Implement draco decoding

pull/3614/head
RichardTea 2021-01-26 15:56:49 +00:00
parent 3a7d0f5656
commit dde7605158
3 changed files with 319 additions and 97 deletions

View File

@ -376,87 +376,6 @@ struct Object {
// Classes for each glTF top-level object type // Classes for each glTF top-level object type
// //
//! A typed view into a BufferView. A BufferView contains raw binary data.
//! An accessor provides a typed view into a BufferView or a subset of a BufferView
//! similar to how WebGL's vertexAttribPointer() defines an attribute in a buffer.
struct Accessor : public Object {
struct Sparse;
Ref<BufferView> bufferView; //!< The ID of the bufferView. (required)
size_t byteOffset; //!< The offset relative to the start of the bufferView in bytes. (required)
ComponentType componentType; //!< The datatype of components in the attribute. (required)
size_t count; //!< The number of attributes referenced by this accessor. (required)
AttribType::Value type; //!< Specifies if the attribute is a scalar, vector, or matrix. (required)
std::vector<double> max; //!< Maximum value of each component in this attribute.
std::vector<double> min; //!< Minimum value of each component in this attribute.
std::unique_ptr<Sparse> sparse;
unsigned int GetNumComponents();
unsigned int GetBytesPerComponent();
unsigned int GetElementSize();
inline uint8_t *GetPointer();
template <class T>
void ExtractData(T *&outData);
void WriteData(size_t count, const void *src_buffer, size_t src_stride);
void WriteSparseValues(size_t count, const void *src_data, size_t src_dataStride);
void WriteSparseIndices(size_t count, const void *src_idx, size_t src_idxStride);
//! Helper class to iterate the data
class Indexer {
friend struct Accessor;
// This field is reported as not used, making it protectd is the easiest way to work around it without going to the bottom of what the problem is:
// ../code/glTF2/glTF2Asset.h:392:19: error: private field 'accessor' is not used [-Werror,-Wunused-private-field]
protected:
Accessor &accessor;
private:
uint8_t *data;
size_t elemSize, stride;
Indexer(Accessor &acc);
public:
//! Accesses the i-th value as defined by the accessor
template <class T>
T GetValue(int i);
//! Accesses the i-th value as defined by the accessor
inline unsigned int GetUInt(int i) {
return GetValue<unsigned int>(i);
}
inline bool IsValid() const {
return data != 0;
}
};
inline Indexer GetIndexer() {
return Indexer(*this);
}
Accessor() {}
void Read(Value &obj, Asset &r);
//sparse
struct Sparse {
size_t count;
ComponentType indicesType;
Ref<BufferView> indices;
size_t indicesByteOffset;
Ref<BufferView> values;
size_t valuesByteOffset;
std::vector<uint8_t> data; //!< Actual data, which may be defaulted to an array of zeros or the original data, with the sparse buffer view applied on top of it.
void PopulateData(size_t numBytes, uint8_t *bytes);
void PatchData(unsigned int elementSize);
};
};
//! A buffer points to binary geometry, animation, or skins. //! A buffer points to binary geometry, animation, or skins.
struct Buffer : public Object { struct Buffer : public Object {
/********************* Types *********************/ /********************* Types *********************/
@ -594,6 +513,91 @@ struct BufferView : public Object {
uint8_t *GetPointer(size_t accOffset); uint8_t *GetPointer(size_t accOffset);
}; };
//! A typed view into a BufferView. A BufferView contains raw binary data.
//! An accessor provides a typed view into a BufferView or a subset of a BufferView
//! similar to how WebGL's vertexAttribPointer() defines an attribute in a buffer.
struct Accessor : public Object {
struct Sparse;
Ref<BufferView> bufferView; //!< The ID of the bufferView. (required)
size_t byteOffset; //!< The offset relative to the start of the bufferView in bytes. (required)
ComponentType componentType; //!< The datatype of components in the attribute. (required)
size_t count; //!< The number of attributes referenced by this accessor. (required)
AttribType::Value type; //!< Specifies if the attribute is a scalar, vector, or matrix. (required)
std::vector<double> max; //!< Maximum value of each component in this attribute.
std::vector<double> min; //!< Minimum value of each component in this attribute.
std::unique_ptr<Sparse> sparse;
std::unique_ptr<Buffer> decodedBuffer; // Packed decoded data, returned instead of original bufferView if present
unsigned int GetNumComponents();
unsigned int GetBytesPerComponent();
unsigned int GetElementSize();
inline uint8_t *GetPointer();
inline size_t GetStride();
inline size_t GetMaxByteSize();
template <class T>
void ExtractData(T *&outData);
void WriteData(size_t count, const void *src_buffer, size_t src_stride);
void WriteSparseValues(size_t count, const void *src_data, size_t src_dataStride);
void WriteSparseIndices(size_t count, const void *src_idx, size_t src_idxStride);
//! Helper class to iterate the data
class Indexer {
friend struct Accessor;
// This field is reported as not used, making it protectd is the easiest way to work around it without going to the bottom of what the problem is:
// ../code/glTF2/glTF2Asset.h:392:19: error: private field 'accessor' is not used [-Werror,-Wunused-private-field]
protected:
Accessor &accessor;
private:
uint8_t *data;
size_t elemSize, stride;
Indexer(Accessor &acc);
public:
//! Accesses the i-th value as defined by the accessor
template <class T>
T GetValue(int i);
//! Accesses the i-th value as defined by the accessor
inline unsigned int GetUInt(int i) {
return GetValue<unsigned int>(i);
}
inline bool IsValid() const {
return data != 0;
}
};
inline Indexer GetIndexer() {
return Indexer(*this);
}
Accessor() {}
void Read(Value &obj, Asset &r);
//sparse
struct Sparse {
size_t count;
ComponentType indicesType;
Ref<BufferView> indices;
size_t indicesByteOffset;
Ref<BufferView> values;
size_t valuesByteOffset;
std::vector<uint8_t> data; //!< Actual data, which may be defaulted to an array of zeros or the original data, with the sparse buffer view applied on top of it.
void PopulateData(size_t numBytes, uint8_t *bytes);
void PatchData(unsigned int elementSize);
};
};
struct Camera : public Object { struct Camera : public Object {
enum Type { enum Type {
Perspective, Perspective,
@ -1092,6 +1096,7 @@ public:
bool KHR_materials_sheen; bool KHR_materials_sheen;
bool KHR_materials_clearcoat; bool KHR_materials_clearcoat;
bool KHR_materials_transmission; bool KHR_materials_transmission;
bool KHR_draco_mesh_compression;
} extensionsUsed; } extensionsUsed;
//! Keeps info about the required extensions //! Keeps info about the required extensions

View File

@ -46,6 +46,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assimp/DefaultLogger.hpp> #include <assimp/DefaultLogger.hpp>
#include <assimp/MemoryIOWrapper.h> #include <assimp/MemoryIOWrapper.h>
#ifdef ASSIMP_ENABLE_DRACO
#include "draco/compression/decode.h"
#include "draco/core/decoder_buffer.h"
#endif
using namespace Assimp; using namespace Assimp;
namespace glTF2 { namespace glTF2 {
@ -175,6 +180,102 @@ inline Value *FindObject(Value &val, const char *id) {
} }
} // namespace } // namespace
#ifdef ASSIMP_ENABLE_DRACO
// Google draco library headers spew many warnings. Bad Google, no cookie
#if _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4018) // Signed/unsigned mismatch
#pragma warning(disable: 4804) // Unsafe use of type 'bool'
#endif
template <typename T>
inline void CopyFaceIndex_Draco(Buffer &decodedIndexBuffer, const draco::Mesh &draco_mesh) {
const size_t faceStride = sizeof(T) * 3;
for (draco::FaceIndex f(0); f < draco_mesh.num_faces(); ++f) {
const draco::Mesh::Face &face = draco_mesh.face(f);
T indices[3] = { static_cast<T>(face[0].value()), static_cast<T>(face[1].value()), static_cast<T>(face[2].value()) };
memcpy(decodedIndexBuffer.GetPointer() + (f.value() * faceStride), &indices[0], faceStride);
}
}
inline void SetDecodedIndexBuffer_Draco(const draco::Mesh &dracoMesh, Mesh::Primitive &prim) {
if (!prim.indices || dracoMesh.num_faces() == 0)
return;
// Create a decoded Index buffer (if there is one)
size_t componentBytes = prim.indices->GetBytesPerComponent();
auto decodedIndexBuffer = std::make_unique<Buffer>();
decodedIndexBuffer->Grow(dracoMesh.num_faces() * 3 * componentBytes);
// If accessor uses the same size as draco implementation, copy the draco buffer directly
// Usually uint32_t but shouldn't assume
if (sizeof(dracoMesh.face(draco::FaceIndex(0))[0]) == componentBytes) {
memcpy(decodedIndexBuffer->GetPointer(), &dracoMesh.face(draco::FaceIndex(0))[0], decodedIndexBuffer->byteLength);
return;
}
// Not same size, convert
switch (componentBytes) {
case sizeof(uint32_t): CopyFaceIndex_Draco<uint32_t>(*decodedIndexBuffer, dracoMesh); break;
case sizeof(uint16_t): CopyFaceIndex_Draco<uint16_t>(*decodedIndexBuffer, dracoMesh); break;
case sizeof(uint8_t): CopyFaceIndex_Draco<uint8_t>(*decodedIndexBuffer, dracoMesh); break;
}
// Assign this alternate data buffer to the accessor
prim.indices->decodedBuffer.swap(decodedIndexBuffer);
}
template <typename T>
static bool GetAttributeForAllPoints(const draco::Mesh &dracoMesh,
const draco::PointAttribute &dracoAttribute,
Buffer &outBuffer) {
size_t byteOffset = 0;
T values[4] = {0, 0, 0, 0};
for (draco::PointIndex i(0); i < dracoMesh.num_points(); ++i) {
const draco::AttributeValueIndex val_index = dracoAttribute.mapped_index(i);
if (!dracoAttribute.ConvertValue<T>(val_index, dracoAttribute.num_components(), values))
return false;
memcpy(outBuffer.GetPointer() + byteOffset, &values[0], sizeof(T) * dracoAttribute.num_components());
byteOffset += sizeof(T) * dracoAttribute.num_components();
}
return true;
}
inline void SetDecodedAttributeBuffer_Draco(const draco::Mesh &dracoMesh, uint32_t dracoAttribId, Accessor &accessor) {
// Create decoded buffer
const draco::PointAttribute *pDracoAttribute = dracoMesh.GetAttributeByUniqueId(dracoAttribId);
if (pDracoAttribute == nullptr)
throw DeadlyImportError("GLTF: Invalid draco attribute id: ", dracoAttribId);
size_t componentBytes = accessor.GetBytesPerComponent();
auto decodedAttribBuffer = std::make_unique<Buffer>();
decodedAttribBuffer->Grow(dracoMesh.num_points() * pDracoAttribute->num_components() * componentBytes);
switch(accessor.componentType)
{
case ComponentType_BYTE: GetAttributeForAllPoints<int8_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer); break;
case ComponentType_UNSIGNED_BYTE: GetAttributeForAllPoints<uint8_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer); break;
case ComponentType_SHORT : GetAttributeForAllPoints<int16_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer); break;
case ComponentType_UNSIGNED_SHORT: GetAttributeForAllPoints<uint16_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer); break;
case ComponentType_UNSIGNED_INT: GetAttributeForAllPoints<uint32_t>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer); break;
case ComponentType_FLOAT : GetAttributeForAllPoints<float>(dracoMesh, *pDracoAttribute, *decodedAttribBuffer); break;
}
// Assign this alternate data buffer to the accessor
accessor.decodedBuffer.swap(decodedAttribBuffer);
}
#if _MSC_VER
#pragma warning(pop)
#endif
#endif
// //
// LazyDict methods // LazyDict methods
// //
@ -709,6 +810,9 @@ inline unsigned int Accessor::GetElementSize() {
} }
inline uint8_t *Accessor::GetPointer() { inline uint8_t *Accessor::GetPointer() {
if (decodedBuffer)
return decodedBuffer->GetPointer();
if (sparse) if (sparse)
return sparse->data.data(); return sparse->data.data();
@ -730,6 +834,24 @@ inline uint8_t *Accessor::GetPointer() {
return basePtr + offset; return basePtr + offset;
} }
inline size_t Accessor::GetStride()
{
// Decoded buffer is always packed
if (decodedBuffer)
return GetElementSize();
// Sparse and normal bufferView
return (bufferView && bufferView->byteStride ? bufferView->byteStride : GetElementSize());
}
inline size_t Accessor::GetMaxByteSize()
{
if (decodedBuffer)
return decodedBuffer->byteLength;
return (bufferView ? bufferView->byteLength : sparse->data.size());
}
namespace { namespace {
inline void CopyData(size_t count, inline void CopyData(size_t count,
const uint8_t *src, size_t src_stride, const uint8_t *src, size_t src_stride,
@ -761,7 +883,7 @@ void Accessor::ExtractData(T *&outData) {
const size_t elemSize = GetElementSize(); const size_t elemSize = GetElementSize();
const size_t totalSize = elemSize * count; const size_t totalSize = elemSize * count;
const size_t stride = bufferView && bufferView->byteStride ? bufferView->byteStride : elemSize; const size_t stride = GetStride();
const size_t targetElemSize = sizeof(T); const size_t targetElemSize = sizeof(T);
@ -769,7 +891,7 @@ void Accessor::ExtractData(T *&outData) {
throw DeadlyImportError("GLTF: elemSize ", elemSize, " > targetElemSize ", targetElemSize, " in ", getContextForErrorMessages(id, name)); throw DeadlyImportError("GLTF: elemSize ", elemSize, " > targetElemSize ", targetElemSize, " in ", getContextForErrorMessages(id, name));
} }
const size_t maxSize = (bufferView ? bufferView->byteLength : sparse->data.size()); const size_t maxSize = GetMaxByteSize();
if (count*stride > maxSize) { if (count*stride > maxSize) {
throw DeadlyImportError("GLTF: count*stride ", (count * stride), " > maxSize ", maxSize, " in ", getContextForErrorMessages(id, name)); throw DeadlyImportError("GLTF: count*stride ", (count * stride), " > maxSize ", maxSize, " in ", getContextForErrorMessages(id, name));
} }
@ -828,14 +950,14 @@ inline Accessor::Indexer::Indexer(Accessor &acc) :
accessor(acc), accessor(acc),
data(acc.GetPointer()), data(acc.GetPointer()),
elemSize(acc.GetElementSize()), elemSize(acc.GetElementSize()),
stride(acc.bufferView && acc.bufferView->byteStride ? acc.bufferView->byteStride : elemSize) { stride(acc.GetStride()) {
} }
//! Accesses the i-th value as defined by the accessor //! Accesses the i-th value as defined by the accessor
template <class T> template <class T>
T Accessor::Indexer::GetValue(int i) { T Accessor::Indexer::GetValue(int i) {
ai_assert(data); ai_assert(data);
ai_assert(i * stride < accessor.bufferView->byteLength); ai_assert(i * stride < accessor.GetMaxByteSize());
// Ensure that the memcpy doesn't overwrite the local. // Ensure that the memcpy doesn't overwrite the local.
const size_t sizeToCopy = std::min(elemSize, sizeof(T)); const size_t sizeToCopy = std::min(elemSize, sizeof(T));
T value = T(); T value = T();
@ -1192,6 +1314,14 @@ inline void Mesh::Read(Value &pJSON_Object, Asset &pAsset_Root) {
Primitive &prim = this->primitives[i]; Primitive &prim = this->primitives[i];
prim.mode = MemberOrDefault(primitive, "mode", PrimitiveMode_TRIANGLES); prim.mode = MemberOrDefault(primitive, "mode", PrimitiveMode_TRIANGLES);
if (Value *indices = FindUInt(primitive, "indices")) {
prim.indices = pAsset_Root.accessors.Retrieve(indices->GetUint());
}
if (Value *material = FindUInt(primitive, "material")) {
prim.material = pAsset_Root.materials.Retrieve(material->GetUint());
}
if (Value *attrs = FindObject(primitive, "attributes")) { if (Value *attrs = FindObject(primitive, "attributes")) {
for (Value::MemberIterator it = attrs->MemberBegin(); it != attrs->MemberEnd(); ++it) { for (Value::MemberIterator it = attrs->MemberBegin(); it != attrs->MemberEnd(); ++it) {
if (!it->value.IsUint()) continue; if (!it->value.IsUint()) continue;
@ -1200,11 +1330,11 @@ inline void Mesh::Read(Value &pJSON_Object, Asset &pAsset_Root) {
// and WEIGHT.Attribute semantics can be of the form[semantic]_[set_index], e.g., TEXCOORD_0, TEXCOORD_1, etc. // and WEIGHT.Attribute semantics can be of the form[semantic]_[set_index], e.g., TEXCOORD_0, TEXCOORD_1, etc.
int undPos = 0; int undPos = 0;
Mesh::AccessorList *vec = 0; Mesh::AccessorList *vec = nullptr;
if (GetAttribVector(prim, attr, vec, undPos)) { if (GetAttribVector(prim, attr, vec, undPos)) {
size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0; size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0;
if ((*vec).size() != idx) { if ((*vec).size() != idx) {
throw DeadlyImportError("GLTF: Invalid attribute: ", attr, ". All indices for indexed attribute semantics must start with 0 and be continuous positive integers: TEXCOORD_0, TEXCOORD_1, etc."); throw DeadlyImportError("GLTF: Invalid attribute in mesh: ", name, " primitive: ", i,"attrib: ", attr, ". All indices for indexed attribute semantics must start with 0 and be continuous positive integers: TEXCOORD_0, TEXCOORD_1, etc.");
} }
(*vec).resize(idx + 1); (*vec).resize(idx + 1);
(*vec)[idx] = pAsset_Root.accessors.Retrieve(it->value.GetUint()); (*vec)[idx] = pAsset_Root.accessors.Retrieve(it->value.GetUint());
@ -1212,6 +1342,66 @@ inline void Mesh::Read(Value &pJSON_Object, Asset &pAsset_Root) {
} }
} }
#ifdef ASSIMP_ENABLE_DRACO
// KHR_draco_mesh_compression spec: Draco can only be used for glTF Triangles or Triangle Strips
if (pAsset_Root.extensionsUsed.KHR_draco_mesh_compression && (prim.mode == PrimitiveMode_TRIANGLES || prim.mode == PrimitiveMode_TRIANGLE_STRIP)) {
// Look for draco mesh compression extension and bufferView
// Skip if any missing
if (Value *exts = FindObject(primitive, "extensions")) {
if (Value *dracoExt = FindObject(*exts, "KHR_draco_mesh_compression")) {
if (Value *bufView = FindUInt(*dracoExt, "bufferView")) {
// Attempt to load indices and attributes using draco compression
auto bufferView = pAsset_Root.bufferViews.Retrieve(bufView->GetUint());
// Attempt to perform the draco decode on the buffer data
const char *bufferViewData = reinterpret_cast<const char *>(bufferView->buffer->GetPointer() + bufferView->byteOffset);
draco::DecoderBuffer decoderBuffer;
decoderBuffer.Init(bufferViewData, bufferView->byteLength);
draco::Decoder decoder;
auto decodeResult = decoder.DecodeMeshFromBuffer(&decoderBuffer);
if (!decodeResult.ok()) {
// A corrupt Draco isn't actually fatal if the primitive data is also provided in a standard buffer, but does anyone do that?
throw DeadlyImportError("GLTF: Invalid Draco mesh compression in mesh ", name, " primitive ", i, ": ", decodeResult.status().error_msg_string());
}
// Now we have a draco mesh
const std::unique_ptr<draco::Mesh> &pDracoMesh = decodeResult.value();
// Redirect the accessors to the decoded data
// Indices
SetDecodedIndexBuffer_Draco(*pDracoMesh, prim);
// Vertex attributes
if (Value *attrs = FindObject(*dracoExt, "attributes")) {
for (Value::MemberIterator it = attrs->MemberBegin(); it != attrs->MemberEnd(); ++it) {
if (!it->value.IsUint()) continue;
const char *attr = it->name.GetString();
int undPos = 0;
Mesh::AccessorList *vec = nullptr;
if (GetAttribVector(prim, attr, vec, undPos)) {
size_t idx = (attr[undPos] == '_') ? atoi(attr + undPos + 1) : 0;
if (idx >= (*vec).size()) {
throw DeadlyImportError("GLTF: Invalid draco attribute in mesh: ", name, " primitive: ", i, " attrib: ", attr, ". "
"All indices for indexed attribute semantics must start with 0 and be continuous positive integers: TEXCOORD_0, TEXCOORD_1, etc.");
}
Accessor &attribAccessor = *(*vec)[idx];
if (attribAccessor.count == 0)
throw DeadlyImportError("GLTF: Invalid draco attribute in mesh: ", name, " primitive: ", i, " attrib: ", attr);
// Redirect this accessor to the appropriate Draco vertex attribute data
const uint32_t dracoAttribId = it->value.GetUint();
SetDecodedAttributeBuffer_Draco(*pDracoMesh, dracoAttribId, attribAccessor);
}
}
}
}
}
}
}
#endif
Value *targetsArray = FindArray(primitive, "targets"); Value *targetsArray = FindArray(primitive, "targets");
if (nullptr != targetsArray) { if (nullptr != targetsArray) {
prim.targets.resize(targetsArray->Size()); prim.targets.resize(targetsArray->Size());
@ -1238,14 +1428,6 @@ inline void Mesh::Read(Value &pJSON_Object, Asset &pAsset_Root) {
} }
} }
} }
if (Value *indices = FindUInt(primitive, "indices")) {
prim.indices = pAsset_Root.accessors.Retrieve(indices->GetUint());
}
if (Value *material = FindUInt(primitive, "material")) {
prim.material = pAsset_Root.materials.Retrieve(material->GetUint());
}
} }
} }
@ -1693,10 +1875,12 @@ inline void Asset::Load(const std::string &pFile, bool isBinary) {
ReadExtensionsUsed(doc); ReadExtensionsUsed(doc);
ReadExtensionsRequired(doc); ReadExtensionsRequired(doc);
// Currently Draco is not supported #ifndef ASSIMP_ENABLE_DRACO
// Is Draco supported?
if (extensionsRequired.KHR_draco_mesh_compression) { if (extensionsRequired.KHR_draco_mesh_compression) {
throw DeadlyImportError("GLTF: Draco mesh compression not currently supported."); throw DeadlyImportError("GLTF: Draco mesh compression not supported.");
} }
#endif
// Prepare the dictionaries // Prepare the dictionaries
for (size_t i = 0; i < mDicts.size(); ++i) { for (size_t i = 0; i < mDicts.size(); ++i) {
@ -1784,6 +1968,7 @@ inline void Asset::ReadExtensionsUsed(Document &doc) {
CHECK_EXT(KHR_materials_sheen); CHECK_EXT(KHR_materials_sheen);
CHECK_EXT(KHR_materials_clearcoat); CHECK_EXT(KHR_materials_clearcoat);
CHECK_EXT(KHR_materials_transmission); CHECK_EXT(KHR_materials_transmission);
CHECK_EXT(KHR_draco_mesh_compression);
#undef CHECK_EXT #undef CHECK_EXT
} }

View File

@ -574,3 +574,35 @@ TEST_F(utglTF2ImportExport, allIndicesOutOfRange) {
std::string error = importer.GetErrorString(); std::string error = importer.GetErrorString();
ASSERT_NE(error.find("Mesh \"Mesh\" has no faces"), std::string::npos); ASSERT_NE(error.find("Mesh \"Mesh\" has no faces"), std::string::npos);
} }
/////////////////////////////////
// Draco decoding
#ifdef ASSIMP_ENABLE_DRACO
TEST_F(utglTF2ImportExport, import_dracoEncoded) {
Assimp::Importer importer;
const aiScene *scene = importer.ReadFile(ASSIMP_TEST_MODELS_DIR "/glTF2/draco/2CylinderEngine.gltf",
aiProcess_ValidateDataStructure);
ASSERT_NE(scene, nullptr);
ASSERT_NE(scene->mMetaData, nullptr);
{
ASSERT_TRUE(scene->mMetaData->HasKey(AI_METADATA_SOURCE_FORMAT));
aiString format;
ASSERT_TRUE(scene->mMetaData->Get(AI_METADATA_SOURCE_FORMAT, format));
ASSERT_EQ(strcmp(format.C_Str(), "glTF2 Importer"), 0);
}
{
ASSERT_TRUE(scene->mMetaData->HasKey(AI_METADATA_SOURCE_FORMAT_VERSION));
aiString version;
ASSERT_TRUE(scene->mMetaData->Get(AI_METADATA_SOURCE_FORMAT_VERSION, version));
ASSERT_EQ(strcmp(version.C_Str(), "2.0"), 0);
}
{
ASSERT_TRUE(scene->mMetaData->HasKey(AI_METADATA_SOURCE_GENERATOR));
aiString generator;
ASSERT_TRUE(scene->mMetaData->Get(AI_METADATA_SOURCE_GENERATOR, generator));
ASSERT_EQ(strcmp(generator.C_Str(), "COLLADA2GLTF"), 0);
}
}
#endif