Merge branch 'master' into Q1MDLgroup

pull/3743/head
Kim Kulling 2021-04-14 10:48:26 +02:00 committed by GitHub
commit 83c0dce075
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 178 additions and 21 deletions

View File

@ -39,7 +39,7 @@ Take a look into the https://github.com/assimp/assimp/blob/master/Build.md file.
### Ports ### ### Ports ###
* [Android](port/AndroidJNI/README.md) * [Android](port/AndroidJNI/README.md)
* [Python](port/PyAssimp/README.md) * [Python](port/PyAssimp/README.md)
* [.NET](https://github.com/assimp/assimp-net) * [.NET](https://bitbucket.org/Starnick/assimpnet/src/master/)
* [Pascal](port/AssimpPascal/Readme.md) * [Pascal](port/AssimpPascal/Readme.md)
* [Javascript (Alpha)](https://github.com/makc/assimp2json) * [Javascript (Alpha)](https://github.com/makc/assimp2json)
* [Unity 3d Plugin](https://www.assetstore.unity3d.com/en/#!/content/91777) * [Unity 3d Plugin](https://www.assetstore.unity3d.com/en/#!/content/91777)

View File

@ -508,6 +508,12 @@ void ResolveVertexDataArray(std::vector<T>& data_out, const Scope& source,
std::vector<int> uvIndices; std::vector<int> uvIndices;
ParseVectorDataArray(uvIndices,GetRequiredElement(source,indexDataElementName)); ParseVectorDataArray(uvIndices,GetRequiredElement(source,indexDataElementName));
if (uvIndices.size() > vertex_count) {
FBXImporter::LogWarn(Formatter::format("trimming length of input array for ByPolygonVertex mapping: ")
<< uvIndices.size() << ", expected " << vertex_count);
uvIndices.resize(vertex_count);
}
if (uvIndices.size() != vertex_count) { if (uvIndices.size() != vertex_count) {
FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygonVertex mapping: ") FBXImporter::LogError(Formatter::format("length of input data unexpected for ByPolygonVertex mapping: ")
<< uvIndices.size() << ", expected " << vertex_count); << uvIndices.size() << ", expected " << vertex_count);

View File

@ -158,6 +158,9 @@ void HMPImporter::InternReadFile(const std::string &pFile,
szBuffer[3] = ((char *)&iMagic)[3]; szBuffer[3] = ((char *)&iMagic)[3];
szBuffer[4] = '\0'; szBuffer[4] = '\0';
delete[] mBuffer;
mBuffer = nullptr;
// We're definitely unable to load this file // We're definitely unable to load this file
throw DeadlyImportError("Unknown HMP subformat ", pFile, throw DeadlyImportError("Unknown HMP subformat ", pFile,
". Magic word (", szBuffer, ") is not known"); ". Magic word (", szBuffer, ") is not known");

View File

@ -250,7 +250,7 @@ void MDCImporter::InternReadFile(
// get the number of valid surfaces // get the number of valid surfaces
BE_NCONST MDC::Surface *pcSurface, *pcSurface2; BE_NCONST MDC::Surface *pcSurface, *pcSurface2;
pcSurface = pcSurface2 = new (mBuffer + pcHeader->ulOffsetSurfaces) MDC::Surface; pcSurface = pcSurface2 = reinterpret_cast<BE_NCONST MDC::Surface *>(mBuffer + pcHeader->ulOffsetSurfaces);
unsigned int iNumShaders = 0; unsigned int iNumShaders = 0;
for (unsigned int i = 0; i < pcHeader->ulNumSurfaces; ++i) { for (unsigned int i = 0; i < pcHeader->ulNumSurfaces; ++i) {
// validate the surface header // validate the surface header
@ -260,7 +260,7 @@ void MDCImporter::InternReadFile(
++pScene->mNumMeshes; ++pScene->mNumMeshes;
} }
iNumShaders += pcSurface2->ulNumShaders; iNumShaders += pcSurface2->ulNumShaders;
pcSurface2 = new ((int8_t *)pcSurface2 + pcSurface2->ulOffsetEnd) MDC::Surface; pcSurface2 = reinterpret_cast<BE_NCONST MDC::Surface *>((BE_NCONST int8_t *)pcSurface2 + pcSurface2->ulOffsetEnd);
} }
aszShaders.reserve(iNumShaders); aszShaders.reserve(iNumShaders);
pScene->mMeshes = new aiMesh *[pScene->mNumMeshes]; pScene->mMeshes = new aiMesh *[pScene->mNumMeshes];
@ -405,7 +405,7 @@ void MDCImporter::InternReadFile(
pcFaceCur->mIndices[2] = iOutIndex + 0; pcFaceCur->mIndices[2] = iOutIndex + 0;
} }
pcSurface = new ((int8_t *)pcSurface + pcSurface->ulOffsetEnd) MDC::Surface; pcSurface = reinterpret_cast<BE_NCONST MDC::Surface *>((BE_NCONST int8_t *)pcSurface + pcSurface->ulOffsetEnd);
} }
// create a flat node graph with a root node and one child for each surface // create a flat node graph with a root node and one child for each surface

View File

@ -500,7 +500,7 @@ void MS3DImporter::InternReadFile( const std::string& pFile,
throw DeadlyImportError("MS3D: Encountered invalid triangle index, file is malformed"); throw DeadlyImportError("MS3D: Encountered invalid triangle index, file is malformed");
} }
TempTriangle& t = triangles[g.triangles[i]]; TempTriangle& t = triangles[g.triangles[j]];
f.mIndices = new unsigned int[f.mNumIndices=3]; f.mIndices = new unsigned int[f.mNumIndices=3];
for (unsigned int k = 0; k < 3; ++k,++n) { for (unsigned int k = 0; k < 3; ++k,++n) {
@ -508,7 +508,7 @@ void MS3DImporter::InternReadFile( const std::string& pFile,
throw DeadlyImportError("MS3D: Encountered invalid vertex index, file is malformed"); throw DeadlyImportError("MS3D: Encountered invalid vertex index, file is malformed");
} }
const TempVertex& v = vertices[t.indices[i]]; const TempVertex& v = vertices[t.indices[k]];
for(unsigned int a = 0; a < 4; ++a) { for(unsigned int a = 0; a < 4; ++a) {
if (v.bone_id[a] != UINT_MAX) { if (v.bone_id[a] != UINT_MAX) {
if (v.bone_id[a] >= joints.size()) { if (v.bone_id[a] >= joints.size()) {
@ -524,9 +524,9 @@ void MS3DImporter::InternReadFile( const std::string& pFile,
// collect vertex components // collect vertex components
m->mVertices[n] = v.pos; m->mVertices[n] = v.pos;
m->mNormals[n] = t.normals[i]; m->mNormals[n] = t.normals[k];
m->mTextureCoords[0][n] = aiVector3D(t.uv[i].x,1.f-t.uv[i].y,0.0); m->mTextureCoords[0][n] = aiVector3D(t.uv[k].x,1.f-t.uv[k].y,0.0);
f.mIndices[i] = n; f.mIndices[k] = n;
} }
} }

View File

@ -813,6 +813,11 @@ struct Mesh : public Object {
AccessorList position, normal, tangent; AccessorList position, normal, tangent;
}; };
std::vector<Target> targets; std::vector<Target> targets;
// extension: FB_ngon_encoding
bool ngonEncoded;
Primitive(): ngonEncoded(false) {}
}; };
std::vector<Primitive> primitives; std::vector<Primitive> primitives;
@ -1108,6 +1113,7 @@ public:
bool KHR_materials_clearcoat; bool KHR_materials_clearcoat;
bool KHR_materials_transmission; bool KHR_materials_transmission;
bool KHR_draco_mesh_compression; bool KHR_draco_mesh_compression;
bool FB_ngon_encoding;
} extensionsUsed; } extensionsUsed;
//! Keeps info about the required extensions //! Keeps info about the required extensions

View File

@ -507,6 +507,20 @@ namespace glTF2 {
Mesh::Primitive& p = m.primitives[i]; Mesh::Primitive& p = m.primitives[i];
Value prim; Value prim;
prim.SetObject(); prim.SetObject();
// Extensions
if (p.ngonEncoded)
{
Value exts;
exts.SetObject();
Value FB_ngon_encoding;
FB_ngon_encoding.SetObject();
exts.AddMember(StringRef("FB_ngon_encoding"), FB_ngon_encoding, w.mAl);
prim.AddMember("extensions", exts, w.mAl);
}
{ {
prim.AddMember("mode", Value(int(p.mode)).Move(), w.mAl); prim.AddMember("mode", Value(int(p.mode)).Move(), w.mAl);
@ -874,6 +888,10 @@ namespace glTF2 {
if (this->mAsset.extensionsUsed.KHR_materials_transmission) { if (this->mAsset.extensionsUsed.KHR_materials_transmission) {
exts.PushBack(StringRef("KHR_materials_transmission"), mAl); exts.PushBack(StringRef("KHR_materials_transmission"), mAl);
} }
if (this->mAsset.extensionsUsed.FB_ngon_encoding) {
exts.PushBack(StringRef("FB_ngon_encoding"), mAl);
}
} }
if (!exts.Empty()) if (!exts.Empty())

View File

@ -97,6 +97,9 @@ glTF2Exporter::glTF2Exporter(const char* filename, IOSystem* pIOSystem, const ai
mAsset.reset( new Asset( pIOSystem ) ); mAsset.reset( new Asset( pIOSystem ) );
// Always on as our triangulation process is aware of this type of encoding
mAsset->extensionsUsed.FB_ngon_encoding = true;
if (isBinary) { if (isBinary) {
mAsset->SetAsBinary(); mAsset->SetAsBinary();
} }
@ -955,6 +958,7 @@ void glTF2Exporter::ExportMeshes()
m->name = name; m->name = name;
p.material = mAsset->materials.Get(aim->mMaterialIndex); p.material = mAsset->materials.Get(aim->mMaterialIndex);
p.ngonEncoded = (aim->mPrimitiveTypes & aiPrimitiveType_NGONEncodingFlag) != 0;
/******************* Vertices ********************/ /******************* Vertices ********************/
Ref<Accessor> v = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mVertices, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT, BufferViewTarget_ARRAY_BUFFER); Ref<Accessor> v = ExportData(*mAsset, meshId, b, aim->mNumVertices, aim->mVertices, AttribType::VEC3, AttribType::VEC3, ComponentType_FLOAT, BufferViewTarget_ARRAY_BUFFER);

View File

@ -76,6 +76,87 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
using namespace Assimp; using namespace Assimp;
namespace {
/**
* @brief Helper struct used to simplify NGON encoding functions.
*/
struct NGONEncoder {
NGONEncoder() : mLastNGONFirstIndex((unsigned int)-1) {}
/**
* @brief Encode the current triangle, and make sure it is recognized as a triangle.
*
* This method will rotate indices in tri if needed in order to avoid tri to be considered
* part of the previous ngon. This method is to be used whenever you want to emit a real triangle,
* and make sure it is seen as a triangle.
*
* @param tri Triangle to encode.
*/
void ngonEncodeTriangle(aiFace * tri) {
ai_assert(tri->mNumIndices == 3);
// Rotate indices in new triangle to avoid ngon encoding false ngons
// Otherwise, the new triangle would be considered part of the previous NGON.
if (isConsideredSameAsLastNgon(tri)) {
std::swap(tri->mIndices[0], tri->mIndices[2]);
std::swap(tri->mIndices[1], tri->mIndices[2]);
}
mLastNGONFirstIndex = tri->mIndices[0];
}
/**
* @brief Encode a quad (2 triangles) in ngon encoding, and make sure they are seen as a single ngon.
*
* @param tri1 First quad triangle
* @param tri2 Second quad triangle
*
* @pre Triangles must be properly fanned from the most appropriate vertex.
*/
void ngonEncodeQuad(aiFace *tri1, aiFace *tri2) {
ai_assert(tri1->mNumIndices == 3);
ai_assert(tri2->mNumIndices == 3);
ai_assert(tri1->mIndices[0] == tri2->mIndices[0]);
// If the selected fanning vertex is the same as the previously
// emitted ngon, we use the opposite vertex which also happens to work
// for tri-fanning a concave quad.
// ref: https://github.com/assimp/assimp/pull/3695#issuecomment-805999760
if (isConsideredSameAsLastNgon(tri1)) {
// Right-rotate indices for tri1 (index 2 becomes the new fanning vertex)
std::swap(tri1->mIndices[0], tri1->mIndices[2]);
std::swap(tri1->mIndices[1], tri1->mIndices[2]);
// Left-rotate indices for tri2 (index 2 becomes the new fanning vertex)
std::swap(tri2->mIndices[1], tri2->mIndices[2]);
std::swap(tri2->mIndices[0], tri2->mIndices[2]);
ai_assert(tri1->mIndices[0] == tri2->mIndices[0]);
}
mLastNGONFirstIndex = tri1->mIndices[0];
}
/**
* @brief Check whether this triangle would be considered part of the lastly emitted ngon or not.
*
* @param tri Current triangle.
* @return true If used as is, this triangle will be part of last ngon.
* @return false If used as is, this triangle is not considered part of the last ngon.
*/
bool isConsideredSameAsLastNgon(const aiFace * tri) const {
ai_assert(tri->mNumIndices == 3);
return tri->mIndices[0] == mLastNGONFirstIndex;
}
private:
unsigned int mLastNGONFirstIndex;
};
}
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer // Constructor to be privately used by Importer
TriangulateProcess::TriangulateProcess() TriangulateProcess::TriangulateProcess()
@ -175,10 +256,15 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE; pMesh->mPrimitiveTypes |= aiPrimitiveType_TRIANGLE;
pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON; pMesh->mPrimitiveTypes &= ~aiPrimitiveType_POLYGON;
// The mesh becomes NGON encoded now, during the triangulation process.
pMesh->mPrimitiveTypes |= aiPrimitiveType_NGONEncodingFlag;
aiFace* out = new aiFace[numOut](), *curOut = out; aiFace* out = new aiFace[numOut](), *curOut = out;
std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */ std::vector<aiVector3D> temp_verts3d(max_out+2); /* temporary storage for vertices */
std::vector<aiVector2D> temp_verts(max_out+2); std::vector<aiVector2D> temp_verts(max_out+2);
NGONEncoder ngonEncoder;
// Apply vertex colors to represent the face winding? // Apply vertex colors to represent the face winding?
#ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING #ifdef AI_BUILD_TRIANGULATE_COLOR_FACE_WINDING
if (!pMesh->mColors[0]) if (!pMesh->mColors[0])
@ -220,8 +306,11 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
aiFace& nface = *curOut++; aiFace& nface = *curOut++;
nface.mNumIndices = face.mNumIndices; nface.mNumIndices = face.mNumIndices;
nface.mIndices = face.mIndices; nface.mIndices = face.mIndices;
face.mIndices = nullptr; face.mIndices = nullptr;
// points and lines don't require ngon encoding (and are not supported either!)
if (nface.mNumIndices == 3) ngonEncoder.ngonEncodeTriangle(&nface);
continue; continue;
} }
// optimized code for quadrilaterals // optimized code for quadrilaterals
@ -274,6 +363,9 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
// prevent double deletion of the indices field // prevent double deletion of the indices field
face.mIndices = nullptr; face.mIndices = nullptr;
ngonEncoder.ngonEncodeQuad(&nface, &sface);
continue; continue;
} }
else else
@ -284,7 +376,7 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
// modeling suite to make extensive use of highly concave, monster polygons ... // modeling suite to make extensive use of highly concave, monster polygons ...
// so we need to apply the full 'ear cutting' algorithm to get it right. // so we need to apply the full 'ear cutting' algorithm to get it right.
// RERQUIREMENT: polygon is expected to be simple and *nearly* planar. // REQUIREMENT: polygon is expected to be simple and *nearly* planar.
// We project it onto a plane to get a 2d triangle. // We project it onto a plane to get a 2d triangle.
// Collect all vertices of of the polygon. // Collect all vertices of of the polygon.
@ -508,6 +600,11 @@ bool TriangulateProcess::TriangulateMesh( aiMesh* pMesh)
i[0] = idx[i[0]]; i[0] = idx[i[0]];
i[1] = idx[i[1]]; i[1] = idx[i[1]];
i[2] = idx[i[2]]; i[2] = idx[i[2]];
// IMPROVEMENT: Polygons are not supported yet by this ngon encoding + triangulation step.
// So we encode polygons as regular triangles. No way to reconstruct the original
// polygon in this case.
ngonEncoder.ngonEncodeTriangle(f);
++f; ++f;
} }

View File

@ -97,7 +97,7 @@ inline T getEpsilon() {
/// @brief Will return the constant PI for the requested type. /// @brief Will return the constant PI for the requested type.
/// @return Pi /// @return Pi
template<class T> template<class T>
inline T PI() { inline T aiPi() {
return static_cast<T>(3.14159265358979323846); return static_cast<T>(3.14159265358979323846);
} }

View File

@ -50,6 +50,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace Assimp { namespace Assimp {
/// @brief Will find a node by its name.
struct find_node_by_name_predicate { struct find_node_by_name_predicate {
std::string mName; std::string mName;
find_node_by_name_predicate(const std::string &name) : find_node_by_name_predicate(const std::string &name) :
@ -88,7 +89,11 @@ public:
} }
void clear() { void clear() {
mData.resize(0); if(mData.empty()) {
mDoc = nullptr;
return;
}
mData.clear();
delete mDoc; delete mDoc;
mDoc = nullptr; mDoc = nullptr;
} }

View File

@ -398,6 +398,24 @@ enum aiPrimitiveType {
*/ */
aiPrimitiveType_POLYGON = 0x8, aiPrimitiveType_POLYGON = 0x8,
/**
* A flag to determine whether this triangles only mesh is NGON encoded.
*
* NGON encoding is a special encoding that tells whether 2 or more consecutive triangles
* should be considered as a triangle fan. This is identified by looking at the first vertex index.
* 2 consecutive triangles with the same 1st vertex index are part of the same
* NGON.
*
* At the moment, only quads (concave or convex) are supported, meaning that polygons are 'seen' as
* triangles, as usual after a triangulation pass.
*
* To get an NGON encoded mesh, please use the aiProcess_Triangulate post process.
*
* @see aiProcess_Triangulate
* @link https://github.com/KhronosGroup/glTF/pull/1620
*/
aiPrimitiveType_NGONEncodingFlag = 0x10,
/** This value is not used. It is just here to force the /** This value is not used. It is just here to force the
* compiler to map this enum to a 32 Bit integer. * compiler to map this enum to a 32 Bit integer.
*/ */

View File

@ -57,7 +57,7 @@ protected:
aiMatrix4x4 get_predetermined_transformation_matrix_for_decomposition() const { aiMatrix4x4 get_predetermined_transformation_matrix_for_decomposition() const {
aiMatrix4x4 t, r; aiMatrix4x4 t, r;
aiMatrix4x4::Translation(aiVector3D(14,-25,-8), t); aiMatrix4x4::Translation(aiVector3D(14,-25,-8), t);
aiMatrix4x4::Rotation(Math::PI<float>() / 4.0f, aiVector3D(1).Normalize(), r); aiMatrix4x4::Rotation(Math::aiPi<float>() / 4.0f, aiVector3D(1).Normalize(), r);
return t * r; return t * r;
} }

View File

@ -59,7 +59,7 @@ TEST_F(AssimpAPITest_aiQuaternion, aiCreateQuaternionFromMatrixTest) {
// to prevent running into division by zero. // to prevent running into division by zero.
aiMatrix3x3 m, r; aiMatrix3x3 m, r;
aiMatrix3x3::Translation(aiVector2D(14,-25), m); aiMatrix3x3::Translation(aiVector2D(14,-25), m);
aiMatrix3x3::RotationZ(Math::PI<float>() / 4.0f, r); aiMatrix3x3::RotationZ(Math::aiPi<float>() / 4.0f, r);
m = m * r; m = m * r;
result_cpp = aiQuaternion(m); result_cpp = aiQuaternion(m);
@ -127,8 +127,8 @@ TEST_F(AssimpAPITest_aiQuaternion, aiQuaternionInterpolateTest) {
// Use predetermined quaternions to prevent division by zero // Use predetermined quaternions to prevent division by zero
// during slerp calculations. // during slerp calculations.
const float INTERPOLATION(0.5f); const float INTERPOLATION(0.5f);
const auto q1 = aiQuaternion(aiVector3D(-1,1,1).Normalize(), Math::PI<float>() / 4.0f); const auto q1 = aiQuaternion(aiVector3D(-1,1,1).Normalize(), Math::aiPi<float>() / 4.0f);
const auto q2 = aiQuaternion(aiVector3D(1,2,1).Normalize(), Math::PI<float>() / 2.0f); const auto q2 = aiQuaternion(aiVector3D(1,2,1).Normalize(), Math::aiPi<float>() / 2.0f);
aiQuaternion::Interpolate(result_cpp, q1, q2, INTERPOLATION); aiQuaternion::Interpolate(result_cpp, q1, q2, INTERPOLATION);
aiQuaternionInterpolate(&result_c, &q1, &q2, INTERPOLATION); aiQuaternionInterpolate(&result_c, &q1, &q2, INTERPOLATION);
EXPECT_EQ(result_cpp, result_c); EXPECT_EQ(result_cpp, result_c);

View File

@ -51,6 +51,6 @@ const float AssimpMathTest::Epsilon = Math::getEpsilon<float>();
RandomUniformFloatGenerator AssimpMathTest::RandNonZero(1.0f, 100.0f); RandomUniformFloatGenerator AssimpMathTest::RandNonZero(1.0f, 100.0f);
// Initialize with an interval of [-PI,PI] inclusively. // Initialize with an interval of [-PI,PI] inclusively.
RandomUniformFloatGenerator AssimpMathTest::RandPI(-Math::PI<float>(), Math::PI<float>()); RandomUniformFloatGenerator AssimpMathTest::RandPI(-Math::aiPi<float>(), Math::aiPi<float>());
} }