# Ifc: re-introduce the previous triangulation code algorithm, but use Clipper to clip to the outer contour line and poly2tri as fallback.

# Ifc: fix a issue when closing window contours. Sometimes a corner would be left out.

git-svn-id: https://assimp.svn.sourceforge.net/svnroot/assimp/trunk@1122 67173fc5-114c-0410-ac8e-9d2fd5bffc1f
pull/5/head
aramis_acg 2012-01-17 17:40:15 +00:00
parent ab6c348c2d
commit edd1e2e99a
1 changed files with 470 additions and 23 deletions

View File

@ -57,6 +57,15 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace Assimp { namespace Assimp {
namespace IFC { namespace IFC {
using ClipperLib::ulong64;
// XXX use full -+ range ...
const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
//#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<double>((p)), 1.) ) * max_ulong64 ))
#define to_int64(p) (static_cast<ulong64>(static_cast<double>((p) ) * max_ulong64 ))
#define from_int64(p) (static_cast<double>((p)) / max_ulong64)
#define from_int64_f(p) (static_cast<float>(from_int64((p))))
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/) bool ProcessPolyloop(const IfcPolyLoop& loop, TempMesh& meshout, ConversionData& /*conv*/)
{ {
@ -637,16 +646,6 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
// If this happens then the projection must have been wrong. // If this happens then the projection must have been wrong.
assert(vmax.Length()); assert(vmax.Length());
using ClipperLib::ulong64;
// XXX use full -+ range ...
const ClipperLib::long64 max_ulong64 = 1518500249; // clipper.cpp / hiRange var
//#define to_int64(p) (static_cast<ulong64>( std::max( 0., std::min( static_cast<double>((p)), 1.) ) * max_ulong64 ))
#define to_int64(p) (static_cast<ulong64>(static_cast<double>((p) ) * max_ulong64 ))
#define from_int64(p) (static_cast<double>((p)) / max_ulong64)
#define from_int64_f(p) (static_cast<float>(from_int64((p))))
ClipperLib::ExPolygons clipped; ClipperLib::ExPolygons clipped;
ClipperLib::Polygons holes_union; ClipperLib::Polygons holes_union;
@ -758,7 +757,7 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
// add connection geometry to close the adjacent 'holes' for the openings // add connection geometry to close the adjacent 'holes' for the openings
// this should only be done from one side of the wall or the polygons // this should only be done from one side of the wall or the polygons
// would be emitted twice. // would be emitted twice.
if (do_connections) { if (false && do_connections) {
std::vector<aiVector3D> tmpvec; std::vector<aiVector3D> tmpvec;
BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) { BOOST_FOREACH(ClipperLib::Polygon& opening, holes_union) {
@ -863,11 +862,6 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
result = true; result = true;
} }
#undef to_int64
#undef from_int64
#undef from_int64_f
if (!result) { if (!result) {
// revert -- it's a shame, but better than nothing // revert -- it's a shame, but better than nothing
curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end()); curmesh.verts.insert(curmesh.verts.end(),old_verts.begin(), old_verts.end());
@ -879,6 +873,447 @@ bool TryAddOpenings_Poly2Tri(const std::vector<TempOpening>& openings,const std:
return result; return result;
} }
// ------------------------------------------------------------------------------------------------
struct DistanceSorter {
DistanceSorter(const aiVector3D& base) : base(base) {}
bool operator () (const TempOpening& a, const TempOpening& b) const {
return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
}
aiVector3D base;
};
// ------------------------------------------------------------------------------------------------
struct XYSorter {
// sort first by X coordinates, then by Y coordinates
bool operator () (const aiVector2D&a, const aiVector2D& b) const {
if (a.x == b.x) {
return a.y < b.y;
}
return a.x < b.x;
}
};
typedef std::pair< aiVector2D, aiVector2D > BoundingBox;
typedef std::map<aiVector2D,size_t,XYSorter> XYSortedField;
// ------------------------------------------------------------------------------------------------
void QuadrifyPart(const aiVector2D& pmin, const aiVector2D& pmax, XYSortedField& field, const std::vector< BoundingBox >& bbs,
std::vector<aiVector2D>& out)
{
if (!(pmin.x-pmax.x) || !(pmin.y-pmax.y)) {
return;
}
float xs = 1e10, xe = 1e10;
bool found = false;
// Search along the x-axis until we find an opening
XYSortedField::iterator start = field.begin();
for(; start != field.end(); ++start) {
const BoundingBox& bb = bbs[(*start).second];
if(bb.first.x >= pmax.x) {
break;
}
if (bb.second.x > pmin.x && bb.second.y > pmin.y && bb.first.y < pmax.y) {
xs = bb.first.x;
xe = bb.second.x;
found = true;
break;
}
}
if (!found) {
// the rectangle [pmin,pend] is opaque, fill it
out.push_back(pmin);
out.push_back(aiVector2D(pmin.x,pmax.y));
out.push_back(pmax);
out.push_back(aiVector2D(pmax.x,pmin.y));
return;
}
xs = std::max(pmin.x,xs);
xe = std::min(pmax.x,xe);
// see if there's an offset to fill at the top of our quad
if (xs - pmin.x) {
out.push_back(pmin);
out.push_back(aiVector2D(pmin.x,pmax.y));
out.push_back(aiVector2D(xs,pmax.y));
out.push_back(aiVector2D(xs,pmin.y));
}
// search along the y-axis for all openings that overlap xs and our quad
float ylast = pmin.y;
found = false;
for(; start != field.end(); ++start) {
const BoundingBox& bb = bbs[(*start).second];
if (bb.first.x > xs || bb.first.y >= pmax.y) {
break;
}
if (bb.second.y > ylast) {
found = true;
const float ys = std::max(bb.first.y,pmin.y), ye = std::min(bb.second.y,pmax.y);
if (ys - ylast) {
QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,ys) ,field,bbs,out);
}
// the following are the window vertices
/*wnd.push_back(aiVector2D(xs,ys));
wnd.push_back(aiVector2D(xs,ye));
wnd.push_back(aiVector2D(xe,ye));
wnd.push_back(aiVector2D(xe,ys));*/
ylast = ye;
}
}
if (!found) {
// the rectangle [pmin,pend] is opaque, fill it
out.push_back(aiVector2D(xs,pmin.y));
out.push_back(aiVector2D(xs,pmax.y));
out.push_back(aiVector2D(xe,pmax.y));
out.push_back(aiVector2D(xe,pmin.y));
return;
}
if (ylast < pmax.y) {
QuadrifyPart( aiVector2D(xs,ylast), aiVector2D(xe,pmax.y) ,field,bbs,out);
}
// now for the whole rest
if (pmax.x-xe) {
QuadrifyPart(aiVector2D(xe,pmin.y), pmax ,field,bbs,out);
}
}
// ------------------------------------------------------------------------------------------------
void InsertWindowContours(const std::vector< BoundingBox >& bbs,
const std::vector< std::vector<aiVector2D> >& contours,
const std::vector<TempOpening>& openings,
const std::vector<aiVector3D>& nors,
const aiMatrix3x3& minv,
const aiVector2D& scale,
const aiVector2D& offset,
float coord,
TempMesh& curmesh)
{
ai_assert(contours.size() == bbs.size());
// fix windows - we need to insert the real, polygonal shapes into the quadratic holes that we have now
for(size_t i = 0; i < contours.size();++i) {
const BoundingBox& bb = bbs[i];
const std::vector<aiVector2D>& contour = contours[i];
// check if we need to do it at all - many windows just fit perfectly into their quadratic holes,
// i.e. their contours *are* already their bounding boxes.
if (contour.size() == 4) {
std::set<aiVector2D,XYSorter> verts;
for(size_t n = 0; n < 4; ++n) {
verts.insert(contour[n]);
}
const std::set<aiVector2D,XYSorter>::const_iterator end = verts.end();
if (verts.find(bb.first)!=end && verts.find(bb.second)!=end
&& verts.find(aiVector2D(bb.first.x,bb.second.y))!=end
&& verts.find(aiVector2D(bb.second.x,bb.first.y))!=end
) {
continue;
}
}
const float epsilon = (bb.first-bb.second).Length()/1000.f;
// walk through all contour points and find those that lie on the BB corner
size_t last_hit = -1, very_first_hit = -1;
aiVector2D edge;
for(size_t n = 0, e=0, size = contour.size();; n=(n+1)%size, ++e) {
// sanity checking
if (e == size*2) {
IFCImporter::LogError("encountered unexpected topology while generating window contour");
break;
}
const aiVector2D& v = contour[n];
bool hit = false;
if (fabs(v.x-bb.first.x)<epsilon) {
edge.x = bb.first.x;
hit = true;
}
else if (fabs(v.x-bb.second.x)<epsilon) {
edge.x = bb.second.x;
hit = true;
}
if (fabs(v.y-bb.first.y)<epsilon) {
edge.y = bb.first.y;
hit = true;
}
else if (fabs(v.y-bb.second.y)<epsilon) {
edge.y = bb.second.y;
hit = true;
}
if (hit) {
if (last_hit != (size_t)-1) {
const size_t old = curmesh.verts.size();
size_t cnt = last_hit > n ? size-(last_hit-n) : n-last_hit;
for(size_t a = last_hit, e = 0; e <= cnt; a=(a+1)%size, ++e) {
const aiVector3D v3 = minv * aiVector3D(offset.x + contour[a].x * scale.x, offset.y + contour[a].y * scale.y,coord);
curmesh.verts.push_back(v3);
}
if (edge != contour[last_hit]) {
aiVector2D corner = edge;
if (fabs(contour[last_hit].x-bb.first.x)<epsilon) {
corner.x = bb.first.x;
}
else if (fabs(contour[last_hit].x-bb.second.x)<epsilon) {
corner.x = bb.second.x;
}
if (fabs(contour[last_hit].y-bb.first.y)<epsilon) {
corner.y = bb.first.y;
}
else if (fabs(contour[last_hit].y-bb.second.y)<epsilon) {
corner.y = bb.second.y;
}
const aiVector3D v3 = minv * aiVector3D(offset.x + corner.x * scale.x, offset.y + corner.y * scale.y,coord);
curmesh.verts.push_back(v3);
}
else if (cnt == 1) {
// avoid degenerate polygons (also known as lines or points)
curmesh.verts.erase(curmesh.verts.begin()+old,curmesh.verts.end());
}
if (const size_t d = curmesh.verts.size()-old) {
curmesh.vertcnt.push_back(d);
std::reverse(curmesh.verts.rbegin(),curmesh.verts.rbegin()+d);
}
if (n == very_first_hit) {
break;
}
}
else {
very_first_hit = n;
}
last_hit = n;
}
}
}
}
// ------------------------------------------------------------------------------------------------
bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,const std::vector<aiVector3D>& nors, TempMesh& curmesh)
{
std::vector<aiVector3D>& out = curmesh.verts;
// Try to derive a solid base plane within the current surface for use as
// working coordinate system.
const aiMatrix3x3& m = DerivePlaneCoordinateSpace(curmesh);
const aiMatrix3x3 minv = aiMatrix3x3(m).Inverse();
const aiVector3D& nor = aiVector3D(m.c1, m.c2, m.c3);
float coord = -1;
std::vector<aiVector2D> contour_flat;
contour_flat.reserve(out.size());
aiVector2D vmin, vmax;
MinMaxChooser<aiVector2D>()(vmin, vmax);
// Move all points into the new coordinate system, collecting min/max verts on the way
BOOST_FOREACH(aiVector3D& x, out) {
const aiVector3D vv = m * x;
// keep Z offset in the plane coordinate system. Ignoring precision issues
// (which are present, of course), this should be the same value for
// all polygon vertices (assuming the polygon is planar).
// XXX this should be guarded, but we somehow need to pick a suitable
// epsilon
// if(coord != -1.0f) {
// assert(fabs(coord - vv.z) < 1e-3f);
// }
coord = vv.z;
vmin = std::min(aiVector2D(vv.x, vv.y), vmin);
vmax = std::max(aiVector2D(vv.x, vv.y), vmax);
contour_flat.push_back(aiVector2D(vv.x,vv.y));
}
// With the current code in DerivePlaneCoordinateSpace,
// vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies)
// but here we won't rely on this.
vmax -= vmin;
BOOST_FOREACH(aiVector2D& vv, contour_flat) {
vv.x = (vv.x - vmin.x) / vmax.x;
vv.y = (vv.y - vmin.y) / vmax.y;
}
// project all points into the coordinate system defined by the p+sv*tu plane
// and compute bounding boxes for them
std::vector< BoundingBox > bbs;
XYSortedField field;
std::vector< std::vector<aiVector2D> > contours;
size_t c = 0;
BOOST_FOREACH(const TempOpening& t,openings) {
const aiVector3D& outernor = nors[c++];
const float dot = nor * outernor;
if (fabs(dot)<1.f-1e-6f) {
continue;
}
const std::vector<aiVector3D>& va = t.profileMesh->verts;
if(va.size() <= 2) {
continue;
}
aiVector2D vpmin,vpmax;
MinMaxChooser<aiVector2D>()(vpmin,vpmax);
contours.push_back(std::vector<aiVector2D>());
std::vector<aiVector2D>& contour = contours.back();
BOOST_FOREACH(const aiVector3D& x, t.profileMesh->verts) {
const aiVector3D v = m * x;
aiVector2D vv(v.x, v.y);
// rescale
vv.x = (vv.x - vmin.x) / vmax.x;
vv.y = (vv.y - vmin.y) / vmax.y;
vpmin = std::min(vpmin,vv);
vpmax = std::max(vpmax,vv);
contour.push_back(vv);
}
if (field.find(vpmin) != field.end()) {
IFCImporter::LogWarn("constraint failure during generation of wall openings, results may be faulty");
}
field[vpmin] = bbs.size();
const BoundingBox& bb = BoundingBox(vpmin,vpmax);
// see if this BB intersects any other, in which case we could not use the Quadrify()
// algorithm and would revert to Poly2Tri only.
/*BOOST_FOREACH(const BoundingBox& ibb, bbs) {
if (ibb.first.x < bb.second.x && ibb.second.x > bb.first.x &&
ibb.first.y < bb.second.y && ibb.second.y > bb.second.x) {
IFCImporter::LogWarn("cannot use quadrify algorithm to generate wall openings due to "
"bounding box overlaps, using poly2tri fallback");
return TryAddOpenings_Poly2Tri(openings, nors, curmesh);
}
}*/
bbs.push_back(bb);
}
if (bbs.empty()) {
return false;
}
std::vector<aiVector2D> outflat;
outflat.reserve(openings.size()*4);
QuadrifyPart(aiVector2D(0.f,0.f),aiVector2D(1.f,1.f),field,bbs,outflat);
ai_assert(!(outflat.size() % 4));
std::vector<aiVector3D> vold;
std::vector<unsigned int> iold;
vold.reserve(outflat.size());
iold.reserve(outflat.size() / 4);
// Fix the outer contour using polyclipper
try {
ClipperLib::Polygon subject;
ClipperLib::Clipper clipper;
ClipperLib::ExPolygons clipped;
ClipperLib::Polygon clip;
clip.reserve(contour_flat.size());
BOOST_FOREACH(const aiVector2D& pip, contour_flat) {
clip.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
}
if (!ClipperLib::Orientation(clip)) {
std::reverse(clip.begin(), clip.end());
}
// We need to run polyclipper on every single quad -- we can't run it one all
// of them at once or it would merge them all together which would undo all
// previous steps
subject.reserve(4);
size_t cnt = 0;
BOOST_FOREACH(const aiVector2D& pip, outflat) {
subject.push_back(ClipperLib::IntPoint( to_int64(pip.x), to_int64(pip.y) ));
if (!(++cnt % 4)) {
if (!ClipperLib::Orientation(subject)) {
std::reverse(subject.begin(), subject.end());
}
clipper.AddPolygon(subject,ClipperLib::ptSubject);
clipper.AddPolygon(clip,ClipperLib::ptClip);
clipper.Execute(ClipperLib::ctIntersection,clipped,ClipperLib::pftNonZero,ClipperLib::pftNonZero);
BOOST_FOREACH(const ClipperLib::ExPolygon& ex, clipped) {
iold.push_back(ex.outer.size());
BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
vold.push_back( minv * aiVector3D(
vmin.x + from_int64_f(point.X) * vmax.x,
vmin.y + from_int64_f(point.Y) * vmax.y,
coord));
}
}
subject.clear();
clipped.clear();
clipper.Clear();
}
}
assert(!(cnt % 4));
}
catch (const char* sx) {
IFCImporter::LogError("Ifc: error during polygon clipping, contour line may be wrong: (Clipper: "
+ std::string(sx) + ")");
iold.resize(outflat.size()/4,4);
BOOST_FOREACH(const aiVector2D& vproj, outflat) {
const aiVector3D v3 = minv * aiVector3D(vmin.x + vproj.x * vmax.x, vmin.y + vproj.y * vmax.y,coord);
vold.push_back(v3);
}
}
// undo the projection, generate output quads
std::swap(vold,curmesh.verts);
std::swap(iold,curmesh.vertcnt);
InsertWindowContours(bbs,contours,openings, nors,minv,vmax, vmin, coord, curmesh);
return true;
}
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv) void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result, ConversionData& conv)
@ -930,6 +1365,14 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
// to TryAddOpenings_Poly2Tri() // to TryAddOpenings_Poly2Tri()
if (openings) { if (openings) {
if (!conv.settings.useCustomTriangulation) {
// it is essential to apply the openings in the correct spatial order. The direction
// doesn't matter, but we would screw up if we started with e.g. a door in between
// two windows.
std::sort(conv.apply_openings->begin(),conv.apply_openings->end(),
DistanceSorter(min));
}
nors.reserve(conv.apply_openings->size()); nors.reserve(conv.apply_openings->size());
BOOST_FOREACH(TempOpening& t,*conv.apply_openings) { BOOST_FOREACH(TempOpening& t,*conv.apply_openings) {
TempMesh& bounds = *t.profileMesh.get(); TempMesh& bounds = *t.profileMesh.get();
@ -959,7 +1402,7 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
out.push_back(in[next]); out.push_back(in[next]);
if(openings) { if(openings) {
if(TryAddOpenings_Poly2Tri(*conv.apply_openings,nors,temp)) { if(TryAddOpenings_Quadrulate(*conv.apply_openings,nors,temp)) {
++sides_with_openings; ++sides_with_openings;
} }
@ -978,7 +1421,7 @@ void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& resul
curmesh.vertcnt.push_back(size); curmesh.vertcnt.push_back(size);
if(openings && size > 2) { if(openings && size > 2) {
if(TryAddOpenings_Poly2Tri(*conv.apply_openings,nors,temp)) { if(TryAddOpenings_Quadrulate(*conv.apply_openings,nors,temp)) {
++sides_with_v_openings; ++sides_with_v_openings;
} }
@ -1193,10 +1636,10 @@ bool ProcessGeometricItem(const IfcRepresentationItem& geo, std::vector<unsigned
} }
} }
} }
else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) { else if(const IfcConnectedFaceSet* fset = geo.ToPtr<IfcConnectedFaceSet>()) {
ProcessConnectedFaceSet(*fset,meshtmp,conv); ProcessConnectedFaceSet(*fset,meshtmp,conv);
} }
else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) { else if(const IfcSweptAreaSolid* swept = geo.ToPtr<IfcSweptAreaSolid>()) {
ProcessSweptAreaSolid(*swept,meshtmp,conv); ProcessSweptAreaSolid(*swept,meshtmp,conv);
} }
else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) { else if(const IfcManifoldSolidBrep* brep = geo.ToPtr<IfcManifoldSolidBrep>()) {
@ -1282,6 +1725,10 @@ bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector<un
return true; return true;
} }
#undef to_int64
#undef from_int64
#undef from_int64_f
} // ! IFC } // ! IFC
} // ! Assimp } // ! Assimp