfcProfileDef entity, type is " + prof.GetClassName());
return false;
}
return true;
}
// ------------------------------------------------------------------------------------------------
void FixupFaceOrientation(TempMesh& result)
{
aiVector3D vavg;
BOOST_FOREACH(aiVector3D& v, result.verts) {
vavg += v;
}
// fixup face orientation.
vavg /= static_cast<float>( result.verts.size() );
size_t c = 0;
BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
if (cnt>2){
const aiVector3D& thisvert = result.verts[c];
const aiVector3D normal((thisvert-result.verts[c+1])^(thisvert-result.verts[c+2]));
if (normal*(thisvert-vavg) < 0) {
std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
}
}
c += cnt;
}
}
// ------------------------------------------------------------------------------------------------
void ProcessRevolvedAreaSolid(const IFC::IfcRevolvedAreaSolid& solid, TempMesh& result, ConversionData& conv)
{
TempMesh meshout;
// first read the profile description
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
return;
}
if(meshout.verts.size()<=1) {
aiVector3D axis, pos;
ConvertAxisPlacement(axis,pos,solid.Axis,conv);
aiMatrix4x4 tb0,tb1;
aiMatrix4x4::Translation(pos,tb0);
aiMatrix4x4::Translation(-pos,tb1);
const std::vector<aiVector3D>& in = meshout.verts;
const size_t size=in.size();
bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
const float max_angle = solid.Angle*conv.angle_scale;
if(fabs(max_angle) < 1e-3) {
if(has_area) {
result = meshout;
}
return;
}
const unsigned int cnt_segments = std::max(2u,static_cast<unsigned int>(16 * fabs(max_angle)/AI_MATH_HALF_PI_F));
const float delta = max_angle/cnt_segments;
has_area = has_area && fabs(max_angle) < AI_MATH_TWO_PI_F*0.99;
result.verts.reserve(size*((cnt_segments+1)*4+(has_area?2:0)));
result.vertcnt.reserve(size*cnt_segments+2);
aiMatrix4x4 rot;
rot = tb0 * aiMatrix4x4::Rotation(delta,axis,rot) * tb1;
size_t base = 0;
std::vector<aiVector3D>& out = result.verts;
// dummy data to simplify later processing
for(size_t i = 0; i < size; ++i) {
out.insert(out.end(),4,in[i]);
}
for(unsigned int seg = 0; seg < cnt_segments; ++seg) {
for(size_t i = 0; i < size; ++i) {
const size_t next = (i+1)%size;
result.vertcnt.push_back(4);
const aiVector3D& base_0 = out[base+i*4+3],base_1 = out[base+next*4+3];
out.push_back(base_0);
out.push_back(base_1);
out.push_back(rot*base_1);
out.push_back(rot*base_0);
}
base += size*4;
}
out.erase(out.begin(),out.begin()+size*4);
if(has_area) {
// leave the triangulation of the profile area to the ear cutting
// implementation in aiProcess_Triangulate - for now we just
// feed in two huge polygons.
base -= size*8;
for(size_t i = size; i--; ) {
out.push_back(out[base+i*4+3]);
}
for(size_t i = 0; i < size; ++i ) {
out.push_back(out[i*4]);
}
result.vertcnt.push_back(size);
result.vertcnt.push_back(size);
}
aiMatrix4x4 trafo;
ConvertAxisPlacement(trafo, solid.Position,conv);
BOOST_FOREACH(aiVector3D& v, out) {
v *= trafo;
}
FixupFaceOrientation(result);
IFCImporter::LogDebug("generate mesh procedurally by radial extrusion (IfcRevolvedAreaSolid)");
}
// ------------------------------------------------------------------------------------------------
void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
{
TempMesh meshout;
// first read the profile description
if(!ProcessProfile(*solid.SweptArea,meshout,conv) || meshout.verts.size()<=1) {
return;
}
@ -848,6 +1036,12 @@ void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh&
const size_t size=in.size();
const bool has_area = solid.SweptArea->ProfileType == "AREA" && size>2;
if(solid.Depth < 1e-3) {
if(has_area) {
meshout = result;
}
return;
}
result.verts.reserve(size*(has_area?4:2));
result.vertcnt.reserve(meshout.vertcnt.size()+2);
@ -866,7 +1060,7 @@ void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh&
if(has_area) {
// leave the triangulation of the profile area to the ear cutting
// implementation in aiProcess_Triangulate - for now we just
// feed in a possibly huge polygon.
// feed in two huge polygons.
for(size_t i = size; i--; ) {
result.verts.push_back(in[i]+dir);
}
@ -880,36 +1074,23 @@ void ProcessExtrudedAreaSolid(const IFC::IfcExtrudedAreaSolid& solid, TempMesh&
aiMatrix4x4 trafo;
ConvertAxisPlacement(trafo, solid.Position,conv);
aiVector3D vavg;
BOOST_FOREACH(aiVector3D& v, result.verts) {
v *= trafo;
vavg += v;
}
// fixup face orientation.
vavg /= static_cast<float>( result.verts.size() );
size_t c = 0;
BOOST_FOREACH(unsigned int cnt, result.vertcnt) {
if (cnt>2){
const aiVector3D& thisvert = result.verts[c];
const aiVector3D normal((thisvert-result.verts[c+1])^(thisvert-result.verts[c+2]));
if (normal*(thisvert-vavg) < 0) {
std::reverse(result.verts.begin()+c,result.verts.begin()+cnt+c);
}
}
c += cnt;
}
FixupFaceOrientation(result);
IFCImporter::LogDebug("generate mesh procedurally by extrusion (IfcExtrudedAreaSolid)");
}
// ------------------------------------------------------------------------------------------------
void ProcessSweptAreaSolid(const IFC::IfcSweptAreaSolid& swept, TempMesh& meshout, ConversionData& conv)
{
if(const IFC::IfcExtrudedAreaSolid* solid = swept.ToPtr<IFC::IfcExtrudedAreaSolid>()) {
if(const IFC::IfcExtrudedAreaSolid* const solid = swept.ToPtr<IFC::IfcExtrudedAreaSolid>()) {
ProcessExtrudedAreaSolid(*solid,meshout,conv);
}
else if(const IFC::IfcRevolvedAreaSolid* const rev = swept.ToPtr<IFC::IfcRevolvedAreaSolid>()) {
ProcessRevolvedAreaSolid(*rev,meshout,conv);
}
else {
IFCImporter::LogWarn("skipping unknown IfcSweptAreaSolid entity, type is " + swept.GetClassName());
}
@ -923,7 +1104,7 @@ void ProcessBoolean(const IFC::IfcBooleanResult& boolean, TempMesh& meshout, Con
ProcessBoolean(*op0,meshout,conv);
}
else if (const IFC::IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IFC::IfcSweptAreaSolid>(conv.db)) {
//ProcessSweptAreaSolid(*swept,meshout,conv);
ProcessSweptAreaSolid(*swept,meshout,conv);
// XXX
}
}
@ -1081,7 +1262,6 @@ bool ProcessGeometricItem(const IFC::IfcGeometricRepresentationItem& geo, std::v
}
catch(std::bad_cast&) {
IFCImporter::LogWarn("unexpected type error, IfcShell ought to inherit from IfcConnectedFaceSet");
continue;
}
}
}
@ -1091,6 +1271,11 @@ bool ProcessGeometricItem(const IFC::IfcGeometricRepresentationItem& geo, std::v
else if(const IFC::IfcManifoldSolidBrep* brep = geo.ToPtr<IFC::IfcManifoldSolidBrep>()) {
ProcessConnectedFaceSet(brep->Outer,meshtmp,conv);
}
else if(const IFC::IfcFaceBasedSurfaceModel* surf = geo.ToPtr<IFC::IfcFaceBasedSurfaceModel>()) {
BOOST_FOREACH(const IFC::IfcConnectedFaceSet& fc, surf->FbsmFaces) {
ProcessConnectedFaceSet(fc,meshtmp,conv);
}
}
else if(const IFC::IfcBooleanResult* boolean = geo.ToPtr<IFC::IfcBooleanResult>()) {
ProcessBoolean(*boolean,meshtmp,conv);
}
@ -1214,7 +1399,7 @@ void ProcessMappedItem(const IFC::IfcMappedItem& mapped, aiNode* nd_src, std::ve
const IFC::IfcRepresentation& repr = mapped.MappingSource->MappedRepresentation;
BOOST_FOREACH(const IFC::IfcRepresentationItem& item, repr.Items) {
if(!ProcessRepresentationItem(item,meshes,conv)) {
IFCImporter::LogWarn("skipping unknown IfcMappedItem entity, type is " + item.GetClassName());
IFCImporter::LogWarn("skipping unknown mapped entity, type is " + item.GetClassName());
}
}
AssignAddedMeshes(meshes,nd.get(),conv);

View File

@ -501,7 +501,7 @@ namespace {
, SchemaEntry("ifcfaceouterbound",&STEP::ObjectHelper<IfcFaceOuterBound,0>::Construct )
, SchemaEntry("ifcfeatureelementaddition",&STEP::ObjectHelper<IfcFeatureElementAddition,0>::Construct )
, SchemaEntry("ifcnamedunit",&STEP::ObjectHelper<IfcNamedUnit,2>::Construct )
, SchemaEntry("ifcconversionbasedunit",&STEP::ObjectHelper<NotImplemented,0>::Construct )
, SchemaEntry("ifcconversionbasedunit",&STEP::ObjectHelper<IfcConversionBasedUnit,2>::Construct )
, SchemaEntry("ifcstructuralloadsingleforce",&STEP::ObjectHelper<NotImplemented,0>::Construct )
, SchemaEntry("ifcheatexchangertype",&STEP::ObjectHelper<IfcHeatExchangerType,1>::Construct )
, SchemaEntry("ifcpresentationstyleassignment",&STEP::ObjectHelper<IfcPresentationStyleAssignment,1>::Construct )
@ -637,7 +637,7 @@ namespace {
, SchemaEntry("ifcdampertype",&STEP::ObjectHelper<IfcDamperType,1>::Construct )
, SchemaEntry("ifcsiunit",&STEP::ObjectHelper<IfcSIUnit,2>::Construct )
, SchemaEntry("ifcsurfacestylelighting",&STEP::ObjectHelper<NotImplemented,0>::Construct )
, SchemaEntry("ifcmeasurewithunit",&STEP::ObjectHelper<NotImplemented,0>::Construct )
, SchemaEntry("ifcmeasurewithunit",&STEP::ObjectHelper<IfcMeasureWithUnit,2>::Construct )
, SchemaEntry("ifcmateriallayerset",&STEP::ObjectHelper<NotImplemented,0>::Construct )
, SchemaEntry("ifcdistributionelement",&STEP::ObjectHelper<IfcDistributionElement,0>::Construct )
, SchemaEntry("ifcdistributioncontrolelement",&STEP::ObjectHelper<IfcDistributionControlElement,1>::Construct )
@ -1740,6 +1740,22 @@ template <> size_t GenericFill<IfcNamedUnit>(const DB& db, const LIST& params, I
return base;
}
// -----------------------------------------------------------------------------------------------------------
template <> size_t GenericFill<IfcConversionBasedUnit>(const DB& db, const LIST& params, IfcConversionBasedUnit* in)
{
size_t base = GenericFill(db,params,static_cast<IfcNamedUnit*>(in));
if (params.GetSize() < 4) { throw STEP::TypeError("expected 4 arguments to IfcConversionBasedUnit"); } do { // convert the 'Name' argument
const DataType* arg = params[base++];
try { GenericConvert( in->Name, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 2 to IfcConversionBasedUnit to be a `IfcLabel`")); }
} while(0);
do { // convert the 'ConversionFactor' argument
const DataType* arg = params[base++];
try { GenericConvert( in->ConversionFactor, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 3 to IfcConversionBasedUnit to be a `IfcMeasureWithUnit`")); }
} while(0);
return base;
}
// -----------------------------------------------------------------------------------------------------------
template <> size_t GenericFill<IfcHeatExchangerType>(const DB& db, const LIST& params, IfcHeatExchangerType* in)
{
size_t base = GenericFill(db,params,static_cast<IfcEnergyConversionDeviceType*>(in));
@ -1998,7 +2014,12 @@ template <> size_t GenericFill<IfcBoundedCurve>(const DB& db, const LIST& params
template <> size_t GenericFill<IfcAxis1Placement>(const DB& db, const LIST& params, IfcAxis1Placement* in)
{
size_t base = GenericFill(db,params,static_cast<IfcPlacement*>(in));
// this data structure is not used yet, so there is no code generated to fill its members
if (params.GetSize() < 2) { throw STEP::TypeError("expected 2 arguments to IfcAxis1Placement"); } do { // convert the 'Axis' argument
const DataType* arg = params[base++];
if (dynamic_cast<const UNSET*>(&*arg)) break;
try { GenericConvert( in->Axis, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 1 to IfcAxis1Placement to be a `IfcDirection`")); }
} while(0);
return base;
}
// -----------------------------------------------------------------------------------------------------------
@ -2420,7 +2441,12 @@ template <> size_t GenericFill<IfcSanitaryTerminalType>(const DB& db, const LIST
template <> size_t GenericFill<IfcCircleProfileDef>(const DB& db, const LIST& params, IfcCircleProfileDef* in)
{
size_t base = GenericFill(db,params,static_cast<IfcParameterizedProfileDef*>(in));
// this data structure is not used yet, so there is no code generated to fill its members
if (params.GetSize() < 4) { throw STEP::TypeError("expected 4 arguments to IfcCircleProfileDef"); } do { // convert the 'Radius' argument
const DataType* arg = params[base++];
if (dynamic_cast<const ISDERIVED*>(&*arg)) { in->ObjectHelper<Assimp::IFC::IfcCircleProfileDef,1>::aux_is_derived[0]=true; break; }
try { GenericConvert( in->Radius, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 3 to IfcCircleProfileDef to be a `IfcPositiveLengthMeasure`")); }
} while(0);
return base;
}
// -----------------------------------------------------------------------------------------------------------
@ -2516,6 +2542,22 @@ template <> size_t GenericFill<IfcSIUnit>(const DB& db, const LIST& params, IfcS
return base;
}
// -----------------------------------------------------------------------------------------------------------
template <> size_t GenericFill<IfcMeasureWithUnit>(const DB& db, const LIST& params, IfcMeasureWithUnit* in)
{
size_t base = 0;
if (params.GetSize() < 2) { throw STEP::TypeError("expected 2 arguments to IfcMeasureWithUnit"); } do { // convert the 'ValueComponent' argument
const DataType* arg = params[base++];
try { GenericConvert( in->ValueComponent, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 0 to IfcMeasureWithUnit to be a `IfcValue`")); }
} while(0);
do { // convert the 'UnitComponent' argument
const DataType* arg = params[base++];
try { GenericConvert( in->UnitComponent, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 1 to IfcMeasureWithUnit to be a `IfcUnit`")); }
} while(0);
return base;
}
// -----------------------------------------------------------------------------------------------------------
template <> size_t GenericFill<IfcDistributionElement>(const DB& db, const LIST& params, IfcDistributionElement* in)
{
size_t base = GenericFill(db,params,static_cast<IfcElement*>(in));
@ -3000,7 +3042,11 @@ template <> size_t GenericFill<IfcSurfaceStyleRendering>(const DB& db, const LIS
template <> size_t GenericFill<IfcCircleHollowProfileDef>(const DB& db, const LIST& params, IfcCircleHollowProfileDef* in)
{
size_t base = GenericFill(db,params,static_cast<IfcCircleProfileDef*>(in));
// this data structure is not used yet, so there is no code generated to fill its members
if (params.GetSize() < 5) { throw STEP::TypeError("expected 5 arguments to IfcCircleHollowProfileDef"); } do { // convert the 'WallThickness' argument
const DataType* arg = params[base++];
try { GenericConvert( in->WallThickness, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 4 to IfcCircleHollowProfileDef to be a `IfcPositiveLengthMeasure`")); }
} while(0);
return base;
}
// -----------------------------------------------------------------------------------------------------------
@ -4195,7 +4241,16 @@ template <> size_t GenericFill<IfcFlowStorageDevice>(const DB& db, const LIST& p
template <> size_t GenericFill<IfcRevolvedAreaSolid>(const DB& db, const LIST& params, IfcRevolvedAreaSolid* in)
{
size_t base = GenericFill(db,params,static_cast<IfcSweptAreaSolid*>(in));
// this data structure is not used yet, so there is no code generated to fill its members
if (params.GetSize() < 4) { throw STEP::TypeError("expected 4 arguments to IfcRevolvedAreaSolid"); } do { // convert the 'Axis' argument
const DataType* arg = params[base++];
try { GenericConvert( in->Axis, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 2 to IfcRevolvedAreaSolid to be a `IfcAxis1Placement`")); }
} while(0);
do { // convert the 'Angle' argument
const DataType* arg = params[base++];
try { GenericConvert( in->Angle, *arg, db ); break; }
catch (const TypeError& t) { throw TypeError(t.what() + std::string(" - expected argument 3 to IfcRevolvedAreaSolid to be a `IfcPlaneAngleMeasure`")); }
} while(0);
return base;
}
// -----------------------------------------------------------------------------------------------------------

View File

@ -841,7 +841,7 @@ namespace IFC {
struct IfcFaceOuterBound;
struct IfcFeatureElementAddition;
struct IfcNamedUnit;
typedef NotImplemented IfcConversionBasedUnit; // (not currently used by Assimp)
struct IfcConversionBasedUnit;
typedef NotImplemented IfcStructuralLoadSingleForce; // (not currently used by Assimp)
struct IfcHeatExchangerType;
struct IfcPresentationStyleAssignment;
@ -977,7 +977,7 @@ namespace IFC {
struct IfcDamperType;
struct IfcSIUnit;
typedef NotImplemented IfcSurfaceStyleLighting; // (not currently used by Assimp)
typedef NotImplemented IfcMeasureWithUnit; // (not currently used by Assimp)
struct IfcMeasureWithUnit;
typedef NotImplemented IfcMaterialLayerSet; // (not currently used by Assimp)
struct IfcDistributionElement;
struct IfcDistributionControlElement;
@ -1813,6 +1813,12 @@ namespace IFC {
IfcUnitEnum::Out UnitType;
};
// C++ wrapper for IfcConversionBasedUnit
struct IfcConversionBasedUnit : IfcNamedUnit, ObjectHelper<IfcConversionBasedUnit,2> { IfcConversionBasedUnit() : Object("IfcConversionBasedUnit") {}
IfcLabel::Out Name;
Lazy< IfcMeasureWithUnit > ConversionFactor;
};
// C++ wrapper for IfcHeatExchangerType
struct IfcHeatExchangerType : IfcEnergyConversionDeviceType, ObjectHelper<IfcHeatExchangerType,1> { IfcHeatExchangerType() : Object("IfcHeatExchangerType") {}
IfcHeatExchangerTypeEnum::Out PredefinedType;
@ -2246,7 +2252,7 @@ namespace IFC {
Maybe< IfcIdentifier::Out > ResourceIdentifier;
Maybe< IfcLabel::Out > ResourceGroup;
Maybe< IfcResourceConsumptionEnum::Out > ResourceConsumption;
Maybe< Lazy< NotImplemented > > BaseQuantity;
Maybe< Lazy< IfcMeasureWithUnit > > BaseQuantity;
};
// C++ wrapper for IfcConstructionEquipmentResource
@ -2310,6 +2316,12 @@ namespace IFC {
IfcSIUnitName::Out Name;
};
// C++ wrapper for IfcMeasureWithUnit
struct IfcMeasureWithUnit : ObjectHelper<IfcMeasureWithUnit,2> { IfcMeasureWithUnit() : Object("IfcMeasureWithUnit") {}
IfcValue::Out ValueComponent;
IfcUnit::Out UnitComponent;
};
// C++ wrapper for IfcDistributionElement
struct IfcDistributionElement : IfcElement, ObjectHelper<IfcDistributionElement,0> { IfcDistributionElement() : Object("IfcDistributionElement") {}
@ -3866,6 +3878,7 @@ namespace STEP {
DECL_CONV_STUB(IfcFaceOuterBound);
DECL_CONV_STUB(IfcFeatureElementAddition);
DECL_CONV_STUB(IfcNamedUnit);
DECL_CONV_STUB(IfcConversionBasedUnit);
DECL_CONV_STUB(IfcHeatExchangerType);
DECL_CONV_STUB(IfcPresentationStyleAssignment);
DECL_CONV_STUB(IfcFlowTreatmentDeviceType);
@ -3957,6 +3970,7 @@ namespace STEP {
DECL_CONV_STUB(IfcLinearDimension);
DECL_CONV_STUB(IfcDamperType);
DECL_CONV_STUB(IfcSIUnit);
DECL_CONV_STUB(IfcMeasureWithUnit);
DECL_CONV_STUB(IfcDistributionElement);
DECL_CONV_STUB(IfcDistributionControlElement);
DECL_CONV_STUB(IfcTransformerType);

View File

@ -8,6 +8,11 @@
# code generator. Also, the names of all used entities need to be present
# in the source code for this to work.
IfcAxis1Placement
IfcMeasureWithUnit
IfcConversionBasedUnit
IfcRevolvedAreaSolid
IfcCircleHollowProfileDef
IfcRepresentationMap
IfcProductRepresentation
IfcUnitAssignment