Merge branch 'master' into ms3d-fixes
commit
a3ee377af7
37
INSTALL
37
INSTALL
|
@ -8,43 +8,10 @@ Getting the documentation
|
|||
------------------------------
|
||||
|
||||
A regularly-updated copy is available at
|
||||
http://assimp.sourceforge.net/lib_html/index.html
|
||||
|
||||
A CHM file is included in the SVN repos: ./doc/AssimpDoc_Html/AssimpDoc.chm.
|
||||
To build the doxygen documentation on your own, follow these steps:
|
||||
|
||||
a) download & install latest doxygen
|
||||
b) make sure doxygen is in the executable search path
|
||||
c) navigate to ./doc
|
||||
d) and run 'doxygen'
|
||||
|
||||
Open the generated HTML (AssimpDoc_Html/index.html) in the browser of your choice.
|
||||
Windows only: To generate the CHM doc, install 'Microsoft HTML Workshop'
|
||||
and configure the path to it in the DOXYFILE first.
|
||||
https://assimp-docs.readthedocs.io/en/latest/
|
||||
|
||||
------------------------------
|
||||
Building Assimp
|
||||
------------------------------
|
||||
|
||||
More detailed build instructions can be found in the documentation,
|
||||
this section is just for the inpatient among you.
|
||||
|
||||
CMake is the preferred build system for Assimp. The minimum required version
|
||||
is 2.6. If you don't have it yet, downloads for CMake can be found on
|
||||
http://www.cmake.org/.
|
||||
|
||||
For Unix:
|
||||
|
||||
1. mkdir build && cd build
|
||||
2. cmake .. -G 'Unix Makefiles'
|
||||
3. make -j4
|
||||
|
||||
For Windows:
|
||||
1. Open a command prompt
|
||||
2. mkdir build
|
||||
3. cd build
|
||||
4. cmake ..
|
||||
5. cmake --build .
|
||||
|
||||
For iOS:
|
||||
Just check the following project, which deploys a compiler toolchain for different iOS-versions: https://github.com/assimp/assimp/tree/master/port/iOS
|
||||
Just check the build-instaructions which you can find here: https://github.com/assimp/assimp/blob/master/Build.md
|
||||
|
|
|
@ -157,7 +157,10 @@ void HMPImporter::InternReadFile(const std::string &pFile,
|
|||
szBuffer[2] = ((char *)&iMagic)[2];
|
||||
szBuffer[3] = ((char *)&iMagic)[3];
|
||||
szBuffer[4] = '\0';
|
||||
|
||||
|
||||
delete[] mBuffer;
|
||||
mBuffer = nullptr;
|
||||
|
||||
// We're definitely unable to load this file
|
||||
throw DeadlyImportError("Unknown HMP subformat ", pFile,
|
||||
". Magic word (", szBuffer, ") is not known");
|
||||
|
|
|
@ -813,6 +813,11 @@ struct Mesh : public Object {
|
|||
AccessorList position, normal, tangent;
|
||||
};
|
||||
std::vector<Target> targets;
|
||||
|
||||
// extension: FB_ngon_encoding
|
||||
bool ngonEncoded;
|
||||
|
||||
Primitive(): ngonEncoded(false) {}
|
||||
};
|
||||
|
||||
std::vector<Primitive> primitives;
|
||||
|
@ -1108,6 +1113,7 @@ public:
|
|||
bool KHR_materials_clearcoat;
|
||||
bool KHR_materials_transmission;
|
||||
bool KHR_draco_mesh_compression;
|
||||
bool FB_ngon_encoding;
|
||||
} extensionsUsed;
|
||||
|
||||
//! Keeps info about the required extensions
|
||||
|
|
|
@ -507,6 +507,20 @@ namespace glTF2 {
|
|||
Mesh::Primitive& p = m.primitives[i];
|
||||
Value prim;
|
||||
prim.SetObject();
|
||||
|
||||
// Extensions
|
||||
if (p.ngonEncoded)
|
||||
{
|
||||
Value exts;
|
||||
exts.SetObject();
|
||||
|
||||
Value FB_ngon_encoding;
|
||||
FB_ngon_encoding.SetObject();
|
||||
|
||||
exts.AddMember(StringRef("FB_ngon_encoding"), FB_ngon_encoding, w.mAl);
|
||||
prim.AddMember("extensions", exts, w.mAl);
|
||||
}
|
||||
|
||||
{
|
||||
prim.AddMember("mode", Value(int(p.mode)).Move(), w.mAl);
|
||||
|
||||
|
@ -874,6 +888,10 @@ namespace glTF2 {
|
|||
if (this->mAsset.extensionsUsed.KHR_materials_transmission) {
|
||||
exts.PushBack(StringRef("KHR_materials_transmission"), mAl);
|
||||
}
|
||||
|
||||
if (this->mAsset.extensionsUsed.FB_ngon_encoding) {
|
||||
exts.PushBack(StringRef("FB_ngon_encoding"), mAl);
|
||||
}
|
||||
}
|
||||
|
||||
if (!exts.Empty())
|
||||
|
|
|
@ -97,6 +97,9 @@ glTF2Exporter::glTF2Exporter(const char* filename, IOSystem* pIOSystem, const ai
|
|||
|
||||
mAsset.reset( new Asset( pIOSystem ) );
|
||||
|
||||
// Always on as our triangulation process is aware of this type of encoding
|
||||
mAsset->extensionsUsed.FB_ngon_encoding = true;
|
||||
|
||||
if (isBinary) {
|
||||
mAsset->SetAsBinary();
|
||||
}
|
||||
|
@ -955,6 +958,7 @@ void glTF2Exporter::ExportMeshes()
|
|||
m->name = name;
|
||||
|
||||
p.material = mAsset->materials.Get(aim->mMaterialIndex);
|
||||
p.ngonEncoded = (aim->mPrimitiveTypes & aiPrimitiveType_NGONEncodingFlag) != 0;
|
||||
|
||||
/******************* Vertices ********************/
|
||||
Ref<Accessor> v = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mVertices, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT, BufferViewTarget_ARRAY_BUFFER);
|
||||
|
|
|
@ -76,6 +76,87 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
||||
using namespace Assimp;
|
||||
|
||||
namespace {
|
||||
|
||||
/**
|
||||
* @brief Helper struct used to simplify NGON encoding functions.
|
||||
*/
|
||||
struct NGONEncoder {
|
||||
NGONEncoder() : mLastNGONFirstIndex((unsigned int)-1) {}
|
||||
|
||||
/**
|
||||
* @brief Encode the current triangle, and make sure it is recognized as a triangle.
|
||||
*
|
||||
* This method will rotate indices in tri if needed in order to avoid tri to be considered
|
||||
* part of the previous ngon. This method is to be used whenever you want to emit a real triangle,
|
||||
* and make sure it is seen as a triangle.
|
||||
*
|
||||
* @param tri Triangle to encode.
|
||||
*/
|
||||
void ngonEncodeTriangle(aiFace * tri) {
|
||||
ai_assert(tri->mNumIndices == 3);
|
||||
|
||||
// Rotate indices in new triangle to avoid ngon encoding false ngons
|
||||
// Otherwise, the new triangle would be considered part of the previous NGON.
|
||||
if (isConsideredSameAsLastNgon(tri)) {
|
||||
std::swap(tri->mIndices[0], tri->mIndices[2]);
|
||||
std::swap(tri->mIndices[1], tri->mIndices[2]);
|
||||
}
|
||||
|
||||
mLastNGONFirstIndex = tri->mIndices[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Encode a quad (2 triangles) in ngon encoding, and make sure they are seen as a single ngon.
|
||||
*
|
||||
* @param tri1 First quad triangle
|
||||
* @param tri2 Second quad triangle
|
||||
*
|
||||
* @pre Triangles must be properly fanned from the most appropriate vertex.
|
||||
*/
|
||||
void ngonEncodeQuad(aiFace *tri1, aiFace *tri2) {
|
||||
ai_assert(tri1->mNumIndices == 3);
|
||||
ai_assert(tri2->mNumIndices == 3);
|
||||
ai_assert(tri1->mIndices[0] == tri2->mIndices[0]);
|
||||
|
||||
// If the selected fanning vertex is the same as the previously
|
||||
// emitted ngon, we use the opposite vertex which also happens to work
|
||||
// for tri-fanning a concave quad.
|
||||
// ref: https://github.com/assimp/assimp/pull/3695#issuecomment-805999760
|
||||
if (isConsideredSameAsLastNgon(tri1)) {
|
||||
// Right-rotate indices for tri1 (index 2 becomes the new fanning vertex)
|
||||
std::swap(tri1->mIndices[0], tri1->mIndices[2]);
|
||||
std::swap(tri1->mIndices[1], tri1->mIndices[2]);
|
||||
|
||||
// Left-rotate indices for tri2 (index 2 becomes the new fanning vertex)
|
||||
std::swap(tri2->mIndices[1], tri2->mIndices[2]);
|
||||
std::swap(tri2->mIndices[0], tri2->mIndices[2]);
|
||||
|
||||
ai_assert(tri1->mIndices[0] == tri2->mIndices[0]);
|
||||
}
|
||||
|
||||
mLastNGONFirstIndex = tri1->mIndices[0];
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Check whether this triangle would be considered part of the lastly emitted ngon or not.
|
||||
*
|
||||
* @param tri Current triangle.
|
||||
* @return true If used as is, this triangle will be part of last ngon.
|
||||
* @return false If used as is, this triangle is not considered part of the last ngon.
|
||||
*/
|
||||
bool isConsideredSameAsLastNgon(const aiFace * tri) const {
|
||||
ai_assert(tri->mNumIndices == 3);
|
||||
return tri->mIndices[0] == mLastNGONFirstIndex;
|
||||
}
|
||||
|
||||
private:
|
||||
unsigned int mLastNGONFirstIndex;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Constructor to be privately used by Importer
|
||||
TriangulateProcess::TriangulateProcess()
|
||||
|
@ -175,10 +256,15 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|||
pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
|
||||
pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON;
|
||||
|
||||
// The mesh becomes NGON encoded now, during the triangulation process.
|
||||
pMesh->mPrimitiveTypes |= aiPrimitiveType_NGONEncodingFlag;
|
||||
|
||||
aiFace* out = new aiFace[numOut](), *curOut = out;
|
||||
std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */
|
||||
std::vector<aiVector2D> temp_verts(max_out+2);
|
||||
|
||||
NGONEncoder ngonEncoder;
|
||||
|
||||
// Apply vertex colors to represent the face winding?
|
||||
#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
|
||||
if (!pMesh->mColors[0])
|
||||
|
@ -220,8 +306,11 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|||
aiFace& nface = *curOut++;
|
||||
nface.mNumIndices = face.mNumIndices;
|
||||
nface.mIndices = face.mIndices;
|
||||
|
||||
face.mIndices = nullptr;
|
||||
|
||||
// points and lines don't require ngon encoding (and are not supported either!)
|
||||
if (nface.mNumIndices == 3) ngonEncoder.ngonEncodeTriangle(&nface);
|
||||
|
||||
continue;
|
||||
}
|
||||
// optimized code for quadrilaterals
|
||||
|
@ -274,6 +363,9 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|||
|
||||
// prevent double deletion of the indices field
|
||||
face.mIndices = nullptr;
|
||||
|
||||
ngonEncoder.ngonEncodeQuad(&nface, &sface);
|
||||
|
||||
continue;
|
||||
}
|
||||
else
|
||||
|
@ -284,11 +376,11 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|||
// modeling suite to make extensive use of highly concave, monster polygons ...
|
||||
// so we need to apply the full 'ear cutting' algorithm to get it right.
|
||||
|
||||
// RERQUIREMENT: polygon is expected to be simple and *nearly* planar.
|
||||
// REQUIREMENT: polygon is expected to be simple and *nearly* planar.
|
||||
// We project it onto a plane to get a 2d triangle.
|
||||
|
||||
// Collect all vertices of of the polygon.
|
||||
for (tmp = 0; tmp < max; ++tmp) {
|
||||
for (tmp = 0; tmp < max; ++tmp) {
|
||||
temp_verts3d[tmp] = verts[idx[tmp]];
|
||||
}
|
||||
|
||||
|
@ -508,6 +600,11 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
|
|||
i[0] = idx[i[0]];
|
||||
i[1] = idx[i[1]];
|
||||
i[2] = idx[i[2]];
|
||||
|
||||
// IMPROVEMENT: Polygons are not supported yet by this ngon encoding + triangulation step.
|
||||
// So we encode polygons as regular triangles. No way to reconstruct the original
|
||||
// polygon in this case.
|
||||
ngonEncoder.ngonEncodeTriangle(f);
|
||||
++f;
|
||||
}
|
||||
|
||||
|
|
|
@ -87,7 +87,7 @@ inline IntegerType lcm( IntegerType a, IntegerType b ) {
|
|||
}
|
||||
return a / t * b;
|
||||
}
|
||||
/// @brief Will return the smallest epsilon-value for the requested type.
|
||||
/// @brief Will return the smallest epsilon-value for the requested type.
|
||||
/// @return The numercical limit epsilon depending on its type.
|
||||
template<class T>
|
||||
inline T getEpsilon() {
|
||||
|
@ -97,7 +97,7 @@ inline T getEpsilon() {
|
|||
/// @brief Will return the constant PI for the requested type.
|
||||
/// @return Pi
|
||||
template<class T>
|
||||
inline T PI() {
|
||||
inline T aiPi() {
|
||||
return static_cast<T>(3.14159265358979323846);
|
||||
}
|
||||
|
||||
|
|
|
@ -398,6 +398,24 @@ enum aiPrimitiveType {
|
|||
*/
|
||||
aiPrimitiveType_POLYGON = 0x8,
|
||||
|
||||
/**
|
||||
* A flag to determine whether this triangles only mesh is NGON encoded.
|
||||
*
|
||||
* NGON encoding is a special encoding that tells whether 2 or more consecutive triangles
|
||||
* should be considered as a triangle fan. This is identified by looking at the first vertex index.
|
||||
* 2 consecutive triangles with the same 1st vertex index are part of the same
|
||||
* NGON.
|
||||
*
|
||||
* At the moment, only quads (concave or convex) are supported, meaning that polygons are 'seen' as
|
||||
* triangles, as usual after a triangulation pass.
|
||||
*
|
||||
* To get an NGON encoded mesh, please use the aiProcess_Triangulate post process.
|
||||
*
|
||||
* @see aiProcess_Triangulate
|
||||
* @link https://github.com/KhronosGroup/glTF/pull/1620
|
||||
*/
|
||||
aiPrimitiveType_NGONEncodingFlag = 0x10,
|
||||
|
||||
/** This value is not used. It is just here to force the
|
||||
* compiler to map this enum to a 32 Bit integer.
|
||||
*/
|
||||
|
|
|
@ -57,7 +57,7 @@ protected:
|
|||
aiMatrix4x4 get_predetermined_transformation_matrix_for_decomposition() const {
|
||||
aiMatrix4x4 t, r;
|
||||
aiMatrix4x4::Translation(aiVector3D(14,-25,-8), t);
|
||||
aiMatrix4x4::Rotation(Math::PI<float>() / 4.0f, aiVector3D(1).Normalize(), r);
|
||||
aiMatrix4x4::Rotation(Math::aiPi<float>() / 4.0f, aiVector3D(1).Normalize(), r);
|
||||
return t * r;
|
||||
}
|
||||
|
||||
|
|
|
@ -59,7 +59,7 @@ TEST_F(AssimpAPITest_aiQuaternion, aiCreateQuaternionFromMatrixTest) {
|
|||
// to prevent running into division by zero.
|
||||
aiMatrix3x3 m, r;
|
||||
aiMatrix3x3::Translation(aiVector2D(14,-25), m);
|
||||
aiMatrix3x3::RotationZ(Math::PI<float>() / 4.0f, r);
|
||||
aiMatrix3x3::RotationZ(Math::aiPi<float>() / 4.0f, r);
|
||||
m = m * r;
|
||||
|
||||
result_cpp = aiQuaternion(m);
|
||||
|
@ -127,8 +127,8 @@ TEST_F(AssimpAPITest_aiQuaternion, aiQuaternionInterpolateTest) {
|
|||
// Use predetermined quaternions to prevent division by zero
|
||||
// during slerp calculations.
|
||||
const float INTERPOLATION(0.5f);
|
||||
const auto q1 = aiQuaternion(aiVector3D(-1,1,1).Normalize(), Math::PI<float>() / 4.0f);
|
||||
const auto q2 = aiQuaternion(aiVector3D(1,2,1).Normalize(), Math::PI<float>() / 2.0f);
|
||||
const auto q1 = aiQuaternion(aiVector3D(-1,1,1).Normalize(), Math::aiPi<float>() / 4.0f);
|
||||
const auto q2 = aiQuaternion(aiVector3D(1,2,1).Normalize(), Math::aiPi<float>() / 2.0f);
|
||||
aiQuaternion::Interpolate(result_cpp, q1, q2, INTERPOLATION);
|
||||
aiQuaternionInterpolate(&result_c, &q1, &q2, INTERPOLATION);
|
||||
EXPECT_EQ(result_cpp, result_c);
|
||||
|
|
|
@ -51,6 +51,6 @@ const float AssimpMathTest::Epsilon = Math::getEpsilon<float>();
|
|||
RandomUniformFloatGenerator AssimpMathTest::RandNonZero(1.0f, 100.0f);
|
||||
|
||||
// Initialize with an interval of [-PI,PI] inclusively.
|
||||
RandomUniformFloatGenerator AssimpMathTest::RandPI(-Math::PI<float>(), Math::PI<float>());
|
||||
RandomUniformFloatGenerator AssimpMathTest::RandPI(-Math::aiPi<float>(), Math::aiPi<float>());
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue