|
|
|
@ -108,6 +108,125 @@ void JoinVerticesProcess::Execute( aiScene* pScene)
|
|
|
|
|
pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
bool areVerticesEqual(const Vertex &lhs, const Vertex &rhs, bool complex)
|
|
|
|
|
{
|
|
|
|
|
// A little helper to find locally close vertices faster.
|
|
|
|
|
// Try to reuse the lookup table from the last step.
|
|
|
|
|
const static float epsilon = 1e-5f;
|
|
|
|
|
// Squared because we check against squared length of the vector difference
|
|
|
|
|
static const float squareEpsilon = epsilon * epsilon;
|
|
|
|
|
|
|
|
|
|
// Square compare is useful for animeshes vertexes compare
|
|
|
|
|
if ((lhs.position - rhs.position).SquareLength() > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// We just test the other attributes even if they're not present in the mesh.
|
|
|
|
|
// In this case they're initialized to 0 so the comparison succeeds.
|
|
|
|
|
// By this method the non-present attributes are effectively ignored in the comparison.
|
|
|
|
|
if ((lhs.normal - rhs.normal).SquareLength() > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((lhs.texcoords[0] - rhs.texcoords[0]).SquareLength() > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((lhs.tangent - rhs.tangent).SquareLength() > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if ((lhs.bitangent - rhs.bitangent).SquareLength() > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Usually we won't have vertex colors or multiple UVs, so we can skip from here
|
|
|
|
|
// Actually this increases runtime performance slightly, at least if branch
|
|
|
|
|
// prediction is on our side.
|
|
|
|
|
if (complex) {
|
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
|
|
|
if (i > 0 && (lhs.texcoords[i] - rhs.texcoords[i]).SquareLength() > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
if (GetColorDifference(lhs.colors[i], rhs.colors[i]) > squareEpsilon) {
|
|
|
|
|
return false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
return true;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
template<class XMesh>
|
|
|
|
|
void updateXMeshVertices(XMesh *pMesh, std::vector<Vertex> &uniqueVertices) {
|
|
|
|
|
// replace vertex data with the unique data sets
|
|
|
|
|
pMesh->mNumVertices = (unsigned int)uniqueVertices.size();
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// NOTE - we're *not* calling Vertex::SortBack() because it would check for
|
|
|
|
|
// presence of every single vertex component once PER VERTEX. And our CPU
|
|
|
|
|
// dislikes branches, even if they're easily predictable.
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
// Position, if present (check made for aiAnimMesh)
|
|
|
|
|
if (pMesh->mVertices)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mVertices;
|
|
|
|
|
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mVertices[a] = uniqueVertices[a].position;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Normals, if present
|
|
|
|
|
if (pMesh->mNormals)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mNormals;
|
|
|
|
|
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mNormals[a] = uniqueVertices[a].normal;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Tangents, if present
|
|
|
|
|
if (pMesh->mTangents)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mTangents;
|
|
|
|
|
pMesh->mTangents = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mTangents[a] = uniqueVertices[a].tangent;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Bitangents as well
|
|
|
|
|
if (pMesh->mBitangents)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mBitangents;
|
|
|
|
|
pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mBitangents[a] = uniqueVertices[a].bitangent;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Vertex colors
|
|
|
|
|
for (unsigned int a = 0; pMesh->HasVertexColors(a); a++)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mColors[a];
|
|
|
|
|
pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
|
|
|
|
pMesh->mColors[a][b] = uniqueVertices[b].colors[a];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Texture coords
|
|
|
|
|
for (unsigned int a = 0; pMesh->HasTextureCoords(a); a++)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mTextureCoords[a];
|
|
|
|
|
pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for (unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
|
|
|
|
pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
|
|
// ------------------------------------------------------------------------------------------------
|
|
|
|
|
// Unites identical vertices in the given mesh
|
|
|
|
|
int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
@ -132,9 +251,6 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
|
static_assert(AI_MAX_VERTICES == 0x7fffffff, "AI_MAX_VERTICES == 0x7fffffff");
|
|
|
|
|
std::vector<unsigned int> replaceIndex( pMesh->mNumVertices, 0xffffffff);
|
|
|
|
|
|
|
|
|
|
// A little helper to find locally close vertices faster.
|
|
|
|
|
// Try to reuse the lookup table from the last step.
|
|
|
|
|
const static float epsilon = 1e-5f;
|
|
|
|
|
// float posEpsilonSqr;
|
|
|
|
|
SpatialSort* vertexFinder = NULL;
|
|
|
|
|
SpatialSort _vertexFinder;
|
|
|
|
@ -156,9 +272,6 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
|
// posEpsilonSqr = ComputePositionEpsilon(pMesh);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Squared because we check against squared length of the vector difference
|
|
|
|
|
static const float squareEpsilon = epsilon * epsilon;
|
|
|
|
|
|
|
|
|
|
// Again, better waste some bytes than a realloc ...
|
|
|
|
|
std::vector<unsigned int> verticesFound;
|
|
|
|
|
verticesFound.reserve(10);
|
|
|
|
@ -166,6 +279,16 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
|
// Run an optimized code path if we don't have multiple UVs or vertex colors.
|
|
|
|
|
// This should yield false in more than 99% of all imports ...
|
|
|
|
|
const bool complex = ( pMesh->GetNumColorChannels() > 0 || pMesh->GetNumUVChannels() > 1);
|
|
|
|
|
const bool hasAnimMeshes = pMesh->mNumAnimMeshes > 0;
|
|
|
|
|
|
|
|
|
|
// We'll never have more vertices afterwards.
|
|
|
|
|
std::vector<std::vector<Vertex>> uniqueAnimatedVertices;
|
|
|
|
|
if (hasAnimMeshes) {
|
|
|
|
|
uniqueAnimatedVertices.resize(pMesh->mNumAnimMeshes);
|
|
|
|
|
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
|
|
|
|
uniqueAnimatedVertices[animMeshIndex].reserve(pMesh->mNumVertices);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Now check each vertex if it brings something new to the table
|
|
|
|
|
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
@ -178,75 +301,33 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
|
|
|
|
|
|
// check all unique vertices close to the position if this vertex is already present among them
|
|
|
|
|
for( unsigned int b = 0; b < verticesFound.size(); b++) {
|
|
|
|
|
|
|
|
|
|
const unsigned int vidx = verticesFound[b];
|
|
|
|
|
const unsigned int uidx = replaceIndex[ vidx];
|
|
|
|
|
if( uidx & 0x80000000)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
const Vertex& uv = uniqueVertices[ uidx];
|
|
|
|
|
// Position mismatch is impossible - the vertex finder already discarded all non-matching positions
|
|
|
|
|
|
|
|
|
|
// We just test the other attributes even if they're not present in the mesh.
|
|
|
|
|
// In this case they're initialized to 0 so the comparison succeeds.
|
|
|
|
|
// By this method the non-present attributes are effectively ignored in the comparison.
|
|
|
|
|
if( (uv.normal - v.normal).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( (uv.texcoords[0] - v.texcoords[0]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( (uv.tangent - v.tangent).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( (uv.bitangent - v.bitangent).SquareLength() > squareEpsilon)
|
|
|
|
|
if (!areVerticesEqual(v, uv, complex)) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Usually we won't have vertex colors or multiple UVs, so we can skip from here
|
|
|
|
|
// Actually this increases runtime performance slightly, at least if branch
|
|
|
|
|
// prediction is on our side.
|
|
|
|
|
if (complex){
|
|
|
|
|
// manually unrolled because continue wouldn't work as desired in an inner loop,
|
|
|
|
|
// also because some compilers seem to fail the task. Colors and UV coords
|
|
|
|
|
// are interleaved since the higher entries are most likely to be
|
|
|
|
|
// zero and thus useless. By interleaving the arrays, vertices are,
|
|
|
|
|
// on average, rejected earlier.
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[1] - v.texcoords[1]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[0], v.colors[0]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[2] - v.texcoords[2]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[1], v.colors[1]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[3] - v.texcoords[3]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[2], v.colors[2]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[4] - v.texcoords[4]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[3], v.colors[3]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[5] - v.texcoords[5]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[4], v.colors[4]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[6] - v.texcoords[6]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[5], v.colors[5]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( (uv.texcoords[7] - v.texcoords[7]).SquareLength() > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
if( GetColorDifference( uv.colors[6], v.colors[6]) > squareEpsilon)
|
|
|
|
|
continue;
|
|
|
|
|
|
|
|
|
|
if( GetColorDifference( uv.colors[7], v.colors[7]) > squareEpsilon)
|
|
|
|
|
if (hasAnimMeshes) {
|
|
|
|
|
// If given vertex is animated, then it has to be preserver 1 to 1 (base mesh and animated mesh require same topology)
|
|
|
|
|
// NOTE: not doing this totaly breaks anim meshes as they don't have their own faces (they use pMesh->mFaces)
|
|
|
|
|
bool breaksAnimMesh = false;
|
|
|
|
|
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
|
|
|
|
const Vertex& animatedUV = uniqueAnimatedVertices[animMeshIndex][ uidx];
|
|
|
|
|
Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
|
|
|
|
|
if (!areVerticesEqual(aniMeshVertex, animatedUV, complex)) {
|
|
|
|
|
breaksAnimMesh = true;
|
|
|
|
|
break;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (breaksAnimMesh) {
|
|
|
|
|
continue;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// we're still here -> this vertex perfectly matches our given vertex
|
|
|
|
|
matchIndex = uidx;
|
|
|
|
@ -264,6 +345,12 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
|
// no unique vertex matches it up to now -> so add it
|
|
|
|
|
replaceIndex[a] = (unsigned int)uniqueVertices.size();
|
|
|
|
|
uniqueVertices.push_back( v);
|
|
|
|
|
if (hasAnimMeshes) {
|
|
|
|
|
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
|
|
|
|
Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
|
|
|
|
|
uniqueAnimatedVertices[animMeshIndex].push_back(aniMeshVertex);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -281,64 +368,10 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// replace vertex data with the unique data sets
|
|
|
|
|
pMesh->mNumVertices = (unsigned int)uniqueVertices.size();
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
// NOTE - we're *not* calling Vertex::SortBack() because it would check for
|
|
|
|
|
// presence of every single vertex component once PER VERTEX. And our CPU
|
|
|
|
|
// dislikes branches, even if they're easily predictable.
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
// Position
|
|
|
|
|
delete [] pMesh->mVertices;
|
|
|
|
|
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int a = 0; a < pMesh->mNumVertices; a++)
|
|
|
|
|
pMesh->mVertices[a] = uniqueVertices[a].position;
|
|
|
|
|
|
|
|
|
|
// Normals, if present
|
|
|
|
|
if( pMesh->mNormals)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mNormals;
|
|
|
|
|
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mNormals[a] = uniqueVertices[a].normal;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Tangents, if present
|
|
|
|
|
if( pMesh->mTangents)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mTangents;
|
|
|
|
|
pMesh->mTangents = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mTangents[a] = uniqueVertices[a].tangent;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Bitangents as well
|
|
|
|
|
if( pMesh->mBitangents)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mBitangents;
|
|
|
|
|
pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
|
|
|
|
pMesh->mBitangents[a] = uniqueVertices[a].bitangent;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Vertex colors
|
|
|
|
|
for( unsigned int a = 0; pMesh->HasVertexColors(a); a++)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mColors[a];
|
|
|
|
|
pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
|
|
|
|
pMesh->mColors[a][b] = uniqueVertices[b].colors[a];
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// Texture coords
|
|
|
|
|
for( unsigned int a = 0; pMesh->HasTextureCoords(a); a++)
|
|
|
|
|
{
|
|
|
|
|
delete [] pMesh->mTextureCoords[a];
|
|
|
|
|
pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices];
|
|
|
|
|
for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
|
|
|
|
pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a];
|
|
|
|
|
updateXMeshVertices(pMesh, uniqueVertices);
|
|
|
|
|
if (hasAnimMeshes) {
|
|
|
|
|
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
|
|
|
|
updateXMeshVertices(pMesh->mAnimMeshes[animMeshIndex], uniqueAnimatedVertices[animMeshIndex]);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|