Merge branch 'FBXMeshGeometry_checksizes_fix' of https://github.com/ms-maxvollmer/assimp into FBXMeshGeometry_checksizes_fix

pull/2984/head
Max Vollmer 2020-02-05 11:08:00 +00:00
commit ec024085ab
6 changed files with 755 additions and 1174 deletions

View File

@ -46,607 +46,20 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_EXPORT #ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_ASSXML_EXPORTER #ifndef ASSIMP_BUILD_NO_ASSXML_EXPORTER
#include "PostProcessing/ProcessHelper.h" #include "AssxmlFileWriter.h"
#include <assimp/version.h>
#include <assimp/IOStream.hpp>
#include <assimp/IOSystem.hpp> #include <assimp/IOSystem.hpp>
#include <assimp/Exporter.hpp> #include <assimp/Exporter.hpp>
#include <stdarg.h>
#ifdef ASSIMP_BUILD_NO_OWN_ZLIB
# include <zlib.h>
#else
# include <contrib/zlib/zlib.h>
#endif
#include <time.h>
#include <stdio.h>
using namespace Assimp;
namespace Assimp { namespace Assimp {
namespace AssxmlExport {
// -----------------------------------------------------------------------------------
static int ioprintf( IOStream * io, const char *format, ... ) {
using namespace std;
if ( nullptr == io ) {
return -1;
}
static const int Size = 4096;
char sz[ Size ];
::memset( sz, '\0', Size );
va_list va;
va_start( va, format );
const unsigned int nSize = vsnprintf( sz, Size-1, format, va );
ai_assert( nSize < Size );
va_end( va );
io->Write( sz, sizeof(char), nSize );
return nSize;
}
// -----------------------------------------------------------------------------------
// Convert a name to standard XML format
static void ConvertName(aiString& out, const aiString& in) {
out.length = 0;
for (unsigned int i = 0; i < in.length; ++i) {
switch (in.data[i]) {
case '<':
out.Append("&lt;");break;
case '>':
out.Append("&gt;");break;
case '&':
out.Append("&amp;");break;
case '\"':
out.Append("&quot;");break;
case '\'':
out.Append("&apos;");break;
default:
out.data[out.length++] = in.data[i];
}
}
out.data[out.length] = 0;
}
// -----------------------------------------------------------------------------------
// Write a single node as text dump
static void WriteNode(const aiNode* node, IOStream * io, unsigned int depth) {
char prefix[512];
for (unsigned int i = 0; i < depth;++i)
prefix[i] = '\t';
prefix[depth] = '\0';
const aiMatrix4x4& m = node->mTransformation;
aiString name;
ConvertName(name,node->mName);
ioprintf(io,"%s<Node name=\"%s\"> \n"
"%s\t<Matrix4> \n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t</Matrix4> \n",
prefix,name.data,prefix,
prefix,m.a1,m.a2,m.a3,m.a4,
prefix,m.b1,m.b2,m.b3,m.b4,
prefix,m.c1,m.c2,m.c3,m.c4,
prefix,m.d1,m.d2,m.d3,m.d4,prefix);
if (node->mNumMeshes) {
ioprintf(io, "%s\t<MeshRefs num=\"%i\">\n%s\t",
prefix,node->mNumMeshes,prefix);
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
ioprintf(io,"%i ",node->mMeshes[i]);
}
ioprintf(io,"\n%s\t</MeshRefs>\n",prefix);
}
if (node->mNumChildren) {
ioprintf(io,"%s\t<NodeList num=\"%i\">\n",
prefix,node->mNumChildren);
for (unsigned int i = 0; i < node->mNumChildren;++i) {
WriteNode(node->mChildren[i],io,depth+2);
}
ioprintf(io,"%s\t</NodeList>\n",prefix);
}
ioprintf(io,"%s</Node>\n",prefix);
}
// -----------------------------------------------------------------------------------
// Some chuncks of text will need to be encoded for XML
// http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377
static std::string encodeXML(const std::string& data) {
std::string buffer;
buffer.reserve(data.size());
for(size_t pos = 0; pos != data.size(); ++pos) {
switch(data[pos]) {
case '&': buffer.append("&amp;"); break;
case '\"': buffer.append("&quot;"); break;
case '\'': buffer.append("&apos;"); break;
case '<': buffer.append("&lt;"); break;
case '>': buffer.append("&gt;"); break;
default: buffer.append(&data[pos], 1); break;
}
}
return buffer;
}
// -----------------------------------------------------------------------------------
// Write a text model dump
static
void WriteDump(const aiScene* scene, IOStream* io, bool shortened) {
time_t tt = ::time( NULL );
#if _WIN32
tm* p = gmtime(&tt);
#else
struct tm now;
tm* p = gmtime_r(&tt, &now);
#endif
ai_assert(nullptr != p);
// write header
std::string header(
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
"<ASSIMP format_id=\"1\">\n\n"
"<!-- XML Model dump produced by assimp dump\n"
" Library version: %i.%i.%i\n"
" %s\n"
"-->"
" \n\n"
"<Scene flags=\"%d\" postprocessing=\"%i\">\n"
);
const unsigned int majorVersion( aiGetVersionMajor() );
const unsigned int minorVersion( aiGetVersionMinor() );
const unsigned int rev( aiGetVersionRevision() );
const char *curtime( asctime( p ) );
ioprintf( io, header.c_str(), majorVersion, minorVersion, rev, curtime, scene->mFlags, 0 );
// write the node graph
WriteNode(scene->mRootNode, io, 0);
#if 0
// write cameras
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
aiCamera* cam = scene->mCameras[i];
ConvertName(name,cam->mName);
// camera header
ioprintf(io,"\t<Camera parent=\"%s\">\n"
"\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"fov\" > %f </Float>\n"
"\t\t<Float name=\"aspect\" > %f </Float>\n"
"\t\t<Float name=\"near_clip\" > %f </Float>\n"
"\t\t<Float name=\"far_clip\" > %f </Float>\n"
"\t</Camera>\n",
name.data,
cam->mUp.x,cam->mUp.y,cam->mUp.z,
cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
}
// write lights
for (unsigned int i = 0; i < scene->mNumLights;++i) {
aiLight* l = scene->mLights[i];
ConvertName(name,l->mName);
// light header
ioprintf(io,"\t<Light parent=\"%s\"> type=\"%s\"\n"
"\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n",
name.data,
(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
(l->mType == aiLightSource_POINT ? "point" : "spot" )),
l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);
if (l->mType != aiLightSource_DIRECTIONAL) {
ioprintf(io,
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"atten_cst\" > %f </Float>\n"
"\t\t<Float name=\"atten_lin\" > %f </Float>\n"
"\t\t<Float name=\"atten_sqr\" > %f </Float>\n",
l->mPosition.x,l->mPosition.y,l->mPosition.z,
l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
}
if (l->mType != aiLightSource_POINT) {
ioprintf(io,
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n",
l->mDirection.x,l->mDirection.y,l->mDirection.z);
}
if (l->mType == aiLightSource_SPOT) {
ioprintf(io,
"\t\t<Float name=\"cone_out\" > %f </Float>\n"
"\t\t<Float name=\"cone_inn\" > %f </Float>\n",
l->mAngleOuterCone,l->mAngleInnerCone);
}
ioprintf(io,"\t</Light>\n");
}
#endif
aiString name;
// write textures
if (scene->mNumTextures) {
ioprintf(io,"<TextureList num=\"%i\">\n",scene->mNumTextures);
for (unsigned int i = 0; i < scene->mNumTextures;++i) {
aiTexture* tex = scene->mTextures[i];
bool compressed = (tex->mHeight == 0);
// mesh header
ioprintf(io,"\t<Texture width=\"%i\" height=\"%i\" compressed=\"%s\"> \n",
(compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight),
(compressed ? "true" : "false"));
if (compressed) {
ioprintf(io,"\t\t<Data length=\"%i\"> \n",tex->mWidth);
if (!shortened) {
for (unsigned int n = 0; n < tex->mWidth;++n) {
ioprintf(io,"\t\t\t%2x",reinterpret_cast<uint8_t*>(tex->pcData)[n]);
if (n && !(n % 50)) {
ioprintf(io,"\n");
}
}
}
}
else if (!shortened){
ioprintf(io,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4);
// const unsigned int width = (unsigned int)std::log10((double)std::max(tex->mHeight,tex->mWidth))+1;
for (unsigned int y = 0; y < tex->mHeight;++y) {
for (unsigned int x = 0; x < tex->mWidth;++x) {
aiTexel* tx = tex->pcData + y*tex->mWidth+x;
unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
ioprintf(io,"\t\t\t%2x %2x %2x %2x",r,g,b,a);
// group by four for readability
if ( 0 == ( x + y*tex->mWidth ) % 4 ) {
ioprintf( io, "\n" );
}
}
}
}
ioprintf(io,"\t\t</Data>\n\t</Texture>\n");
}
ioprintf(io,"</TextureList>\n");
}
// write materials
if (scene->mNumMaterials) {
ioprintf(io,"<MaterialList num=\"%i\">\n",scene->mNumMaterials);
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
const aiMaterial* mat = scene->mMaterials[i];
ioprintf(io,"\t<Material>\n");
ioprintf(io,"\t\t<MatPropertyList num=\"%i\">\n",mat->mNumProperties);
for (unsigned int n = 0; n < mat->mNumProperties;++n) {
const aiMaterialProperty* prop = mat->mProperties[n];
const char* sz = "";
if (prop->mType == aiPTI_Float) {
sz = "float";
}
else if (prop->mType == aiPTI_Integer) {
sz = "integer";
}
else if (prop->mType == aiPTI_String) {
sz = "string";
}
else if (prop->mType == aiPTI_Buffer) {
sz = "binary_buffer";
}
ioprintf(io,"\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%i\"",
prop->mKey.data, sz,
::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);
if (prop->mType == aiPTI_Float) {
ioprintf(io," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength/sizeof(float)));
for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) {
ioprintf(io,"%f ",*((float*)(prop->mData+p*sizeof(float))));
}
}
else if (prop->mType == aiPTI_Integer) {
ioprintf(io," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength/sizeof(int)));
for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) {
ioprintf(io,"%i ",*((int*)(prop->mData+p*sizeof(int))));
}
}
else if (prop->mType == aiPTI_Buffer) {
ioprintf(io," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength));
for (unsigned int p = 0; p < prop->mDataLength;++p) {
ioprintf(io,"%2x ",prop->mData[p]);
if (p && 0 == p%30) {
ioprintf(io,"\n\t\t\t\t");
}
}
}
else if (prop->mType == aiPTI_String) {
ioprintf(io,">\n\t\t\t\t\"%s\"",encodeXML(prop->mData+4).c_str() /* skip length */);
}
ioprintf(io,"\n\t\t\t</MatProperty>\n");
}
ioprintf(io,"\t\t</MatPropertyList>\n");
ioprintf(io,"\t</Material>\n");
}
ioprintf(io,"</MaterialList>\n");
}
// write animations
if (scene->mNumAnimations) {
ioprintf(io,"<AnimationList num=\"%i\">\n",scene->mNumAnimations);
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
aiAnimation* anim = scene->mAnimations[i];
// anim header
ConvertName(name,anim->mName);
ioprintf(io,"\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n",
name.data, anim->mDuration, anim->mTicksPerSecond);
// write bone animation channels
if (anim->mNumChannels) {
ioprintf(io,"\t\t<NodeAnimList num=\"%i\">\n",anim->mNumChannels);
for (unsigned int n = 0; n < anim->mNumChannels;++n) {
aiNodeAnim* nd = anim->mChannels[n];
// node anim header
ConvertName(name,nd->mNodeName);
ioprintf(io,"\t\t\t<NodeAnim node=\"%s\">\n",name.data);
if (!shortened) {
// write position keys
if (nd->mNumPositionKeys) {
ioprintf(io,"\t\t\t\t<PositionKeyList num=\"%i\">\n",nd->mNumPositionKeys);
for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
aiVectorKey* vc = nd->mPositionKeys+a;
ioprintf(io,"\t\t\t\t\t<PositionKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
}
ioprintf(io,"\t\t\t\t</PositionKeyList>\n");
}
// write scaling keys
if (nd->mNumScalingKeys) {
ioprintf(io,"\t\t\t\t<ScalingKeyList num=\"%i\">\n",nd->mNumScalingKeys);
for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
aiVectorKey* vc = nd->mScalingKeys+a;
ioprintf(io,"\t\t\t\t\t<ScalingKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
}
ioprintf(io,"\t\t\t\t</ScalingKeyList>\n");
}
// write rotation keys
if (nd->mNumRotationKeys) {
ioprintf(io,"\t\t\t\t<RotationKeyList num=\"%i\">\n",nd->mNumRotationKeys);
for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
aiQuatKey* vc = nd->mRotationKeys+a;
ioprintf(io,"\t\t\t\t\t<RotationKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w);
}
ioprintf(io,"\t\t\t\t</RotationKeyList>\n");
}
}
ioprintf(io,"\t\t\t</NodeAnim>\n");
}
ioprintf(io,"\t\t</NodeAnimList>\n");
}
ioprintf(io,"\t</Animation>\n");
}
ioprintf(io,"</AnimationList>\n");
}
// write meshes
if (scene->mNumMeshes) {
ioprintf(io,"<MeshList num=\"%i\">\n",scene->mNumMeshes);
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
aiMesh* mesh = scene->mMeshes[i];
// const unsigned int width = (unsigned int)std::log10((double)mesh->mNumVertices)+1;
// mesh header
ioprintf(io,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%i\">\n",
(mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""),
mesh->mMaterialIndex);
// bones
if (mesh->mNumBones) {
ioprintf(io,"\t\t<BoneList num=\"%i\">\n",mesh->mNumBones);
for (unsigned int n = 0; n < mesh->mNumBones;++n) {
aiBone* bone = mesh->mBones[n];
ConvertName(name,bone->mName);
// bone header
ioprintf(io,"\t\t\t<Bone name=\"%s\">\n"
"\t\t\t\t<Matrix4> \n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t</Matrix4> \n",
name.data,
bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4);
if (!shortened && bone->mNumWeights) {
ioprintf(io,"\t\t\t\t<WeightList num=\"%i\">\n",bone->mNumWeights);
// bone weights
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
aiVertexWeight* wght = bone->mWeights+a;
ioprintf(io,"\t\t\t\t\t<Weight index=\"%i\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n",
wght->mVertexId,wght->mWeight);
}
ioprintf(io,"\t\t\t\t</WeightList>\n");
}
ioprintf(io,"\t\t\t</Bone>\n");
}
ioprintf(io,"\t\t</BoneList>\n");
}
// faces
if (!shortened && mesh->mNumFaces) {
ioprintf(io,"\t\t<FaceList num=\"%i\">\n",mesh->mNumFaces);
for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
aiFace& f = mesh->mFaces[n];
ioprintf(io,"\t\t\t<Face num=\"%i\">\n"
"\t\t\t\t",f.mNumIndices);
for (unsigned int j = 0; j < f.mNumIndices;++j)
ioprintf(io,"%i ",f.mIndices[j]);
ioprintf(io,"\n\t\t\t</Face>\n");
}
ioprintf(io,"\t\t</FaceList>\n");
}
// vertex positions
if (mesh->HasPositions()) {
ioprintf(io,"\t\t<Positions num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mVertices[n].x,
mesh->mVertices[n].y,
mesh->mVertices[n].z);
}
}
ioprintf(io,"\t\t</Positions>\n");
}
// vertex normals
if (mesh->HasNormals()) {
ioprintf(io,"\t\t<Normals num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mNormals[n].x,
mesh->mNormals[n].y,
mesh->mNormals[n].z);
}
}
ioprintf(io,"\t\t</Normals>\n");
}
// vertex tangents and bitangents
if (mesh->HasTangentsAndBitangents()) {
ioprintf(io,"\t\t<Tangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mTangents[n].x,
mesh->mTangents[n].y,
mesh->mTangents[n].z);
}
}
ioprintf(io,"\t\t</Tangents>\n");
ioprintf(io,"\t\t<Bitangents num=\"%i\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mBitangents[n].x,
mesh->mBitangents[n].y,
mesh->mBitangents[n].z);
}
}
ioprintf(io,"\t\t</Bitangents>\n");
}
// texture coordinates
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
if (!mesh->mTextureCoords[a])
break;
ioprintf(io,"\t\t<TextureCoords num=\"%i\" set=\"%i\" num_components=\"%i\"> \n",mesh->mNumVertices,
a,mesh->mNumUVComponents[a]);
if (!shortened) {
if (mesh->mNumUVComponents[a] == 3) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y,
mesh->mTextureCoords[a][n].z);
}
}
else {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y);
}
}
}
ioprintf(io,"\t\t</TextureCoords>\n");
}
// vertex colors
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
if (!mesh->mColors[a])
break;
ioprintf(io,"\t\t<Colors num=\"%i\" set=\"%i\" num_components=\"4\"> \n",mesh->mNumVertices,a);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
mesh->mColors[a][n].r,
mesh->mColors[a][n].g,
mesh->mColors[a][n].b,
mesh->mColors[a][n].a);
}
}
ioprintf(io,"\t\t</Colors>\n");
}
ioprintf(io,"\t</Mesh>\n");
}
ioprintf(io,"</MeshList>\n");
}
ioprintf(io,"</Scene>\n</ASSIMP>");
}
} // end of namespace AssxmlExport
void ExportSceneAssxml(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* /*pProperties*/) void ExportSceneAssxml(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* /*pProperties*/)
{ {
IOStream * out = pIOSystem->Open( pFile, "wt" ); DumpSceneToAssxml(
if (!out) return; pFile,
"\0", // command(s)
bool shortened = false; pIOSystem,
AssxmlExport::WriteDump( pScene, out, shortened ); pScene,
false); // shortened?
pIOSystem->Close( out );
} }
} // end of namespace Assimp } // end of namespace Assimp

View File

@ -0,0 +1,664 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file AssxmlFileWriter.cpp
* @brief Implementation of Assxml file writer.
*/
#include "AssxmlFileWriter.h"
#include "PostProcessing/ProcessHelper.h"
#include <assimp/version.h>
#include <assimp/IOStream.hpp>
#include <assimp/IOSystem.hpp>
#include <assimp/Exporter.hpp>
#include <stdarg.h>
#ifdef ASSIMP_BUILD_NO_OWN_ZLIB
# include <zlib.h>
#else
# include <contrib/zlib/zlib.h>
#endif
#include <time.h>
#include <stdio.h>
#include <memory>
using namespace Assimp;
namespace Assimp {
namespace AssxmlFileWriter {
// -----------------------------------------------------------------------------------
static int ioprintf( IOStream * io, const char *format, ... ) {
using namespace std;
if ( nullptr == io ) {
return -1;
}
static const int Size = 4096;
char sz[ Size ];
::memset( sz, '\0', Size );
va_list va;
va_start( va, format );
const unsigned int nSize = vsnprintf( sz, Size-1, format, va );
ai_assert( nSize < Size );
va_end( va );
io->Write( sz, sizeof(char), nSize );
return nSize;
}
// -----------------------------------------------------------------------------------
// Convert a name to standard XML format
static void ConvertName(aiString& out, const aiString& in) {
out.length = 0;
for (unsigned int i = 0; i < in.length; ++i) {
switch (in.data[i]) {
case '<':
out.Append("&lt;");break;
case '>':
out.Append("&gt;");break;
case '&':
out.Append("&amp;");break;
case '\"':
out.Append("&quot;");break;
case '\'':
out.Append("&apos;");break;
default:
out.data[out.length++] = in.data[i];
}
}
out.data[out.length] = 0;
}
// -----------------------------------------------------------------------------------
// Write a single node as text dump
static void WriteNode(const aiNode* node, IOStream * io, unsigned int depth) {
char prefix[512];
for (unsigned int i = 0; i < depth;++i)
prefix[i] = '\t';
prefix[depth] = '\0';
const aiMatrix4x4& m = node->mTransformation;
aiString name;
ConvertName(name,node->mName);
ioprintf(io,"%s<Node name=\"%s\"> \n"
"%s\t<Matrix4> \n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t</Matrix4> \n",
prefix,name.data,prefix,
prefix,m.a1,m.a2,m.a3,m.a4,
prefix,m.b1,m.b2,m.b3,m.b4,
prefix,m.c1,m.c2,m.c3,m.c4,
prefix,m.d1,m.d2,m.d3,m.d4,prefix);
if (node->mNumMeshes) {
ioprintf(io, "%s\t<MeshRefs num=\"%u\">\n%s\t",
prefix,node->mNumMeshes,prefix);
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
ioprintf(io,"%u ",node->mMeshes[i]);
}
ioprintf(io,"\n%s\t</MeshRefs>\n",prefix);
}
if (node->mNumChildren) {
ioprintf(io,"%s\t<NodeList num=\"%u\">\n",
prefix,node->mNumChildren);
for (unsigned int i = 0; i < node->mNumChildren;++i) {
WriteNode(node->mChildren[i],io,depth+2);
}
ioprintf(io,"%s\t</NodeList>\n",prefix);
}
ioprintf(io,"%s</Node>\n",prefix);
}
// -----------------------------------------------------------------------------------
// Some chuncks of text will need to be encoded for XML
// http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377
static std::string encodeXML(const std::string& data) {
std::string buffer;
buffer.reserve(data.size());
for(size_t pos = 0; pos != data.size(); ++pos) {
switch(data[pos]) {
case '&': buffer.append("&amp;"); break;
case '\"': buffer.append("&quot;"); break;
case '\'': buffer.append("&apos;"); break;
case '<': buffer.append("&lt;"); break;
case '>': buffer.append("&gt;"); break;
default: buffer.append(&data[pos], 1); break;
}
}
return buffer;
}
// -----------------------------------------------------------------------------------
// Write a text model dump
static
void WriteDump(const char* pFile, const char* cmd, const aiScene* scene, IOStream* io, bool shortened) {
time_t tt = ::time( NULL );
#if _WIN32
tm* p = gmtime(&tt);
#else
struct tm now;
tm* p = gmtime_r(&tt, &now);
#endif
ai_assert(nullptr != p);
std::string c = cmd;
std::string::size_type s;
// https://sourceforge.net/tracker/?func=detail&aid=3167364&group_id=226462&atid=1067632
// -- not allowed in XML comments
while((s = c.find("--")) != std::string::npos) {
c[s] = '?';
}
// write header
std::string header(
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
"<ASSIMP format_id=\"1\">\n\n"
"<!-- XML Model dump produced by assimp dump\n"
" Library version: %u.%u.%u\n"
" Source: %s\n"
" Command line: %s\n"
" %s\n"
"-->"
" \n\n"
"<Scene flags=\"%u\" postprocessing=\"%u\">\n"
);
const unsigned int majorVersion( aiGetVersionMajor() );
const unsigned int minorVersion( aiGetVersionMinor() );
const unsigned int rev( aiGetVersionRevision() );
const char *curtime( asctime( p ) );
ioprintf( io, header.c_str(), majorVersion, minorVersion, rev, pFile, c.c_str(), curtime, scene->mFlags, 0u );
// write the node graph
WriteNode(scene->mRootNode, io, 0);
#if 0
// write cameras
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
aiCamera* cam = scene->mCameras[i];
ConvertName(name,cam->mName);
// camera header
ioprintf(io,"\t<Camera parent=\"%s\">\n"
"\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"fov\" > %f </Float>\n"
"\t\t<Float name=\"aspect\" > %f </Float>\n"
"\t\t<Float name=\"near_clip\" > %f </Float>\n"
"\t\t<Float name=\"far_clip\" > %f </Float>\n"
"\t</Camera>\n",
name.data,
cam->mUp.x,cam->mUp.y,cam->mUp.z,
cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
}
// write lights
for (unsigned int i = 0; i < scene->mNumLights;++i) {
aiLight* l = scene->mLights[i];
ConvertName(name,l->mName);
// light header
ioprintf(io,"\t<Light parent=\"%s\"> type=\"%s\"\n"
"\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n",
name.data,
(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
(l->mType == aiLightSource_POINT ? "point" : "spot" )),
l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);
if (l->mType != aiLightSource_DIRECTIONAL) {
ioprintf(io,
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"atten_cst\" > %f </Float>\n"
"\t\t<Float name=\"atten_lin\" > %f </Float>\n"
"\t\t<Float name=\"atten_sqr\" > %f </Float>\n",
l->mPosition.x,l->mPosition.y,l->mPosition.z,
l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
}
if (l->mType != aiLightSource_POINT) {
ioprintf(io,
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n",
l->mDirection.x,l->mDirection.y,l->mDirection.z);
}
if (l->mType == aiLightSource_SPOT) {
ioprintf(io,
"\t\t<Float name=\"cone_out\" > %f </Float>\n"
"\t\t<Float name=\"cone_inn\" > %f </Float>\n",
l->mAngleOuterCone,l->mAngleInnerCone);
}
ioprintf(io,"\t</Light>\n");
}
#endif
aiString name;
// write textures
if (scene->mNumTextures) {
ioprintf(io,"<TextureList num=\"%u\">\n",scene->mNumTextures);
for (unsigned int i = 0; i < scene->mNumTextures;++i) {
aiTexture* tex = scene->mTextures[i];
bool compressed = (tex->mHeight == 0);
// mesh header
ioprintf(io,"\t<Texture width=\"%u\" height=\"%u\" compressed=\"%s\"> \n",
(compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight),
(compressed ? "true" : "false"));
if (compressed) {
ioprintf(io,"\t\t<Data length=\"%u\"> \n",tex->mWidth);
if (!shortened) {
for (unsigned int n = 0; n < tex->mWidth;++n) {
ioprintf(io,"\t\t\t%2x",reinterpret_cast<uint8_t*>(tex->pcData)[n]);
if (n && !(n % 50)) {
ioprintf(io,"\n");
}
}
}
}
else if (!shortened){
ioprintf(io,"\t\t<Data length=\"%u\"> \n",tex->mWidth*tex->mHeight*4);
// const unsigned int width = (unsigned int)std::log10((double)std::max(tex->mHeight,tex->mWidth))+1;
for (unsigned int y = 0; y < tex->mHeight;++y) {
for (unsigned int x = 0; x < tex->mWidth;++x) {
aiTexel* tx = tex->pcData + y*tex->mWidth+x;
unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
ioprintf(io,"\t\t\t%2x %2x %2x %2x",r,g,b,a);
// group by four for readability
if ( 0 == ( x + y*tex->mWidth ) % 4 ) {
ioprintf( io, "\n" );
}
}
}
}
ioprintf(io,"\t\t</Data>\n\t</Texture>\n");
}
ioprintf(io,"</TextureList>\n");
}
// write materials
if (scene->mNumMaterials) {
ioprintf(io,"<MaterialList num=\"%u\">\n",scene->mNumMaterials);
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
const aiMaterial* mat = scene->mMaterials[i];
ioprintf(io,"\t<Material>\n");
ioprintf(io,"\t\t<MatPropertyList num=\"%u\">\n",mat->mNumProperties);
for (unsigned int n = 0; n < mat->mNumProperties;++n) {
const aiMaterialProperty* prop = mat->mProperties[n];
const char* sz = "";
if (prop->mType == aiPTI_Float) {
sz = "float";
}
else if (prop->mType == aiPTI_Integer) {
sz = "integer";
}
else if (prop->mType == aiPTI_String) {
sz = "string";
}
else if (prop->mType == aiPTI_Buffer) {
sz = "binary_buffer";
}
ioprintf(io,"\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%u\"",
prop->mKey.data, sz,
::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);
if (prop->mType == aiPTI_Float) {
ioprintf(io," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength/sizeof(float)));
for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) {
ioprintf(io,"%f ",*((float*)(prop->mData+p*sizeof(float))));
}
}
else if (prop->mType == aiPTI_Integer) {
ioprintf(io," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength/sizeof(int)));
for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) {
ioprintf(io,"%i ",*((int*)(prop->mData+p*sizeof(int))));
}
}
else if (prop->mType == aiPTI_Buffer) {
ioprintf(io," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength));
for (unsigned int p = 0; p < prop->mDataLength;++p) {
ioprintf(io,"%2x ",prop->mData[p]);
if (p && 0 == p%30) {
ioprintf(io,"\n\t\t\t\t");
}
}
}
else if (prop->mType == aiPTI_String) {
ioprintf(io,">\n\t\t\t\t\"%s\"",encodeXML(prop->mData+4).c_str() /* skip length */);
}
ioprintf(io,"\n\t\t\t</MatProperty>\n");
}
ioprintf(io,"\t\t</MatPropertyList>\n");
ioprintf(io,"\t</Material>\n");
}
ioprintf(io,"</MaterialList>\n");
}
// write animations
if (scene->mNumAnimations) {
ioprintf(io,"<AnimationList num=\"%u\">\n",scene->mNumAnimations);
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
aiAnimation* anim = scene->mAnimations[i];
// anim header
ConvertName(name,anim->mName);
ioprintf(io,"\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n",
name.data, anim->mDuration, anim->mTicksPerSecond);
// write bone animation channels
if (anim->mNumChannels) {
ioprintf(io,"\t\t<NodeAnimList num=\"%u\">\n",anim->mNumChannels);
for (unsigned int n = 0; n < anim->mNumChannels;++n) {
aiNodeAnim* nd = anim->mChannels[n];
// node anim header
ConvertName(name,nd->mNodeName);
ioprintf(io,"\t\t\t<NodeAnim node=\"%s\">\n",name.data);
if (!shortened) {
// write position keys
if (nd->mNumPositionKeys) {
ioprintf(io,"\t\t\t\t<PositionKeyList num=\"%u\">\n",nd->mNumPositionKeys);
for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
aiVectorKey* vc = nd->mPositionKeys+a;
ioprintf(io,"\t\t\t\t\t<PositionKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
}
ioprintf(io,"\t\t\t\t</PositionKeyList>\n");
}
// write scaling keys
if (nd->mNumScalingKeys) {
ioprintf(io,"\t\t\t\t<ScalingKeyList num=\"%u\">\n",nd->mNumScalingKeys);
for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
aiVectorKey* vc = nd->mScalingKeys+a;
ioprintf(io,"\t\t\t\t\t<ScalingKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
}
ioprintf(io,"\t\t\t\t</ScalingKeyList>\n");
}
// write rotation keys
if (nd->mNumRotationKeys) {
ioprintf(io,"\t\t\t\t<RotationKeyList num=\"%u\">\n",nd->mNumRotationKeys);
for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
aiQuatKey* vc = nd->mRotationKeys+a;
ioprintf(io,"\t\t\t\t\t<RotationKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w);
}
ioprintf(io,"\t\t\t\t</RotationKeyList>\n");
}
}
ioprintf(io,"\t\t\t</NodeAnim>\n");
}
ioprintf(io,"\t\t</NodeAnimList>\n");
}
ioprintf(io,"\t</Animation>\n");
}
ioprintf(io,"</AnimationList>\n");
}
// write meshes
if (scene->mNumMeshes) {
ioprintf(io,"<MeshList num=\"%u\">\n",scene->mNumMeshes);
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
aiMesh* mesh = scene->mMeshes[i];
// const unsigned int width = (unsigned int)std::log10((double)mesh->mNumVertices)+1;
// mesh header
ioprintf(io,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%u\">\n",
(mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""),
mesh->mMaterialIndex);
// bones
if (mesh->mNumBones) {
ioprintf(io,"\t\t<BoneList num=\"%u\">\n",mesh->mNumBones);
for (unsigned int n = 0; n < mesh->mNumBones;++n) {
aiBone* bone = mesh->mBones[n];
ConvertName(name,bone->mName);
// bone header
ioprintf(io,"\t\t\t<Bone name=\"%s\">\n"
"\t\t\t\t<Matrix4> \n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t</Matrix4> \n",
name.data,
bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4);
if (!shortened && bone->mNumWeights) {
ioprintf(io,"\t\t\t\t<WeightList num=\"%u\">\n",bone->mNumWeights);
// bone weights
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
aiVertexWeight* wght = bone->mWeights+a;
ioprintf(io,"\t\t\t\t\t<Weight index=\"%u\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n",
wght->mVertexId,wght->mWeight);
}
ioprintf(io,"\t\t\t\t</WeightList>\n");
}
ioprintf(io,"\t\t\t</Bone>\n");
}
ioprintf(io,"\t\t</BoneList>\n");
}
// faces
if (!shortened && mesh->mNumFaces) {
ioprintf(io,"\t\t<FaceList num=\"%u\">\n",mesh->mNumFaces);
for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
aiFace& f = mesh->mFaces[n];
ioprintf(io,"\t\t\t<Face num=\"%u\">\n"
"\t\t\t\t",f.mNumIndices);
for (unsigned int j = 0; j < f.mNumIndices;++j)
ioprintf(io,"%u ",f.mIndices[j]);
ioprintf(io,"\n\t\t\t</Face>\n");
}
ioprintf(io,"\t\t</FaceList>\n");
}
// vertex positions
if (mesh->HasPositions()) {
ioprintf(io,"\t\t<Positions num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mVertices[n].x,
mesh->mVertices[n].y,
mesh->mVertices[n].z);
}
}
ioprintf(io,"\t\t</Positions>\n");
}
// vertex normals
if (mesh->HasNormals()) {
ioprintf(io,"\t\t<Normals num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mNormals[n].x,
mesh->mNormals[n].y,
mesh->mNormals[n].z);
}
}
ioprintf(io,"\t\t</Normals>\n");
}
// vertex tangents and bitangents
if (mesh->HasTangentsAndBitangents()) {
ioprintf(io,"\t\t<Tangents num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mTangents[n].x,
mesh->mTangents[n].y,
mesh->mTangents[n].z);
}
}
ioprintf(io,"\t\t</Tangents>\n");
ioprintf(io,"\t\t<Bitangents num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mBitangents[n].x,
mesh->mBitangents[n].y,
mesh->mBitangents[n].z);
}
}
ioprintf(io,"\t\t</Bitangents>\n");
}
// texture coordinates
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
if (!mesh->mTextureCoords[a])
break;
ioprintf(io,"\t\t<TextureCoords num=\"%u\" set=\"%u\" num_components=\"%u\"> \n",mesh->mNumVertices,
a,mesh->mNumUVComponents[a]);
if (!shortened) {
if (mesh->mNumUVComponents[a] == 3) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y,
mesh->mTextureCoords[a][n].z);
}
}
else {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y);
}
}
}
ioprintf(io,"\t\t</TextureCoords>\n");
}
// vertex colors
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
if (!mesh->mColors[a])
break;
ioprintf(io,"\t\t<Colors num=\"%u\" set=\"%u\" num_components=\"4\"> \n",mesh->mNumVertices,a);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
ioprintf(io,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
mesh->mColors[a][n].r,
mesh->mColors[a][n].g,
mesh->mColors[a][n].b,
mesh->mColors[a][n].a);
}
}
ioprintf(io,"\t\t</Colors>\n");
}
ioprintf(io,"\t</Mesh>\n");
}
ioprintf(io,"</MeshList>\n");
}
ioprintf(io,"</Scene>\n</ASSIMP>");
}
} // end of namespace AssxmlFileWriter
void DumpSceneToAssxml(
const char* pFile, const char* cmd, IOSystem* pIOSystem,
const aiScene* pScene, bool shortened) {
std::unique_ptr<IOStream> file(pIOSystem->Open(pFile, "wt"));
if (!file.get()) {
throw std::runtime_error("Unable to open output file " + std::string(pFile) + '\n');
}
AssxmlFileWriter::WriteDump(pFile, cmd, pScene, file.get(), shortened);
}
} // end of namespace Assimp

View File

@ -0,0 +1,65 @@
/*
Open Asset Import Library (assimp)
----------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** @file AssxmlFileWriter.h
* @brief Declaration of Assxml file writer.
*/
#ifndef AI_ASSXMLFILEWRITER_H_INC
#define AI_ASSXMLFILEWRITER_H_INC
#include <assimp/defs.h>
#include <assimp/scene.h>
#include <assimp/IOSystem.hpp>
namespace Assimp {
void ASSIMP_API DumpSceneToAssxml(
const char* pFile,
const char* cmd,
IOSystem* pIOSystem,
const aiScene* pScene,
bool shortened);
}
#endif // AI_ASSXMLFILEWRITER_H_INC

View File

@ -338,6 +338,8 @@ ADD_ASSIMP_EXPORTER( ASSBIN
ADD_ASSIMP_EXPORTER( ASSXML ADD_ASSIMP_EXPORTER( ASSXML
Assxml/AssxmlExporter.h Assxml/AssxmlExporter.h
Assxml/AssxmlExporter.cpp Assxml/AssxmlExporter.cpp
Assxml/AssxmlFileWriter.h
Assxml/AssxmlFileWriter.cpp
) )
ADD_ASSIMP_IMPORTER( B3D ADD_ASSIMP_IMPORTER( B3D

View File

@ -128,7 +128,8 @@ bool EmbedTexturesProcess::addTexture(aiScene* pScene, std::string path) const {
auto oldTextures = pScene->mTextures; auto oldTextures = pScene->mTextures;
pScene->mTextures = new aiTexture*[pScene->mNumTextures]; pScene->mTextures = new aiTexture*[pScene->mNumTextures];
::memmove(pScene->mTextures, oldTextures, sizeof(aiTexture*) * (pScene->mNumTextures - 1u)); ::memmove(pScene->mTextures, oldTextures, sizeof(aiTexture*) * (pScene->mNumTextures - 1u));
delete [] oldTextures;
// Add the new texture // Add the new texture
auto pTexture = new aiTexture; auto pTexture = new aiTexture;
pTexture->mHeight = 0; // Means that this is still compressed pTexture->mHeight = 0; // Means that this is still compressed

View File

@ -62,85 +62,13 @@ const char* AICMD_MSG_DUMP_HELP =
#include "Common/assbin_chunks.h" #include "Common/assbin_chunks.h"
#include <assimp/DefaultIOSystem.h> #include <assimp/DefaultIOSystem.h>
#include <code/Assbin/AssbinFileWriter.h> #include <code/Assbin/AssbinFileWriter.h>
#include <code/Assxml/AssxmlFileWriter.h>
#include <memory> #include <memory>
FILE* out = NULL; FILE* out = NULL;
bool shortened = false; bool shortened = false;
// -----------------------------------------------------------------------------------
// Convert a name to standard XML format
void ConvertName(aiString& out, const aiString& in)
{
out.length = 0;
for (unsigned int i = 0; i < in.length; ++i) {
switch (in.data[i]) {
case '<':
out.Append("&lt;");break;
case '>':
out.Append("&gt;");break;
case '&':
out.Append("&amp;");break;
case '\"':
out.Append("&quot;");break;
case '\'':
out.Append("&apos;");break;
default:
out.data[out.length++] = in.data[i];
}
}
out.data[out.length] = 0;
}
// -----------------------------------------------------------------------------------
// Write a single node as text dump
void WriteNode(const aiNode* node, FILE* out, unsigned int depth)
{
char prefix[512];
for (unsigned int i = 0; i < depth;++i)
prefix[i] = '\t';
prefix[depth] = '\0';
const aiMatrix4x4& m = node->mTransformation;
aiString name;
ConvertName(name,node->mName);
fprintf(out,"%s<Node name=\"%s\"> \n"
"%s\t<Matrix4> \n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t\t%0 6f %0 6f %0 6f %0 6f\n"
"%s\t</Matrix4> \n",
prefix,name.data,prefix,
prefix,m.a1,m.a2,m.a3,m.a4,
prefix,m.b1,m.b2,m.b3,m.b4,
prefix,m.c1,m.c2,m.c3,m.c4,
prefix,m.d1,m.d2,m.d3,m.d4,prefix);
if (node->mNumMeshes) {
fprintf(out, "%s\t<MeshRefs num=\"%u\">\n%s\t",
prefix,node->mNumMeshes,prefix);
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
fprintf(out,"%u ",node->mMeshes[i]);
}
fprintf(out,"\n%s\t</MeshRefs>\n",prefix);
}
if (node->mNumChildren) {
fprintf(out,"%s\t<NodeList num=\"%u\">\n",
prefix,node->mNumChildren);
for (unsigned int i = 0; i < node->mNumChildren;++i) {
WriteNode(node->mChildren[i],out,depth+2);
}
fprintf(out,"%s\t</NodeList>\n",prefix);
}
fprintf(out,"%s</Node>\n",prefix);
}
// ------------------------------------------------------------------------------- // -------------------------------------------------------------------------------
const char* TextureTypeToString(aiTextureType in) const char* TextureTypeToString(aiTextureType in)
{ {
@ -179,494 +107,6 @@ const char* TextureTypeToString(aiTextureType in)
return "BUG"; return "BUG";
} }
// -----------------------------------------------------------------------------------
// Some chuncks of text will need to be encoded for XML
// http://stackoverflow.com/questions/5665231/most-efficient-way-to-escape-xml-html-in-c-string#5665377
static std::string encodeXML(const std::string& data) {
std::string buffer;
buffer.reserve(data.size());
for(size_t pos = 0; pos != data.size(); ++pos) {
switch(data[pos]) {
case '&': buffer.append("&amp;"); break;
case '\"': buffer.append("&quot;"); break;
case '\'': buffer.append("&apos;"); break;
case '<': buffer.append("&lt;"); break;
case '>': buffer.append("&gt;"); break;
default: buffer.append(&data[pos], 1); break;
}
}
return buffer;
}
// -----------------------------------------------------------------------------------
// Write a text model dump
void WriteDump(const aiScene* scene, FILE* out, const char* src, const char* cmd, bool shortened)
{
time_t tt = ::time(NULL);
#if _WIN32
tm* p = gmtime(&tt);
#else
struct tm now;
tm* p = gmtime_r(&tt, &now);
#endif
ai_assert(nullptr != p);
std::string c = cmd;
std::string::size_type s;
// https://sourceforge.net/tracker/?func=detail&aid=3167364&group_id=226462&atid=1067632
// -- not allowed in XML comments
while((s = c.find("--")) != std::string::npos) {
c[s] = '?';
}
aiString name;
// write header
fprintf(out,
"<?xml version=\"1.0\" encoding=\"utf-8\"?>\n"
"<ASSIMP format_id=\"1\">\n\n"
"<!-- XML Model dump produced by assimp dump\n"
" Library version: %u.%u.%u\n"
" Source: %s\n"
" Command line: %s\n"
" %s\n"
"-->"
" \n\n"
"<Scene flags=\"%u\" postprocessing=\"%i\">\n",
aiGetVersionMajor(),aiGetVersionMinor(),aiGetVersionRevision(),src,c.c_str(),asctime(p),
scene->mFlags,
0 /*globalImporter->GetEffectivePostProcessing()*/);
// write the node graph
WriteNode(scene->mRootNode, out, 0);
#if 0
// write cameras
for (unsigned int i = 0; i < scene->mNumCameras;++i) {
aiCamera* cam = scene->mCameras[i];
ConvertName(name,cam->mName);
// camera header
fprintf(out,"\t<Camera parent=\"%s\">\n"
"\t\t<Vector3 name=\"up\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"fov\" > %f </Float>\n"
"\t\t<Float name=\"aspect\" > %f </Float>\n"
"\t\t<Float name=\"near_clip\" > %f </Float>\n"
"\t\t<Float name=\"far_clip\" > %f </Float>\n"
"\t</Camera>\n",
name.data,
cam->mUp.x,cam->mUp.y,cam->mUp.z,
cam->mLookAt.x,cam->mLookAt.y,cam->mLookAt.z,
cam->mPosition.x,cam->mPosition.y,cam->mPosition.z,
cam->mHorizontalFOV,cam->mAspect,cam->mClipPlaneNear,cam->mClipPlaneFar,i);
}
// write lights
for (unsigned int i = 0; i < scene->mNumLights;++i) {
aiLight* l = scene->mLights[i];
ConvertName(name,l->mName);
// light header
fprintf(out,"\t<Light parent=\"%s\"> type=\"%s\"\n"
"\t\t<Vector3 name=\"diffuse\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"specular\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Vector3 name=\"ambient\" > %0 8f %0 8f %0 8f </Vector3>\n",
name.data,
(l->mType == aiLightSource_DIRECTIONAL ? "directional" :
(l->mType == aiLightSource_POINT ? "point" : "spot" )),
l->mColorDiffuse.r, l->mColorDiffuse.g, l->mColorDiffuse.b,
l->mColorSpecular.r,l->mColorSpecular.g,l->mColorSpecular.b,
l->mColorAmbient.r, l->mColorAmbient.g, l->mColorAmbient.b);
if (l->mType != aiLightSource_DIRECTIONAL) {
fprintf(out,
"\t\t<Vector3 name=\"pos\" > %0 8f %0 8f %0 8f </Vector3>\n"
"\t\t<Float name=\"atten_cst\" > %f </Float>\n"
"\t\t<Float name=\"atten_lin\" > %f </Float>\n"
"\t\t<Float name=\"atten_sqr\" > %f </Float>\n",
l->mPosition.x,l->mPosition.y,l->mPosition.z,
l->mAttenuationConstant,l->mAttenuationLinear,l->mAttenuationQuadratic);
}
if (l->mType != aiLightSource_POINT) {
fprintf(out,
"\t\t<Vector3 name=\"lookat\" > %0 8f %0 8f %0 8f </Vector3>\n",
l->mDirection.x,l->mDirection.y,l->mDirection.z);
}
if (l->mType == aiLightSource_SPOT) {
fprintf(out,
"\t\t<Float name=\"cone_out\" > %f </Float>\n"
"\t\t<Float name=\"cone_inn\" > %f </Float>\n",
l->mAngleOuterCone,l->mAngleInnerCone);
}
fprintf(out,"\t</Light>\n");
}
#endif
// write textures
if (scene->mNumTextures) {
fprintf(out,"<TextureList num=\"%u\">\n",scene->mNumTextures);
for (unsigned int i = 0; i < scene->mNumTextures;++i) {
aiTexture* tex = scene->mTextures[i];
bool compressed = (tex->mHeight == 0);
// mesh header
fprintf(out,"\t<Texture width=\"%i\" height=\"%i\" compressed=\"%s\"> \n",
(compressed ? -1 : tex->mWidth),(compressed ? -1 : tex->mHeight),
(compressed ? "true" : "false"));
if (compressed) {
fprintf(out,"\t\t<Data length=\"%u\"> \n",tex->mWidth);
if (!shortened) {
for (unsigned int n = 0; n < tex->mWidth;++n) {
fprintf(out,"\t\t\t%2x",reinterpret_cast<uint8_t*>(tex->pcData)[n]);
if (n && !(n % 50)) {
fprintf(out,"\n");
}
}
}
}
else if (!shortened){
fprintf(out,"\t\t<Data length=\"%i\"> \n",tex->mWidth*tex->mHeight*4);
// const unsigned int width = (unsigned int)log10((double)std::max(tex->mHeight,tex->mWidth))+1;
for (unsigned int y = 0; y < tex->mHeight;++y) {
for (unsigned int x = 0; x < tex->mWidth;++x) {
aiTexel* tx = tex->pcData + y*tex->mWidth+x;
unsigned int r = tx->r,g=tx->g,b=tx->b,a=tx->a;
fprintf(out,"\t\t\t%2x %2x %2x %2x",r,g,b,a);
// group by four for readibility
if (0 == (x+y*tex->mWidth) % 4)
fprintf(out,"\n");
}
}
}
fprintf(out,"\t\t</Data>\n\t</Texture>\n");
}
fprintf(out,"</TextureList>\n");
}
// write materials
if (scene->mNumMaterials) {
fprintf(out,"<MaterialList num=\"%u\">\n",scene->mNumMaterials);
for (unsigned int i = 0; i< scene->mNumMaterials; ++i) {
const aiMaterial* mat = scene->mMaterials[i];
fprintf(out,"\t<Material>\n");
fprintf(out,"\t\t<MatPropertyList num=\"%u\">\n",mat->mNumProperties);
for (unsigned int n = 0; n < mat->mNumProperties;++n) {
const aiMaterialProperty* prop = mat->mProperties[n];
const char* sz = "";
if (prop->mType == aiPTI_Float) {
sz = "float";
}
else if (prop->mType == aiPTI_Integer) {
sz = "integer";
}
else if (prop->mType == aiPTI_String) {
sz = "string";
}
else if (prop->mType == aiPTI_Buffer) {
sz = "binary_buffer";
}
fprintf(out,"\t\t\t<MatProperty key=\"%s\" \n\t\t\ttype=\"%s\" tex_usage=\"%s\" tex_index=\"%u\"",
prop->mKey.data, sz,
::TextureTypeToString((aiTextureType)prop->mSemantic),prop->mIndex);
if (prop->mType == aiPTI_Float) {
fprintf(out," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength/sizeof(float)));
for (unsigned int p = 0; p < prop->mDataLength/sizeof(float);++p) {
fprintf(out,"%f ",*((float*)(prop->mData+p*sizeof(float))));
}
}
else if (prop->mType == aiPTI_Integer) {
fprintf(out," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength/sizeof(int)));
for (unsigned int p = 0; p < prop->mDataLength/sizeof(int);++p) {
fprintf(out,"%i ",*((int*)(prop->mData+p*sizeof(int))));
}
}
else if (prop->mType == aiPTI_Buffer) {
fprintf(out," size=\"%i\">\n\t\t\t\t",
static_cast<int>(prop->mDataLength));
for (unsigned int p = 0; p < prop->mDataLength;++p) {
fprintf(out,"%2x ",prop->mData[p]);
if (p && 0 == p%30) {
fprintf(out,"\n\t\t\t\t");
}
}
}
else if (prop->mType == aiPTI_String) {
fprintf(out,">\n\t\t\t\t\"%s\"",encodeXML(prop->mData+4).c_str() /* skip length */);
}
fprintf(out,"\n\t\t\t</MatProperty>\n");
}
fprintf(out,"\t\t</MatPropertyList>\n");
fprintf(out,"\t</Material>\n");
}
fprintf(out,"</MaterialList>\n");
}
// write animations
if (scene->mNumAnimations) {
fprintf(out,"<AnimationList num=\"%u\">\n",scene->mNumAnimations);
for (unsigned int i = 0; i < scene->mNumAnimations;++i) {
aiAnimation* anim = scene->mAnimations[i];
// anim header
ConvertName(name,anim->mName);
fprintf(out,"\t<Animation name=\"%s\" duration=\"%e\" tick_cnt=\"%e\">\n",
name.data, anim->mDuration, anim->mTicksPerSecond);
// write bone animation channels
if (anim->mNumChannels) {
fprintf(out,"\t\t<NodeAnimList num=\"%u\">\n",anim->mNumChannels);
for (unsigned int n = 0; n < anim->mNumChannels;++n) {
aiNodeAnim* nd = anim->mChannels[n];
// node anim header
ConvertName(name,nd->mNodeName);
fprintf(out,"\t\t\t<NodeAnim node=\"%s\">\n",name.data);
if (!shortened) {
// write position keys
if (nd->mNumPositionKeys) {
fprintf(out,"\t\t\t\t<PositionKeyList num=\"%u\">\n",nd->mNumPositionKeys);
for (unsigned int a = 0; a < nd->mNumPositionKeys;++a) {
aiVectorKey* vc = nd->mPositionKeys+a;
fprintf(out,"\t\t\t\t\t<PositionKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</PositionKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
}
fprintf(out,"\t\t\t\t</PositionKeyList>\n");
}
// write scaling keys
if (nd->mNumScalingKeys) {
fprintf(out,"\t\t\t\t<ScalingKeyList num=\"%u\">\n",nd->mNumScalingKeys);
for (unsigned int a = 0; a < nd->mNumScalingKeys;++a) {
aiVectorKey* vc = nd->mScalingKeys+a;
fprintf(out,"\t\t\t\t\t<ScalingKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f\n\t\t\t\t\t</ScalingKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z);
}
fprintf(out,"\t\t\t\t</ScalingKeyList>\n");
}
// write rotation keys
if (nd->mNumRotationKeys) {
fprintf(out,"\t\t\t\t<RotationKeyList num=\"%u\">\n",nd->mNumRotationKeys);
for (unsigned int a = 0; a < nd->mNumRotationKeys;++a) {
aiQuatKey* vc = nd->mRotationKeys+a;
fprintf(out,"\t\t\t\t\t<RotationKey time=\"%e\">\n"
"\t\t\t\t\t\t%0 8f %0 8f %0 8f %0 8f\n\t\t\t\t\t</RotationKey>\n",
vc->mTime,vc->mValue.x,vc->mValue.y,vc->mValue.z,vc->mValue.w);
}
fprintf(out,"\t\t\t\t</RotationKeyList>\n");
}
}
fprintf(out,"\t\t\t</NodeAnim>\n");
}
fprintf(out,"\t\t</NodeAnimList>\n");
}
fprintf(out,"\t</Animation>\n");
}
fprintf(out,"</AnimationList>\n");
}
// write meshes
if (scene->mNumMeshes) {
fprintf(out,"<MeshList num=\"%u\">\n",scene->mNumMeshes);
for (unsigned int i = 0; i < scene->mNumMeshes;++i) {
aiMesh* mesh = scene->mMeshes[i];
// const unsigned int width = (unsigned int)log10((double)mesh->mNumVertices)+1;
// mesh header
fprintf(out,"\t<Mesh types=\"%s %s %s %s\" material_index=\"%u\">\n",
(mesh->mPrimitiveTypes & aiPrimitiveType_POINT ? "points" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_LINE ? "lines" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_TRIANGLE ? "triangles" : ""),
(mesh->mPrimitiveTypes & aiPrimitiveType_POLYGON ? "polygons" : ""),
mesh->mMaterialIndex);
// bones
if (mesh->mNumBones) {
fprintf(out,"\t\t<BoneList num=\"%u\">\n",mesh->mNumBones);
for (unsigned int n = 0; n < mesh->mNumBones;++n) {
aiBone* bone = mesh->mBones[n];
ConvertName(name,bone->mName);
// bone header
fprintf(out,"\t\t\t<Bone name=\"%s\">\n"
"\t\t\t\t<Matrix4> \n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t\t%0 6f %0 6f %0 6f %0 6f\n"
"\t\t\t\t</Matrix4> \n",
name.data,
bone->mOffsetMatrix.a1,bone->mOffsetMatrix.a2,bone->mOffsetMatrix.a3,bone->mOffsetMatrix.a4,
bone->mOffsetMatrix.b1,bone->mOffsetMatrix.b2,bone->mOffsetMatrix.b3,bone->mOffsetMatrix.b4,
bone->mOffsetMatrix.c1,bone->mOffsetMatrix.c2,bone->mOffsetMatrix.c3,bone->mOffsetMatrix.c4,
bone->mOffsetMatrix.d1,bone->mOffsetMatrix.d2,bone->mOffsetMatrix.d3,bone->mOffsetMatrix.d4);
if (!shortened && bone->mNumWeights) {
fprintf(out,"\t\t\t\t<WeightList num=\"%u\">\n",bone->mNumWeights);
// bone weights
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
aiVertexWeight* wght = bone->mWeights+a;
fprintf(out,"\t\t\t\t\t<Weight index=\"%u\">\n\t\t\t\t\t\t%f\n\t\t\t\t\t</Weight>\n",
wght->mVertexId,wght->mWeight);
}
fprintf(out,"\t\t\t\t</WeightList>\n");
}
fprintf(out,"\t\t\t</Bone>\n");
}
fprintf(out,"\t\t</BoneList>\n");
}
// faces
if (!shortened && mesh->mNumFaces) {
fprintf(out,"\t\t<FaceList num=\"%u\">\n",mesh->mNumFaces);
for (unsigned int n = 0; n < mesh->mNumFaces; ++n) {
aiFace& f = mesh->mFaces[n];
fprintf(out,"\t\t\t<Face num=\"%u\">\n"
"\t\t\t\t",f.mNumIndices);
for (unsigned int j = 0; j < f.mNumIndices;++j)
fprintf(out,"%u ",f.mIndices[j]);
fprintf(out,"\n\t\t\t</Face>\n");
}
fprintf(out,"\t\t</FaceList>\n");
}
// vertex positions
if (mesh->HasPositions()) {
fprintf(out,"\t\t<Positions num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mVertices[n].x,
mesh->mVertices[n].y,
mesh->mVertices[n].z);
}
}
fprintf(out,"\t\t</Positions>\n");
}
// vertex normals
if (mesh->HasNormals()) {
fprintf(out,"\t\t<Normals num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mNormals[n].x,
mesh->mNormals[n].y,
mesh->mNormals[n].z);
}
}
else {
}
fprintf(out,"\t\t</Normals>\n");
}
// vertex tangents and bitangents
if (mesh->HasTangentsAndBitangents()) {
fprintf(out,"\t\t<Tangents num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mTangents[n].x,
mesh->mTangents[n].y,
mesh->mTangents[n].z);
}
}
fprintf(out,"\t\t</Tangents>\n");
fprintf(out,"\t\t<Bitangents num=\"%u\" set=\"0\" num_components=\"3\"> \n",mesh->mNumVertices);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mBitangents[n].x,
mesh->mBitangents[n].y,
mesh->mBitangents[n].z);
}
}
fprintf(out,"\t\t</Bitangents>\n");
}
// texture coordinates
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
if (!mesh->mTextureCoords[a])
break;
fprintf(out,"\t\t<TextureCoords num=\"%u\" set=\"%u\" num_components=\"%u\"> \n",mesh->mNumVertices,
a,mesh->mNumUVComponents[a]);
if (!shortened) {
if (mesh->mNumUVComponents[a] == 3) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y,
mesh->mTextureCoords[a][n].z);
}
}
else {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f\n",
mesh->mTextureCoords[a][n].x,
mesh->mTextureCoords[a][n].y);
}
}
}
fprintf(out,"\t\t</TextureCoords>\n");
}
// vertex colors
for (unsigned int a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
if (!mesh->mColors[a])
break;
fprintf(out,"\t\t<Colors num=\"%u\" set=\"%u\" num_components=\"4\"> \n",mesh->mNumVertices,a);
if (!shortened) {
for (unsigned int n = 0; n < mesh->mNumVertices; ++n) {
fprintf(out,"\t\t%0 8f %0 8f %0 8f %0 8f\n",
mesh->mColors[a][n].r,
mesh->mColors[a][n].g,
mesh->mColors[a][n].b,
mesh->mColors[a][n].a);
}
}
fprintf(out,"\t\t</Colors>\n");
}
fprintf(out,"\t</Mesh>\n");
}
fprintf(out,"</MeshList>\n");
}
fprintf(out,"</Scene>\n</ASSIMP>");
}
// ----------------------------------------------------------------------------------- // -----------------------------------------------------------------------------------
int Assimp_Dump (const char* const* params, unsigned int num) int Assimp_Dump (const char* const* params, unsigned int num)
{ {
@ -743,29 +183,25 @@ int Assimp_Dump (const char* const* params, unsigned int num)
return AssimpCmdError::FailedToLoadInputFile; return AssimpCmdError::FailedToLoadInputFile;
} }
if (binary) { try {
try { // Dump the main model, using the appropriate method.
std::unique_ptr<IOSystem> pIOSystem(new DefaultIOSystem()); std::unique_ptr<IOSystem> pIOSystem(new DefaultIOSystem());
if (binary) {
DumpSceneToAssbin(out.c_str(), cmd.c_str(), pIOSystem.get(), DumpSceneToAssbin(out.c_str(), cmd.c_str(), pIOSystem.get(),
scene, shortened, compressed); scene, shortened, compressed);
} }
catch (const std::exception& e) { else {
printf("%s", ("assimp dump: " + std::string(e.what())).c_str()); DumpSceneToAssxml(out.c_str(), cmd.c_str(), pIOSystem.get(),
return AssimpCmdError::ExceptionWasRaised; scene, shortened);
}
catch (...) {
printf("assimp dump: An unknown exception occured.\n");
return AssimpCmdError::ExceptionWasRaised;
} }
} }
else { catch (const std::exception& e) {
FILE* o = ::fopen(out.c_str(), "wt"); printf("%s", ("assimp dump: " + std::string(e.what())).c_str());
if (!o) { return AssimpCmdError::ExceptionWasRaised;
printf("assimp dump: Unable to open output file %s\n",out.c_str()); }
return AssimpCmdError::FailedToOpenOutputFile; catch (...) {
} printf("assimp dump: An unknown exception occured.\n");
WriteDump (scene,o,in.c_str(),cmd.c_str(),shortened); return AssimpCmdError::ExceptionWasRaised;
fclose(o);
} }
printf("assimp dump: Wrote output dump %s\n",out.c_str()); printf("assimp dump: Wrote output dump %s\n",out.c_str());