Matrix to Quaternion conversion precision fix.
See below links for reasoning, but in short, avoid sqrt and division of small values. It's also possible to normalize the quaternion after the conversion, but better precision is preferable. http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ethan.htmpull/12/head
parent
477995f860
commit
c40b767016
|
@ -69,12 +69,12 @@ bool aiQuaterniont<TReal>::operator!= (const aiQuaterniont& o) const
|
||||||
template<typename TReal>
|
template<typename TReal>
|
||||||
inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
|
inline aiQuaterniont<TReal>::aiQuaterniont( const aiMatrix3x3t<TReal> &pRotMatrix)
|
||||||
{
|
{
|
||||||
TReal t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
|
TReal t = pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
|
||||||
|
|
||||||
// large enough
|
// large enough
|
||||||
if( t > static_cast<TReal>(0.001))
|
if( t > static_cast<TReal>(0))
|
||||||
{
|
{
|
||||||
TReal s = sqrt( t) * static_cast<TReal>(2.0);
|
TReal s = sqrt(1 + t) * static_cast<TReal>(2.0);
|
||||||
x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
|
||||||
y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
|
||||||
z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
|
||||||
|
|
Loading…
Reference in New Issue