diff --git a/Readme.md b/Readme.md index 1f6c4118f..ca6c9ba4d 100644 --- a/Readme.md +++ b/Readme.md @@ -43,7 +43,7 @@ __Importers__: - AMJ - ASE - ASK -- B3D; +- B3D - BLEND (Blender) - BVH - COB diff --git a/code/glTF2Asset.h b/code/glTF2Asset.h index cece307d9..4aa56e9ef 100644 --- a/code/glTF2Asset.h +++ b/code/glTF2Asset.h @@ -181,13 +181,17 @@ namespace glTF2 #define _AI_MATKEY_GLTF_MAPPINGID_BASE "$tex.mappingid" #define _AI_MATKEY_GLTF_MAPPINGFILTER_MAG_BASE "$tex.mappingfiltermag" #define _AI_MATKEY_GLTF_MAPPINGFILTER_MIN_BASE "$tex.mappingfiltermin" + #define _AI_MATKEY_GLTF_SCALE_BASE "$tex.scale" + #define _AI_MATKEY_GLTF_STRENGTH_BASE "$tex.strength" #define AI_MATKEY_GLTF_TEXTURE_TEXCOORD _AI_MATKEY_GLTF_TEXTURE_TEXCOORD_BASE, type, N #define AI_MATKEY_GLTF_MAPPINGNAME(type, N) _AI_MATKEY_GLTF_MAPPINGNAME_BASE, type, N #define AI_MATKEY_GLTF_MAPPINGID(type, N) _AI_MATKEY_GLTF_MAPPINGID_BASE, type, N #define AI_MATKEY_GLTF_MAPPINGFILTER_MAG(type, N) _AI_MATKEY_GLTF_MAPPINGFILTER_MAG_BASE, type, N #define AI_MATKEY_GLTF_MAPPINGFILTER_MIN(type, N) _AI_MATKEY_GLTF_MAPPINGFILTER_MIN_BASE, type, N - + #define AI_MATKEY_GLTF_TEXTURE_SCALE(type, N) _AI_MATKEY_GLTF_SCALE_BASE, type, N + #define AI_MATKEY_GLTF_TEXTURE_STRENGTH(type, N) _AI_MATKEY_GLTF_STRENGTH_BASE, type, N + #ifdef ASSIMP_API #include "./../include/assimp/Compiler/pushpack1.h" #endif diff --git a/code/glTF2AssetWriter.inl b/code/glTF2AssetWriter.inl index fa406fc71..3c465d2d2 100644 --- a/code/glTF2AssetWriter.inl +++ b/code/glTF2AssetWriter.inl @@ -584,7 +584,7 @@ namespace glTF2 { if (bodyBuffer->byteLength > 0) { rapidjson::Value glbBodyBuffer; glbBodyBuffer.SetObject(); - glbBodyBuffer.AddMember("byteLength", bodyBuffer->byteLength, mAl); + glbBodyBuffer.AddMember("byteLength", static_cast(bodyBuffer->byteLength), mAl); mDoc["buffers"].PushBack(glbBodyBuffer, mAl); } diff --git a/code/glTF2Importer.cpp b/code/glTF2Importer.cpp index 94e5ca3f1..40917f441 100644 --- a/code/glTF2Importer.cpp +++ b/code/glTF2Importer.cpp @@ -99,14 +99,14 @@ const aiImporterDesc* glTF2Importer::GetInfo() const return &desc; } -bool glTF2Importer::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const +bool glTF2Importer::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool /* checkSig */) const { const std::string &extension = GetExtension(pFile); if (extension != "gltf" && extension != "glb") return false; - if (checkSig && pIOHandler) { + if (pIOHandler) { glTF2::Asset asset(pIOHandler); try { asset.Load(pFile, extension == "glb"); @@ -211,63 +211,90 @@ inline void SetMaterialTextureProperty(std::vector& embeddedTexIdxs, Asset& } } +inline void SetMaterialTextureProperty(std::vector& embeddedTexIdxs, Asset& r, glTF2::NormalTextureInfo& prop, aiMaterial* mat, aiTextureType texType, unsigned int texSlot = 0) +{ + SetMaterialTextureProperty( embeddedTexIdxs, r, (glTF2::TextureInfo) prop, mat, texType, texSlot ); + + if (prop.texture && prop.texture->source) { + mat->AddProperty(&prop.scale, 1, AI_MATKEY_GLTF_TEXTURE_SCALE(texType, texSlot)); + } +} + +inline void SetMaterialTextureProperty(std::vector& embeddedTexIdxs, Asset& r, glTF2::OcclusionTextureInfo& prop, aiMaterial* mat, aiTextureType texType, unsigned int texSlot = 0) +{ + SetMaterialTextureProperty( embeddedTexIdxs, r, (glTF2::TextureInfo) prop, mat, texType, texSlot ); + + if (prop.texture && prop.texture->source) { + mat->AddProperty(&prop.strength, 1, AI_MATKEY_GLTF_TEXTURE_STRENGTH(texType, texSlot)); + } +} + +static aiMaterial* ImportMaterial(std::vector& embeddedTexIdxs, Asset& r, Material& mat) +{ + aiMaterial* aimat = new aiMaterial(); + + if (!mat.name.empty()) { + aiString str(mat.name); + + aimat->AddProperty(&str, AI_MATKEY_NAME); + } + + SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE); + SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR); + + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE); + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE); + + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE); + + aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR); + aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR); + + float roughnessAsShininess = (1 - mat.pbrMetallicRoughness.roughnessFactor) * 1000; + aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS); + + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS); + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP); + SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE); + SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE); + + aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED); + + aiString alphaMode(mat.alphaMode); + aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE); + aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF); + + //pbrSpecularGlossiness + if (mat.pbrSpecularGlossiness.isPresent) { + PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value; + + aimat->AddProperty(&mat.pbrSpecularGlossiness.isPresent, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS); + SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE); + SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR); + + float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f; + aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS); + aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS_GLOSSINESS_FACTOR); + + SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE); + + SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR); + } + + return aimat; +} + void glTF2Importer::ImportMaterials(glTF2::Asset& r) { - mScene->mNumMaterials = unsigned(r.materials.Size()); + const unsigned int numImportedMaterials = unsigned(r.materials.Size()); + Material defaultMaterial; + + mScene->mNumMaterials = numImportedMaterials + 1; mScene->mMaterials = new aiMaterial*[mScene->mNumMaterials]; + mScene->mMaterials[numImportedMaterials] = ImportMaterial(embeddedTexIdxs, r, defaultMaterial); - for (unsigned int i = 0; i < mScene->mNumMaterials; ++i) { - aiMaterial* aimat = mScene->mMaterials[i] = new aiMaterial(); - - Material& mat = r.materials[i]; - - if (!mat.name.empty()) { - aiString str(mat.name); - - aimat->AddProperty(&str, AI_MATKEY_NAME); - } - - SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE); - SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR); - - SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE); - SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE); - - SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE); - - aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR); - aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR); - - float roughnessAsShininess = (1 - mat.pbrMetallicRoughness.roughnessFactor) * 1000; - aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS); - - SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS); - SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP); - SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE); - SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE); - - aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED); - - aiString alphaMode(mat.alphaMode); - aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE); - aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF); - - //pbrSpecularGlossiness - if (mat.pbrSpecularGlossiness.isPresent) { - PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value; - - aimat->AddProperty(&mat.pbrSpecularGlossiness.isPresent, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS); - SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE); - SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR); - - float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f; - aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS); - aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS_GLOSSINESS_FACTOR); - - SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE); - - SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR); - } + for (unsigned int i = 0; i < numImportedMaterials; ++i) { + mScene->mMaterials[i] = ImportMaterial(embeddedTexIdxs, r, r.materials[i]); } } @@ -479,6 +506,10 @@ void glTF2Importer::ImportMeshes(glTF2::Asset& r) if (prim.material) { aim->mMaterialIndex = prim.material.GetIndex(); } + else { + aim->mMaterialIndex = mScene->mNumMaterials - 1; + } + } } @@ -499,6 +530,9 @@ void glTF2Importer::ImportCameras(glTF2::Asset& r) aiCamera* aicam = mScene->mCameras[i] = new aiCamera(); + // cameras point in -Z by default, rest is specified in node transform + aicam->mLookAt = aiVector3D(0.f,0.f,-1.f); + if (cam.type == Camera::Perspective) { aicam->mAspect = cam.cameraProperties.perspective.aspectRatio; diff --git a/code/glTFImporter.cpp b/code/glTFImporter.cpp index 381e459fd..e5a1ae883 100644 --- a/code/glTFImporter.cpp +++ b/code/glTFImporter.cpp @@ -98,14 +98,14 @@ const aiImporterDesc* glTFImporter::GetInfo() const return &desc; } -bool glTFImporter::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool checkSig) const +bool glTFImporter::CanRead(const std::string& pFile, IOSystem* pIOHandler, bool /* checkSig */) const { const std::string &extension = GetExtension(pFile); if (extension != "gltf" && extension != "glb") return false; - if (checkSig && pIOHandler) { + if (pIOHandler) { glTF::Asset asset(pIOHandler); try { asset.Load(pFile, extension == "glb"); diff --git a/doc/dox.h b/doc/dox.h index afd6e487a..3215016ab 100644 --- a/doc/dox.h +++ b/doc/dox.h @@ -561,17 +561,27 @@ The output UV coordinate system has its origin in the lower-left corner: @endcode Use the #aiProcess_FlipUVs flag to get UV coordinates with the upper-left corner als origin. -All matrices in the library are row-major. That means that the matrices are stored row by row in memory, -which is similar to the OpenGL matrix layout. A typical 4x4 matrix including a translational part looks like this: +A typical 4x4 matrix including a translational part looks like this: @code X1 Y1 Z1 T1 X2 Y2 Z2 T2 X3 Y3 Z3 T3 -0 0 0 1 + 0 0 0 1 @endcode -with (X1, X2, X3) being the X base vector, (Y1, Y2, Y3) being the Y base vector, (Z1, Z2, Z3) -being the Z base vector and (T1, T2, T3) being the translation part. If you want to use these matrices -in DirectX functions, you have to transpose them. +with (X1, X2, X3) being the local X base vector, (Y1, Y2, Y3) being the local +Y base vector, (Z1, Z2, Z3) being the local Z base vector and (T1, T2, T3) being the +offset of the local origin (the translational part). +All matrices in the library use row-major storage order. That means that the matrix elements are +stored row-by-row, i.e. they end up like this in memory: +[X1, Y1, Z1, T1, X2, Y2, Z2, T2, X3, Y3, Z3, T3, 0, 0, 0, 1]. + +Note that this is neither the OpenGL format nor the DirectX format, because both of them specify the +matrix layout such that the translational part occupies three consecutive addresses in memory (so those +matrices end with [..., T1, T2, T3, 1]), whereas the translation in an Assimp matrix is found at +the offsets 3, 7 and 11 (spread across the matrix). You can transpose an Assimp matrix to end up with +the format that OpenGL and DirectX mandate. To be very precise: The transposition has nothing +to do with a left-handed or right-handed coordinate system but 'converts' between row-major and +column-major storage format.