+ integrate Debone-Process into Assimp. This step was contributed by mick-p, see [3262561] (https://sourceforge.net/tracker/?func=detail&aid=3262561&group_id=226462&atid=1067634)

- refactor ProcessHelper.h. Some functions now reside in ProcessHelper.cpp, which is new.

git-svn-id: https://assimp.svn.sourceforge.net/svnroot/assimp/trunk@946 67173fc5-114c-0410-ac8e-9d2fd5bffc1f
pull/1/head
aramis_acg 2011-04-15 15:09:53 +00:00
parent 473dae7876
commit a6e0a5075f
9 changed files with 1111 additions and 220 deletions

View File

@ -115,3 +115,7 @@ Contributed AssimpDelphi (/port/AssimpDelphi).
- rdb
Contributes a bundle of fixes and improvments for the bsp-importer.
- Mick P
For contributing the De-bone postprocessing step and filing various bug reports.

View File

@ -87,7 +87,6 @@ SOURCE_GROUP( Common FILES
BaseProcess.cpp
BaseProcess.h
ByteSwap.h
ProcessHelper.h
DefaultProgressHandler.h
DefaultIOStream.cpp
DefaultIOStream.h
@ -362,6 +361,10 @@ SOURCE_GROUP( PostProcessing FILES
OptimizeGraph.h
OptimizeMeshes.cpp
OptimizeMeshes.h
DeboneProcess.cpp
DeboneProcess.h
ProcessHelper.h
ProcessHelper.cp
)
SOURCE_GROUP( Q3D FILES
@ -608,6 +611,7 @@ ADD_LIBRARY( assimp SHARED
PretransformVertices.cpp
PretransformVertices.h
ProcessHelper.h
ProcessHelper.cpp
Q3DLoader.cpp
Q3DLoader.h
Q3BSPFileData.h
@ -734,6 +738,8 @@ ADD_LIBRARY( assimp SHARED
Profiler.h
NDOLoader.cpp
NDOLoader.h
DeboneProcess.cpp
DeboneProcess.h
ColladaExporter.h
ColladaExporter.cpp

View File

@ -0,0 +1,466 @@
/*
Open Asset Import Library (ASSIMP)
----------------------------------------------------------------------
Copyright (c) 2006-2010, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/// @file DeboneProcess.cpp
/** Implementation of the DeboneProcess post processing step */
#include "AssimpPCH.h"
// internal headers of the post-processing framework
#include "ProcessHelper.h"
#include "DeboneProcess.h"
#include <limits>
using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
DeboneProcess::DeboneProcess()
{
mNumBones = 0;
mNumBonesCanDoWithout = 0;
mThreshold = AI_DEBONE_THRESHOLD;
mAllOrNone = false;
}
// ------------------------------------------------------------------------------------------------
// Destructor, private as well
DeboneProcess::~DeboneProcess()
{
// nothing to do here
}
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool DeboneProcess::IsActive( unsigned int pFlags) const
{
return (pFlags & aiProcess_Debone) != 0;
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void DeboneProcess::SetupProperties(const Importer* pImp)
{
// get the current value of the property
mAllOrNone = pImp->GetPropertyInteger(AI_CONFIG_PP_DB_ALL_OR_NONE,0)?true:false;
mThreshold = pImp->GetPropertyFloat(AI_CONFIG_PP_DB_THRESHOLD,AI_DEBONE_THRESHOLD);
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void DeboneProcess::Execute( aiScene* pScene)
{
DefaultLogger::get()->debug("DeboneProcess begin");
if(!pScene->mNumMeshes) {
return;
}
std::vector<bool> splitList(pScene->mNumMeshes);
for( unsigned int a = 0; a < pScene->mNumMeshes; a++) {
splitList[a] = ConsiderMesh( pScene->mMeshes[a] );
}
int numSplits = 0;
if(!!mNumBonesCanDoWithout && (!mAllOrNone||mNumBonesCanDoWithout==mNumBones)) {
for(unsigned int a = 0; a < pScene->mNumMeshes; a++) {
if(splitList[a]) {
numSplits++;
}
}
}
if(numSplits) {
// we need to do something. Let's go.
mSubMeshIndices.clear();
mSubMeshIndices.resize(pScene->mNumMeshes);
// build a new array of meshes for the scene
std::vector<aiMesh*> meshes;
for(unsigned int a=0;a<pScene->mNumMeshes;a++)
{
aiMesh* srcMesh = pScene->mMeshes[a];
std::vector<std::pair<aiMesh*,const aiBone*> > newMeshes;
if(splitList[a]) {
SplitMesh(srcMesh,newMeshes);
}
// mesh was split
if(!newMeshes.empty()) {
unsigned int out = 0, in = srcMesh->mNumBones;
// store new meshes and indices of the new meshes
for(unsigned int b=0;b<newMeshes.size();b++) {
const aiString *find = newMeshes[b].second?&newMeshes[b].second->mName:0;
aiNode *theNode = find?pScene->mRootNode->FindNode(*find):0;
std::pair<unsigned int,aiNode*> push_pair(meshes.size(),theNode);
mSubMeshIndices[a].push_back(push_pair);
meshes.push_back(newMeshes[b].first);
out+=newMeshes[b].first->mNumBones;
}
if(!DefaultLogger::isNullLogger()) {
char buffer[1024];
::sprintf(buffer,"Removed %i bones. Input bones: %i. Output bones: %i",in-out,in,out);
DefaultLogger::get()->info(buffer);
}
// and destroy the source mesh. It should be completely contained inside the new submeshes
delete srcMesh;
}
else {
// Mesh is kept unchanged - store it's new place in the mesh array
mSubMeshIndices[a].push_back(std::pair<unsigned int,aiNode*>(meshes.size(),0));
meshes.push_back(srcMesh);
}
}
// rebuild the scene's mesh array
pScene->mNumMeshes = meshes.size();
delete [] pScene->mMeshes;
pScene->mMeshes = new aiMesh*[pScene->mNumMeshes];
std::copy( meshes.begin(), meshes.end(), pScene->mMeshes);
// recurse through all nodes and translate the node's mesh indices to fit the new mesh array
UpdateNode( pScene->mRootNode);
}
DefaultLogger::get()->debug("DeboneProcess end");
}
// ------------------------------------------------------------------------------------------------
// Counts bones total/removable in a given mesh.
bool DeboneProcess::ConsiderMesh(const aiMesh* pMesh)
{
if(!pMesh->HasBones()) {
return false;
}
bool split = false;
//interstitial faces not permitted
bool isInterstitialRequired = false;
std::vector<bool> isBoneNecessary(pMesh->mNumBones,false);
std::vector<unsigned int> vertexBones(pMesh->mNumVertices,UINT_MAX);
const unsigned int cUnowned = UINT_MAX;
const unsigned int cCoowned = UINT_MAX-1;
for(unsigned int i=0;i<pMesh->mNumBones;i++) {
for(unsigned int j=0;j<pMesh->mBones[i]->mNumWeights;j++) {
float w = pMesh->mBones[i]->mWeights[j].mWeight;
if(w==0.0f) {
continue;
}
unsigned int vid = pMesh->mBones[i]->mWeights[j].mVertexId;
if(w>=mThreshold) {
if(vertexBones[vid]!=cUnowned) {
if(vertexBones[vid]==i) //double entry
{
DefaultLogger::get()->warn("Encountered double entry in bone weights");
}
else //TODO: track attraction in order to break tie
{
vertexBones[vid] = cCoowned;
}
}
else vertexBones[vid] = i;
}
if(!isBoneNecessary[i]) {
isBoneNecessary[i] = w<mThreshold;
}
}
if(!isBoneNecessary[i]) {
isInterstitialRequired = true;
}
}
if(isInterstitialRequired) {
for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
unsigned int v = vertexBones[pMesh->mFaces[i].mIndices[0]];
for(unsigned int j=1;j<pMesh->mFaces[i].mNumIndices;j++) {
unsigned int w = vertexBones[pMesh->mFaces[i].mIndices[j]];
if(v!=w) {
if(v<pMesh->mNumBones) isBoneNecessary[v] = true;
if(w<pMesh->mNumBones) isBoneNecessary[w] = true;
}
}
}
}
for(unsigned int i=0;i<pMesh->mNumBones;i++) {
if(!isBoneNecessary[i]) {
mNumBonesCanDoWithout++;
split = true;
}
mNumBones++;
}
return split;
}
// ------------------------------------------------------------------------------------------------
// Splits the given mesh by bone count.
void DeboneProcess::SplitMesh( const aiMesh* pMesh, std::vector<std::pair<aiMesh*,const aiBone*>>& poNewMeshes) const
{
// same deal here as ConsiderMesh basically
std::vector<bool> isBoneNecessary(pMesh->mNumBones,false);
std::vector<unsigned int> vertexBones(pMesh->mNumVertices,UINT_MAX);
const unsigned int cUnowned = UINT_MAX;
const unsigned int cCoowned = UINT_MAX-1;
for(unsigned int i=0;i<pMesh->mNumBones;i++) {
for(unsigned int j=0;j<pMesh->mBones[i]->mNumWeights;j++) {
float w = pMesh->mBones[i]->mWeights[j].mWeight;
if(w==0.0f) {
continue;
}
unsigned int vid = pMesh->mBones[i]->mWeights[j].mVertexId;
if(w>=mThreshold) {
if(vertexBones[vid]!=cUnowned) {
if(vertexBones[vid]==i) //double entry
{
//DefaultLogger::get()->warn("Encountered double entry in bone weights");
}
else //TODO: track attraction in order to break tie
{
vertexBones[vid] = cCoowned;
}
}
else vertexBones[vid] = i;
}
if(!isBoneNecessary[i]) {
isBoneNecessary[i] = w<mThreshold;
}
}
}
unsigned int nFacesUnowned = 0;
std::vector<unsigned int> faceBones(pMesh->mNumFaces,UINT_MAX);
std::vector<unsigned int> facesPerBone(pMesh->mNumBones,0);
for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
unsigned int nInterstitial = 1;
unsigned int v = vertexBones[pMesh->mFaces[i].mIndices[0]];
for(unsigned int j=1;j<pMesh->mFaces[i].mNumIndices;j++) {
unsigned int w = vertexBones[pMesh->mFaces[i].mIndices[j]];
if(v!=w) {
if(v<pMesh->mNumBones) isBoneNecessary[v] = true;
if(w<pMesh->mNumBones) isBoneNecessary[w] = true;
}
else nInterstitial++;
}
if(v<pMesh->mNumBones &&nInterstitial==pMesh->mFaces[i].mNumIndices) {
faceBones[i] = v; //primitive belongs to bone #v
facesPerBone[v]++;
}
else nFacesUnowned++;
}
// invalidate any "cojoined" faces
for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
if(faceBones[i]<pMesh->mNumBones&&isBoneNecessary[faceBones[i]])
{
ai_assert(facesPerBone[faceBones[i]]>0);
facesPerBone[faceBones[i]]--;
nFacesUnowned++;
faceBones[i] = cUnowned;
}
}
if(nFacesUnowned) {
std::vector<unsigned int> subFaces;
for(unsigned int i=0;i<pMesh->mNumFaces;i++) {
if(faceBones[i]==cUnowned) {
subFaces.push_back(i);
}
}
aiMesh *baseMesh = MakeSubmesh(pMesh,subFaces,0);
std::pair<aiMesh*,const aiBone*> push_pair(baseMesh,0);
poNewMeshes.push_back(push_pair);
}
for(unsigned int i=0;i<pMesh->mNumBones;i++) {
if(!isBoneNecessary[i]&&facesPerBone[i]>0) {
std::vector<unsigned int> subFaces;
for(unsigned int j=0;j<pMesh->mNumFaces;j++) {
if(faceBones[j]==i) {
subFaces.push_back(j);
}
}
unsigned int f = AI_SUBMESH_FLAGS_SANS_BONES;
aiMesh *subMesh =MakeSubmesh(pMesh,subFaces,f);
//Lifted from PretransformVertices.cpp
ApplyTransform(subMesh,pMesh->mBones[i]->mOffsetMatrix);
std::pair<aiMesh*,const aiBone*> push_pair(subMesh,pMesh->mBones[i]);
poNewMeshes.push_back(push_pair);
}
}
}
// ------------------------------------------------------------------------------------------------
// Recursively updates the node's mesh list to account for the changed mesh list
void DeboneProcess::UpdateNode(aiNode* pNode) const
{
// rebuild the node's mesh index list
std::vector<unsigned int> newMeshList;
// this will require two passes
unsigned int m = pNode->mNumMeshes, n = mSubMeshIndices.size();
// first pass, look for meshes which have not moved
for(unsigned int a=0;a<m;a++) {
unsigned int srcIndex = pNode->mMeshes[a];
const std::vector<std::pair<unsigned int,aiNode*>> &subMeshes = mSubMeshIndices[srcIndex];
unsigned int nSubmeshes = subMeshes.size();
for(unsigned int b=0;b<nSubmeshes;b++) {
if(!subMeshes[b].second) {
newMeshList.push_back(subMeshes[b].first);
}
}
}
// second pass, collect deboned meshes
for(unsigned int a=0;a<n;a++)
{
const std::vector<std::pair<unsigned int,aiNode*>> &subMeshes = mSubMeshIndices[a];
unsigned int nSubmeshes = subMeshes.size();
for(unsigned int b=0;b<nSubmeshes;b++) {
if(subMeshes[b].second == pNode) {
newMeshList.push_back(subMeshes[b].first);
}
}
}
if( pNode->mNumMeshes > 0 ) {
delete [] pNode->mMeshes; pNode->mMeshes = NULL;
}
pNode->mNumMeshes = newMeshList.size();
if(pNode->mNumMeshes) {
pNode->mMeshes = new unsigned int[pNode->mNumMeshes];
std::copy( newMeshList.begin(), newMeshList.end(), pNode->mMeshes);
}
// do that also recursively for all children
for( unsigned int a = 0; a < pNode->mNumChildren; ++a ) {
UpdateNode( pNode->mChildren[a]);
}
}
// ------------------------------------------------------------------------------------------------
// Apply the node transformation to a mesh
void DeboneProcess::ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat)const
{
// Check whether we need to transform the coordinates at all
if (!mat.IsIdentity()) {
if (mesh->HasPositions()) {
for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
mesh->mVertices[i] = mat * mesh->mVertices[i];
}
}
if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) {
aiMatrix4x4 mWorldIT = mat;
mWorldIT.Inverse().Transpose();
// TODO: implement Inverse() for aiMatrix3x3
aiMatrix3x3 m = aiMatrix3x3(mWorldIT);
if (mesh->HasNormals()) {
for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
mesh->mNormals[i] = (m * mesh->mNormals[i]).Normalize();
}
}
if (mesh->HasTangentsAndBitangents()) {
for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
mesh->mTangents[i] = (m * mesh->mTangents[i]).Normalize();
mesh->mBitangents[i] = (m * mesh->mBitangents[i]).Normalize();
}
}
}
}
}

View File

@ -0,0 +1,137 @@
/*
Open Asset Import Library (ASSIMP)
----------------------------------------------------------------------
Copyright (c) 2006-2010, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/** Defines a post processing step to limit the number of bones affecting a single vertex. */
#ifndef AI_DEBONEPROCESS_H_INC
#define AI_DEBONEPROCESS_H_INC
#include <vector>
#include <utility>
#include "BaseProcess.h"
#include "../include/aiMesh.h"
#include "../include/aiScene.h"
class DeboneTest;
namespace Assimp
{
#if (!defined AI_DEBONE_THRESHOLD)
# define AI_DEBONE_THRESHOLD 1.0f
#endif // !! AI_DEBONE_THRESHOLD
// ---------------------------------------------------------------------------
/** This post processing step removes bones nearly losslessly or according to
* a configured threshold. In order to remove the bone, the primitives affected by
* the bone are split from the mesh. The split off (new) mesh is boneless. At any
* point in time, bones without affect upon a given mesh are to be removed.
*/
class ASSIMP_API DeboneProcess : public BaseProcess
{
friend class Importer;
friend class ::DeboneTest;
protected:
/** Constructor to be privately used by Importer */
DeboneProcess();
/** Destructor, private as well */
~DeboneProcess();
public:
// -------------------------------------------------------------------
/** Returns whether the processing step is present in the given flag.
* @param pFlags The processing flags the importer was called with.
* A bitwise combination of #aiPostProcessSteps.
* @return true if the process is present in this flag fields,
* false if not.
*/
bool IsActive( unsigned int pFlags) const;
// -------------------------------------------------------------------
/** Called prior to ExecuteOnScene().
* The function is a request to the process to update its configuration
* basing on the Importer's configuration property list.
*/
void SetupProperties(const Importer* pImp);
protected:
// -------------------------------------------------------------------
/** Executes the post processing step on the given imported data.
* At the moment a process is not supposed to fail.
* @param pScene The imported data to work at.
*/
void Execute( aiScene* pScene);
// -------------------------------------------------------------------
/** Counts bones total/removable in a given mesh.
* @param pMesh The mesh to process.
*/
bool ConsiderMesh( const aiMesh* pMesh);
/// Splits the given mesh by bone count.
/// @param pMesh the Mesh to split. Is not changed at all, but might be superfluous in case it was split.
/// @param poNewMeshes Array of submeshes created in the process. Empty if splitting was not necessary.
void SplitMesh(const aiMesh* pMesh, std::vector<std::pair<aiMesh*,const aiBone*>>& poNewMeshes) const;
/// Recursively updates the node's mesh list to account for the changed mesh list
void UpdateNode(aiNode* pNode) const;
// -------------------------------------------------------------------
// Apply transformation to a mesh
void ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat)const;
public:
/** Number of bones present in the scene. */
unsigned int mNumBones;
unsigned int mNumBonesCanDoWithout;
float mThreshold;
bool mAllOrNone;
/// Per mesh index: Array of indices of the new submeshes.
std::vector< std::vector< std::pair< unsigned int,aiNode* > > > mSubMeshIndices;
};
} // end of namespace Assimp
#endif // AI_DEBONEPROCESS_H_INC

View File

@ -178,9 +178,6 @@ using namespace Assimp::Formatter;
#ifndef ASSIMP_BUILD_NO_BLEND_IMPORTER
# include "BlenderLoader.h"
#endif
//#ifndef ASSIMP_BUILD_NO_SWORDOFMOONLIGHT_IMPORTER
//# include "SomLoader.h"
//#endif
#ifndef ASSIMP_BUILD_NO_Q3BSP_IMPORTER
# include "Q3BSPFileImporter.h"
#endif
@ -260,6 +257,9 @@ using namespace Assimp::Formatter;
#ifndef ASSIMP_BUILD_NO_SPLITBYBONECOUNT_PROCESS
# include "SplitByBoneCountProcess.h"
#endif
#ifndef ASSIMP_BUILD_NO_DEBONE_PROCESS
# include "DeboneProcess.h"
#endif
using namespace Assimp;
using namespace Assimp::Intern;
@ -426,9 +426,6 @@ Importer::Importer()
#if (!defined ASSIMP_BUILD_NO_BLEND_IMPORTER)
pimpl->mImporter.push_back( new BlenderImporter());
#endif
//#if (!defined ASSIMP_BUILD_NO_SWORDOFMOONLIGHT_IMPORTER)
// pimpl->mImporter.push_back( new SomImporter());
//#endif
#if (!defined ASSIMP_BUILD_NO_Q3BSP_IMPORTER)
pimpl->mImporter.push_back( new Q3BSPFileImporter() );
#endif
@ -522,6 +519,9 @@ Importer::Importer()
#if (!defined ASSIMP_BUILD_NO_FLIPWINDINGORDER_PROCESS)
pimpl->mPostProcessingSteps.push_back( new FlipWindingOrderProcess());
#endif
#if (!defined ASSIMP_BUILD_DEBONE_PROCESS)
pimpl->mPostProcessingSteps.push_back( new DeboneProcess());
#endif
#if (!defined ASSIMP_BUILD_NO_LIMITBONEWEIGHTS_PROCESS)
pimpl->mPostProcessingSteps.push_back( new LimitBoneWeightsProcess());
#endif

View File

@ -0,0 +1,410 @@
/*
Open Asset Import Library (ASSIMP)
----------------------------------------------------------------------
Copyright (c) 2006-2010, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the
following conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
----------------------------------------------------------------------
*/
/// @file ProcessHelper.cpp
/** Implement shared utility functions for postprocessing steps */
#include "AssimpPCH.h"
#include "ProcessHelper.h"
#include <limits>
namespace Assimp {
// -------------------------------------------------------------------------------
void ConvertListToStrings(const std::string& in, std::list<std::string>& out)
{
const char* s = in.c_str();
while (*s) {
SkipSpacesAndLineEnd(&s);
if (*s == '\'') {
const char* base = ++s;
while (*s != '\'') {
++s;
if (*s == '\0') {
DefaultLogger::get()->error("ConvertListToString: String list is ill-formatted");
return;
}
}
out.push_back(std::string(base,(size_t)(s-base)));
++s;
}
else {
out.push_back(GetNextToken(s));
}
}
}
// -------------------------------------------------------------------------------
void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max,
const aiMatrix4x4& m)
{
min = aiVector3D (10e10f, 10e10f, 10e10f);
max = aiVector3D (-10e10f,-10e10f,-10e10f);
for (unsigned int i = 0;i < mesh->mNumVertices;++i)
{
const aiVector3D v = m * mesh->mVertices[i];
min = std::min(v,min);
max = std::max(v,max);
}
}
// -------------------------------------------------------------------------------
void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max)
{
ArrayBounds(mesh->mVertices,mesh->mNumVertices, min,max);
out = min + (max-min)*0.5f;
}
// -------------------------------------------------------------------------------
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,
aiVector3D& max, const aiMatrix4x4& m)
{
FindAABBTransformed(mesh,min,max,m);
out = min + (max-min)*0.5f;
}
// -------------------------------------------------------------------------------
void FindMeshCenter (aiMesh* mesh, aiVector3D& out)
{
aiVector3D min,max;
FindMeshCenter(mesh,out,min,max);
}
// -------------------------------------------------------------------------------
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,
const aiMatrix4x4& m)
{
aiVector3D min,max;
FindMeshCenterTransformed(mesh,out,min,max,m);
}
// -------------------------------------------------------------------------------
float ComputePositionEpsilon(const aiMesh* pMesh)
{
const float epsilon = 1e-4f;
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec;
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,minVec,maxVec);
return (maxVec - minVec).Length() * epsilon;
}
// -------------------------------------------------------------------------------
float ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num)
{
const float epsilon = 1e-4f;
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec, mi, ma;
MinMaxChooser<aiVector3D>()(minVec,maxVec);
for (size_t a = 0; a < num; ++a) {
const aiMesh* pMesh = pMeshes[a];
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,mi,ma);
minVec = std::min(minVec,mi);
maxVec = std::max(maxVec,ma);
}
return (maxVec - minVec).Length() * epsilon;
}
// -------------------------------------------------------------------------------
unsigned int GetMeshVFormatUnique(const aiMesh* pcMesh)
{
ai_assert(NULL != pcMesh);
// FIX: the hash may never be 0. Otherwise a comparison against
// nullptr could be successful
unsigned int iRet = 1;
// normals
if (pcMesh->HasNormals())iRet |= 0x2;
// tangents and bitangents
if (pcMesh->HasTangentsAndBitangents())iRet |= 0x4;
#ifdef BOOST_STATIC_ASSERT
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_COLOR_SETS);
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_TEXTURECOORDS);
#endif
// texture coordinates
unsigned int p = 0;
while (pcMesh->HasTextureCoords(p))
{
iRet |= (0x100 << p);
if (3 == pcMesh->mNumUVComponents[p])
iRet |= (0x10000 << p);
++p;
}
// vertex colors
p = 0;
while (pcMesh->HasVertexColors(p))iRet |= (0x1000000 << p++);
return iRet;
}
// -------------------------------------------------------------------------------
VertexWeightTable* ComputeVertexBoneWeightTable(const aiMesh* pMesh)
{
if (!pMesh || !pMesh->mNumVertices || !pMesh->mNumBones) {
return NULL;
}
VertexWeightTable* avPerVertexWeights = new VertexWeightTable[pMesh->mNumVertices];
for (unsigned int i = 0; i < pMesh->mNumBones;++i) {
aiBone* bone = pMesh->mBones[i];
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
const aiVertexWeight& weight = bone->mWeights[a];
avPerVertexWeights[weight.mVertexId].push_back( std::pair<unsigned int,float>(i,weight.mWeight) );
}
}
return avPerVertexWeights;
}
// -------------------------------------------------------------------------------
const char* TextureTypeToString(aiTextureType in)
{
switch (in)
{
case aiTextureType_NONE:
return "n/a";
case aiTextureType_DIFFUSE:
return "Diffuse";
case aiTextureType_SPECULAR:
return "Specular";
case aiTextureType_AMBIENT:
return "Ambient";
case aiTextureType_EMISSIVE:
return "Emissive";
case aiTextureType_OPACITY:
return "Opacity";
case aiTextureType_NORMALS:
return "Normals";
case aiTextureType_HEIGHT:
return "Height";
case aiTextureType_SHININESS:
return "Shininess";
case aiTextureType_DISPLACEMENT:
return "Displacement";
case aiTextureType_LIGHTMAP:
return "Lightmap";
case aiTextureType_REFLECTION:
return "Reflection";
case aiTextureType_UNKNOWN:
return "Unknown";
}
ai_assert(false);
return "BUG";
}
// -------------------------------------------------------------------------------
const char* MappingTypeToString(aiTextureMapping in)
{
switch (in)
{
case aiTextureMapping_UV:
return "UV";
case aiTextureMapping_BOX:
return "Box";
case aiTextureMapping_SPHERE:
return "Sphere";
case aiTextureMapping_CYLINDER:
return "Cylinder";
case aiTextureMapping_PLANE:
return "Plane";
case aiTextureMapping_OTHER:
return "Other";
}
ai_assert(false);
return "BUG";
}
// -------------------------------------------------------------------------------
aiMesh* MakeSubmesh(const aiMesh *pMesh, const std::vector<unsigned int> &subMeshFaces, unsigned int subFlags)
{
aiMesh *oMesh = new aiMesh();
std::vector<unsigned int> vMap(pMesh->mNumVertices,UINT_MAX);
size_t numSubVerts = 0;
size_t numSubFaces = subMeshFaces.size();
for(unsigned int i=0;i<numSubFaces;i++) {
const aiFace &f = pMesh->mFaces[subMeshFaces[i]];
for(unsigned int j=0;j<f.mNumIndices;j++) {
if(vMap[f.mIndices[j]]==UINT_MAX) {
vMap[f.mIndices[j]] = numSubVerts++;
}
}
}
oMesh->mName = pMesh->mName;
oMesh->mMaterialIndex = pMesh->mMaterialIndex;
oMesh->mPrimitiveTypes = pMesh->mPrimitiveTypes;
// create all the arrays for this mesh if the old mesh contained them
oMesh->mNumFaces = subMeshFaces.size();
oMesh->mNumVertices = numSubVerts;
oMesh->mVertices = new aiVector3D[numSubVerts];
if( pMesh->HasNormals() ) {
oMesh->mNormals = new aiVector3D[numSubVerts];
}
if( pMesh->HasTangentsAndBitangents() ) {
oMesh->mTangents = new aiVector3D[numSubVerts];
oMesh->mBitangents = new aiVector3D[numSubVerts];
}
for( size_t a = 0; pMesh->HasTextureCoords( a) ; ++a ) {
oMesh->mTextureCoords[a] = new aiVector3D[numSubVerts];
oMesh->mNumUVComponents[a] = pMesh->mNumUVComponents[a];
}
for( size_t a = 0; pMesh->HasVertexColors( a); ++a ) {
oMesh->mColors[a] = new aiColor4D[numSubVerts];
}
// and copy over the data, generating faces with linear indices along the way
oMesh->mFaces = new aiFace[numSubFaces];
for(unsigned int a = 0; a < numSubFaces; ++a ) {
const aiFace& srcFace = pMesh->mFaces[subMeshFaces[a]];
aiFace& dstFace = oMesh->mFaces[a];
dstFace.mNumIndices = srcFace.mNumIndices;
dstFace.mIndices = new unsigned int[dstFace.mNumIndices];
// accumulate linearly all the vertices of the source face
for( size_t b = 0; b < dstFace.mNumIndices; ++b ) {
dstFace.mIndices[b] = vMap[srcFace.mIndices[b]];
}
}
for(unsigned int srcIndex = 0; srcIndex < pMesh->mNumVertices; ++srcIndex ) {
unsigned int nvi = vMap[srcIndex];
if(nvi==UINT_MAX) {
continue;
}
oMesh->mVertices[nvi] = pMesh->mVertices[srcIndex];
if( pMesh->HasNormals() ) {
oMesh->mNormals[nvi] = pMesh->mNormals[srcIndex];
}
if( pMesh->HasTangentsAndBitangents() ) {
oMesh->mTangents[nvi] = pMesh->mTangents[srcIndex];
oMesh->mBitangents[nvi] = pMesh->mBitangents[srcIndex];
}
for( size_t c = 0, cc = pMesh->GetNumUVChannels(); c < cc; ++c ) {
oMesh->mTextureCoords[c][nvi] = pMesh->mTextureCoords[c][srcIndex];
}
for( size_t c = 0, cc = pMesh->GetNumColorChannels(); c < cc; ++c ) {
oMesh->mColors[c][nvi] = pMesh->mColors[c][srcIndex];
}
}
if(~subFlags&AI_SUBMESH_FLAGS_SANS_BONES) {
std::vector<unsigned int> subBones(pMesh->mNumBones,0);
for(unsigned int a=0;a<pMesh->mNumBones;++a) {
const aiBone* bone = pMesh->mBones[a];
for(unsigned int b=0;b<bone->mNumWeights;b++) {
unsigned int v = vMap[bone->mWeights[b].mVertexId];
if(v!=UINT_MAX) {
subBones[a]++;
}
}
}
for(unsigned int a=0;a<pMesh->mNumBones;++a) {
if(subBones[a]>0) {
oMesh->mNumBones++;
}
}
if(oMesh->mNumBones) {
oMesh->mBones = new aiBone*[oMesh->mNumBones]();
unsigned int nbParanoia = oMesh->mNumBones;
oMesh->mNumBones = 0; //rewind
for(unsigned int a=0;a<pMesh->mNumBones;++a) {
if(subBones[a]==0) {
continue;
}
aiBone *newBone = new aiBone;
oMesh->mBones[oMesh->mNumBones++] = newBone;
const aiBone* bone = pMesh->mBones[a];
newBone->mName = bone->mName;
newBone->mOffsetMatrix = bone->mOffsetMatrix;
newBone->mWeights = new aiVertexWeight[subBones[a]];
for(unsigned int b=0;b<bone->mNumWeights;b++) {
const unsigned int v = vMap[bone->mWeights[b].mVertexId];
if(v!=UINT_MAX) {
aiVertexWeight w(v,bone->mWeights[b].mWeight);
newBone->mWeights[newBone->mNumWeights++] = w;
}
}
}
ai_assert(nbParanoia==oMesh->mNumBones);
}
}
return oMesh;
}
} // namespace Assimp

View File

@ -191,34 +191,6 @@ inline void ArrayBounds(const T* in, unsigned int size, T& min, T& max)
}
}
// -------------------------------------------------------------------------------
/** @brief Extract single strings from a list of identifiers
* @param in Input string list.
* @param out Receives a list of clean output strings
* @sdee #AI_CONFIG_PP_OG_EXCLUDE_LIST
*/
inline void ConvertListToStrings(const std::string& in, std::list<std::string>& out)
{
const char* s = in.c_str();
while (*s) {
SkipSpacesAndLineEnd(&s);
if (*s == '\'') {
const char* base = ++s;
while (*s != '\'') {
++s;
if (*s == '\0') {
DefaultLogger::get()->error("ConvertListToString: String list is ill-formatted");
return;
}
}
out.push_back(std::string(base,(size_t)(s-base)));
++s;
}
else {
out.push_back(GetNextToken(s));
}
}
}
// -------------------------------------------------------------------------------
/** @brief Compute the newell normal of a polygon regardless of its shape
@ -271,55 +243,37 @@ inline void NewellNormal (aiVector3D& out, int num, float* x, float* y, float* z
out = aiVector3D(sum_yz,sum_zx,sum_xy);
}
#if 0
// -------------------------------------------------------------------------------
/** @brief Compute newell normal of a polgon regardless of its shape
*
* @param out Receives the output normal
* @param data Input vertices
* @param idx Index buffer
* @param num Number of indices
*/
inline void NewellNormal (aiVector3D& out, const aiVector3D* data, unsigned int* idx, unsigned int num )
{
// TODO: intended to be used in GenNormals.
}
#endif
// -------------------------------------------------------------------------------
/** Little helper function to calculate the quadratic difference
* of two colours.
* @param pColor1 First color
* @param pColor2 second color
* @return Quadratic color difference
*/
* @return Quadratic color difference */
inline float GetColorDifference( const aiColor4D& pColor1, const aiColor4D& pColor2)
{
const aiColor4D c (pColor1.r - pColor2.r, pColor1.g - pColor2.g,
pColor1.b - pColor2.b, pColor1.a - pColor2.a);
const aiColor4D c (pColor1.r - pColor2.r, pColor1.g - pColor2.g, pColor1.b - pColor2.b, pColor1.a - pColor2.a);
return c.r*c.r + c.g*c.g + c.b*c.b + c.a*c.a;
}
// -------------------------------------------------------------------------------
/** @brief Extract single strings from a list of identifiers
* @param in Input string list.
* @param out Receives a list of clean output strings
* @sdee #AI_CONFIG_PP_OG_EXCLUDE_LIST */
void ConvertListToStrings(const std::string& in, std::list<std::string>& out);
// -------------------------------------------------------------------------------
/** @brief Compute the AABB of a mesh after applying a given transform
* @param mesh Input mesh
* @param[out] min Receives minimum transformed vertex
* @param[out] max Receives maximum transformed vertex
* @param m Transformation matrix to be applied
*/
inline void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max,
const aiMatrix4x4& m)
{
min = aiVector3D (10e10f, 10e10f, 10e10f);
max = aiVector3D (-10e10f,-10e10f,-10e10f);
for (unsigned int i = 0;i < mesh->mNumVertices;++i)
{
const aiVector3D v = m * mesh->mVertices[i];
min = std::min(v,min);
max = std::max(v,max);
}
}
* @param m Transformation matrix to be applied */
void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D& max, const aiMatrix4x4& m);
// -------------------------------------------------------------------------------
/** @brief Helper function to determine the 'real' center of a mesh
@ -328,191 +282,65 @@ inline void FindAABBTransformed (const aiMesh* mesh, aiVector3D& min, aiVector3D
* @param mesh Input mesh
* @param[out] min Minimum vertex of the mesh
* @param[out] max maximum vertex of the mesh
* @param[out] out Center point
*/
inline void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max)
{
ArrayBounds(mesh->mVertices,mesh->mNumVertices, min,max);
out = min + (max-min)*0.5f;
}
* @param[out] out Center point */
void FindMeshCenter (aiMesh* mesh, aiVector3D& out, aiVector3D& min, aiVector3D& max);
// -------------------------------------------------------------------------------
// Helper function to determine the 'real' center of a mesh after applying a given transform
inline void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,
aiVector3D& max, const aiMatrix4x4& m)
{
FindAABBTransformed(mesh,min,max,m);
out = min + (max-min)*0.5f;
}
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out, aiVector3D& min,aiVector3D& max, const aiMatrix4x4& m);
// -------------------------------------------------------------------------------
// Helper function to determine the 'real' center of a mesh
inline void FindMeshCenter (aiMesh* mesh, aiVector3D& out)
{
aiVector3D min,max;
FindMeshCenter(mesh,out,min,max);
}
void FindMeshCenter (aiMesh* mesh, aiVector3D& out);
// -------------------------------------------------------------------------------
// Helper function to determine the 'real' center of a mesh after applying a given transform
inline void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,
const aiMatrix4x4& m)
{
aiVector3D min,max;
FindMeshCenterTransformed(mesh,out,min,max,m);
}
void FindMeshCenterTransformed (aiMesh* mesh, aiVector3D& out,const aiMatrix4x4& m);
// -------------------------------------------------------------------------------
// Compute a good epsilon value for position comparisons on a mesh
inline float ComputePositionEpsilon(const aiMesh* pMesh)
{
const float epsilon = 1e-4f;
float ComputePositionEpsilon(const aiMesh* pMesh);
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec;
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,minVec,maxVec);
return (maxVec - minVec).Length() * epsilon;
}
// -------------------------------------------------------------------------------
// Compute a good epsilon value for position comparisons on a array of meshes
inline float ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num)
{
const float epsilon = 1e-4f;
float ComputePositionEpsilon(const aiMesh* const* pMeshes, size_t num);
// calculate the position bounds so we have a reliable epsilon to check position differences against
aiVector3D minVec, maxVec, mi, ma;
MinMaxChooser<aiVector3D>()(minVec,maxVec);
for (size_t a = 0; a < num; ++a) {
const aiMesh* pMesh = pMeshes[a];
ArrayBounds(pMesh->mVertices,pMesh->mNumVertices,mi,ma);
minVec = std::min(minVec,mi);
maxVec = std::max(maxVec,ma);
}
return (maxVec - minVec).Length() * epsilon;
}
// -------------------------------------------------------------------------------
// Compute an unique value for the vertex format of a mesh
inline unsigned int GetMeshVFormatUnique(aiMesh* pcMesh)
{
ai_assert(NULL != pcMesh);
unsigned int GetMeshVFormatUnique(const aiMesh* pcMesh);
// FIX: the hash may never be 0. Otherwise a comparison against
// nullptr could be successful
unsigned int iRet = 1;
// normals
if (pcMesh->HasNormals())iRet |= 0x2;
// tangents and bitangents
if (pcMesh->HasTangentsAndBitangents())iRet |= 0x4;
#ifdef BOOST_STATIC_ASSERT
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_COLOR_SETS);
BOOST_STATIC_ASSERT(8 >= AI_MAX_NUMBER_OF_TEXTURECOORDS);
#endif
// texture coordinates
unsigned int p = 0;
while (pcMesh->HasTextureCoords(p))
{
iRet |= (0x100 << p);
if (3 == pcMesh->mNumUVComponents[p])
iRet |= (0x10000 << p);
++p;
}
// vertex colors
p = 0;
while (pcMesh->HasVertexColors(p))iRet |= (0x1000000 << p++);
return iRet;
}
// defs for ComputeVertexBoneWeightTable()
typedef std::pair <unsigned int,float> PerVertexWeight;
typedef std::vector <PerVertexWeight> VertexWeightTable;
// -------------------------------------------------------------------------------
// Compute a per-vertex bone weight table
// please .... delete result with operator delete[] ...
inline VertexWeightTable* ComputeVertexBoneWeightTable(aiMesh* pMesh)
{
if (!pMesh || !pMesh->mNumVertices || !pMesh->mNumBones)
return NULL;
VertexWeightTable* ComputeVertexBoneWeightTable(const aiMesh* pMesh);
VertexWeightTable* avPerVertexWeights = new VertexWeightTable[pMesh->mNumVertices];
for (unsigned int i = 0; i < pMesh->mNumBones;++i)
{
aiBone* bone = pMesh->mBones[i];
for (unsigned int a = 0; a < bone->mNumWeights;++a) {
const aiVertexWeight& weight = bone->mWeights[a];
avPerVertexWeights[weight.mVertexId].push_back(
std::pair<unsigned int,float>(i,weight.mWeight));
}
}
return avPerVertexWeights;
}
// -------------------------------------------------------------------------------
// Get a string for a given aiTextureType
inline const char* TextureTypeToString(aiTextureType in)
{
switch (in)
{
case aiTextureType_NONE:
return "n/a";
case aiTextureType_DIFFUSE:
return "Diffuse";
case aiTextureType_SPECULAR:
return "Specular";
case aiTextureType_AMBIENT:
return "Ambient";
case aiTextureType_EMISSIVE:
return "Emissive";
case aiTextureType_OPACITY:
return "Opacity";
case aiTextureType_NORMALS:
return "Normals";
case aiTextureType_HEIGHT:
return "Height";
case aiTextureType_SHININESS:
return "Shininess";
case aiTextureType_DISPLACEMENT:
return "Displacement";
case aiTextureType_LIGHTMAP:
return "Lightmap";
case aiTextureType_REFLECTION:
return "Reflection";
case aiTextureType_UNKNOWN:
return "Unknown";
default:
return "HUGE ERROR. Expect BSOD (linux guys: kernel panic ...).";
}
}
const char* TextureTypeToString(aiTextureType in);
// -------------------------------------------------------------------------------
// Get a string for a given aiTextureMapping
inline const char* MappingTypeToString(aiTextureMapping in)
{
switch (in)
{
case aiTextureMapping_UV:
return "UV";
case aiTextureMapping_BOX:
return "Box";
case aiTextureMapping_SPHERE:
return "Sphere";
case aiTextureMapping_CYLINDER:
return "Cylinder";
case aiTextureMapping_PLANE:
return "Plane";
case aiTextureMapping_OTHER:
return "Other";
default:
return "HUGE ERROR. Expect BSOD (linux guys: kernel panic ...).";
}
}
const char* MappingTypeToString(aiTextureMapping in);
// flags for MakeSubmesh()
#define AI_SUBMESH_FLAGS_SANS_BONES 0x1
// -------------------------------------------------------------------------------
// Split a mesh given a list of faces to be contained in the sub mesh
aiMesh* MakeSubmesh(const aiMesh *superMesh, const std::vector<unsigned int> &subMeshFaces, unsigned int subFlags);
// -------------------------------------------------------------------------------
// Utility postprocess step to share the spatial sort tree between
@ -560,5 +388,7 @@ class DestroySpatialSortProcess : public BaseProcess
}
};
} // ! namespace Assimp
#endif // !! AI_PROCESS_HELPER_H_INCLUDED

View File

@ -288,6 +288,29 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# define AI_LMW_MAX_WEIGHTS 0x4
#endif // !! AI_LMW_MAX_WEIGHTS
// ---------------------------------------------------------------------------
/** @brief Set the deboning threshold higher to remove more bones
*
* This is used by the #aiProcess_Debone PostProcess-Step.
* @note The default value is AI_DEBONE_THRESHOLD
* Property type: float.*/
#define AI_CONFIG_PP_DB_THRESHOLD \
"PP_DB_THRESHOLD"
// default value for AI_CONFIG_PP_LBW_MAX_WEIGHTS
#if (!defined AI_DEBONE_THRESHOLD)
# define AI_DEBONE_THRESHOLD 1.0f
#endif // !! AI_DEBONE_THRESHOLD
// ---------------------------------------------------------------------------
/** @brief Require all bones qualify for deboning before removing any
*
* This is used by the #aiProcess_Debone PostProcess-Step.
* @note The default value is 0
* Property type: bool.*/
#define AI_CONFIG_PP_DB_ALL_OR_NONE \
"PP_DB_ALL_OR_NONE"
/** @brief Default value for the #AI_CONFIG_PP_ICL_PTCACHE_SIZE property
*/
#ifndef PP_ICL_PTCACHE_SIZE

View File

@ -500,7 +500,21 @@ enum aiPostProcessSteps
/** <hr>This step splits meshes with many bones into submeshes so that each
* submesh has fewer or as many bones as a given limit.
*/
aiProcess_SplitByBoneCount = 0x2000000
aiProcess_SplitByBoneCount = 0x2000000,
// -------------------------------------------------------------------------
/** <hr>This step removes bones losslessly or according to some threshold.
* In some cases (i.e. format that require it) exporters are forced to
* assign dummy bone weights to otherwise static meshes assigned to
* animated meshes. Since full, weight-based skinning is expensive but
* animating nodes is extremely cheap, this step is offered to cleanup
* the data in that regard.
*
* Use <tt>#AI_CONFIG_PP_DB_THRESHOLD</tt> to control this.
* Use <tt>#AI_CONFIG_PP_DB_ALL_OR_NONE</tt> if you want bones removed if and
* only if all bones within the scene qualify for removal.
*/
aiProcess_Debone = 0x4000000
// aiProcess_GenEntityMeshes = 0x100000,
// aiProcess_OptimizeAnimations = 0x200000
@ -600,6 +614,7 @@ enum aiPostProcessSteps
aiProcess_FindInstances | \
aiProcess_ValidateDataStructure | \
aiProcess_OptimizeMeshes | \
aiProcess_Debone | \
0 )