- fbx: handle arbitrary rotation orders (all combinations of euler angles etc).
parent
1bdf39448a
commit
826b97a4fa
|
@ -89,11 +89,6 @@ public:
|
|||
};
|
||||
|
||||
|
||||
/** supported rotation modes */
|
||||
enum RotationMode
|
||||
{
|
||||
RotationMode_Euler_XYZ
|
||||
};
|
||||
|
||||
public:
|
||||
|
||||
|
@ -451,33 +446,92 @@ private:
|
|||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void GetRotationMatrix(RotationMode mode, const aiVector3D& rotation, aiMatrix4x4& out)
|
||||
void GetRotationMatrix(Model::RotOrder mode, const aiVector3D& rotation, aiMatrix4x4& out)
|
||||
{
|
||||
const float angle_epsilon = 1e-6f;
|
||||
aiMatrix4x4 temp;
|
||||
|
||||
if(mode == Model::RotOrder_SphericXYZ) {
|
||||
FBXImporter::LogError("Unsupported RotationMode: SphericXYZ");
|
||||
out = aiMatrix4x4();
|
||||
|
||||
switch(mode)
|
||||
{
|
||||
case RotationMode_Euler_XYZ:
|
||||
|
||||
if(fabs(rotation.z) > angle_epsilon) {
|
||||
out = aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z),temp);
|
||||
}
|
||||
if(fabs(rotation.y) > angle_epsilon) {
|
||||
out = out * aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y),temp);
|
||||
}
|
||||
if(fabs(rotation.x) > angle_epsilon) {
|
||||
out = out * aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x),temp);
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
const float angle_epsilon = 1e-6f;
|
||||
|
||||
out = aiMatrix4x4();
|
||||
|
||||
bool is_id[3] = { true, true, true };
|
||||
|
||||
aiMatrix4x4 temp[3];
|
||||
if(fabs(rotation.z) > angle_epsilon) {
|
||||
aiMatrix4x4::RotationZ(AI_DEG_TO_RAD(rotation.z),temp[2]);
|
||||
is_id[2] = false;
|
||||
}
|
||||
if(fabs(rotation.y) > angle_epsilon) {
|
||||
aiMatrix4x4::RotationY(AI_DEG_TO_RAD(rotation.y),temp[1]);
|
||||
is_id[1] = false;
|
||||
}
|
||||
if(fabs(rotation.x) > angle_epsilon) {
|
||||
aiMatrix4x4::RotationX(AI_DEG_TO_RAD(rotation.x),temp[0]);
|
||||
is_id[0] = false;
|
||||
}
|
||||
|
||||
int order[3] = {-1, -1, -1};
|
||||
|
||||
// note: rotation order is inverted since we're left multiplying as is usual in assimp
|
||||
switch(mode)
|
||||
{
|
||||
case Model::RotOrder_EulerXYZ:
|
||||
order[0] = 2;
|
||||
order[1] = 1;
|
||||
order[2] = 0;
|
||||
break;
|
||||
|
||||
case Model::RotOrder_EulerXZY:
|
||||
order[0] = 1;
|
||||
order[1] = 2;
|
||||
order[2] = 0;
|
||||
break;
|
||||
|
||||
case Model::RotOrder_EulerYZX:
|
||||
order[0] = 0;
|
||||
order[1] = 2;
|
||||
order[2] = 1;
|
||||
break;
|
||||
|
||||
case Model::RotOrder_EulerYXZ:
|
||||
order[0] = 2;
|
||||
order[1] = 0;
|
||||
order[2] = 1;
|
||||
break;
|
||||
|
||||
case Model::RotOrder_EulerZXY:
|
||||
order[0] = 1;
|
||||
order[1] = 0;
|
||||
order[2] = 2;
|
||||
break;
|
||||
|
||||
case Model::RotOrder_EulerZYX:
|
||||
order[0] = 0;
|
||||
order[1] = 1;
|
||||
order[2] = 2;
|
||||
break;
|
||||
|
||||
default:
|
||||
ai_assert(false);
|
||||
}
|
||||
|
||||
if(!is_id[order[0]]) {
|
||||
out = temp[order[0]];
|
||||
}
|
||||
|
||||
if(!is_id[order[1]]) {
|
||||
out = out * temp[order[1]];
|
||||
}
|
||||
|
||||
if(!is_id[order[2]]) {
|
||||
out = out * temp[order[2]];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
/** checks if a node has more than just scaling, rotation and translation components */
|
||||
|
@ -521,9 +575,7 @@ private:
|
|||
std::vector<aiNode*>& output_nodes)
|
||||
{
|
||||
const PropertyTable& props = model.Props();
|
||||
|
||||
// XXX handle different rotation modes
|
||||
const RotationMode rot = RotationMode_Euler_XYZ;
|
||||
const Model::RotOrder rot = model.RotationOrder();
|
||||
|
||||
bool ok;
|
||||
|
||||
|
@ -1891,7 +1943,7 @@ private:
|
|||
ScopeGuard<aiNodeAnim> na(new aiNodeAnim());
|
||||
na->mNodeName.Set(name);
|
||||
|
||||
ConvertRotationKeys(na, curves, layer_map, max_time,min_time);
|
||||
ConvertRotationKeys(na, curves, layer_map, max_time,min_time, target.RotationOrder());
|
||||
|
||||
// dummy scaling key
|
||||
na->mScalingKeys = new aiVectorKey[1];
|
||||
|
@ -2019,7 +2071,8 @@ private:
|
|||
ConvertRotationKeys(na, (*chain[TransformationComp_Rotation]).second,
|
||||
layer_map,
|
||||
max_time,
|
||||
min_time);
|
||||
min_time,
|
||||
target.RotationOrder());
|
||||
}
|
||||
else {
|
||||
na->mRotationKeys = new aiQuatKey[1];
|
||||
|
@ -2027,8 +2080,8 @@ private:
|
|||
|
||||
na->mRotationKeys[0].mTime = 0.;
|
||||
na->mRotationKeys[0].mValue = EulerToQuaternion(
|
||||
PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f))
|
||||
);
|
||||
PropertyGet(props,"Lcl Rotation",aiVector3D(0.f,0.f,0.f)),
|
||||
target.RotationOrder());
|
||||
}
|
||||
|
||||
if(chain[TransformationComp_Translation] != iter_end) {
|
||||
|
@ -2214,7 +2267,8 @@ private:
|
|||
// ------------------------------------------------------------------------------------------------
|
||||
void InterpolateKeys(aiQuatKey* valOut,const KeyTimeList& keys, const KeyFrameListList& inputs, const bool geom,
|
||||
double& maxTime,
|
||||
double& minTime)
|
||||
double& minTime,
|
||||
Model::RotOrder order)
|
||||
{
|
||||
ai_assert(keys.size());
|
||||
ai_assert(valOut);
|
||||
|
@ -2225,17 +2279,17 @@ private:
|
|||
for (size_t i = 0, c = keys.size(); i < c; ++i) {
|
||||
|
||||
valOut[i].mTime = temp[i].mTime;
|
||||
valOut[i].mValue = EulerToQuaternion(temp[i].mValue);
|
||||
valOut[i].mValue = EulerToQuaternion(temp[i].mValue, order);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// euler xyz -> quat
|
||||
aiQuaternion EulerToQuaternion(const aiVector3D& rot)
|
||||
aiQuaternion EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order)
|
||||
{
|
||||
aiMatrix4x4 m;
|
||||
GetRotationMatrix(RotationMode_Euler_XYZ, rot, m);
|
||||
GetRotationMatrix(order, rot, m);
|
||||
|
||||
return aiQuaternion(aiMatrix3x3(m));
|
||||
}
|
||||
|
@ -2262,7 +2316,8 @@ private:
|
|||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers,
|
||||
void ConvertTranslationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
|
||||
const LayerMap& layers,
|
||||
double& maxTime,
|
||||
double& minTime)
|
||||
{
|
||||
|
@ -2279,9 +2334,11 @@ private:
|
|||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes, const LayerMap& layers,
|
||||
void ConvertRotationKeys(aiNodeAnim* na, const std::vector<const AnimationCurveNode*>& nodes,
|
||||
const LayerMap& layers,
|
||||
double& maxTime,
|
||||
double& minTime)
|
||||
double& minTime,
|
||||
Model::RotOrder order)
|
||||
{
|
||||
ai_assert(nodes.size());
|
||||
|
||||
|
@ -2291,7 +2348,7 @@ private:
|
|||
|
||||
na->mNumRotationKeys = static_cast<unsigned int>(keys.size());
|
||||
na->mRotationKeys = new aiQuatKey[keys.size()];
|
||||
InterpolateKeys(na->mRotationKeys, keys, inputs, false, maxTime, minTime);
|
||||
InterpolateKeys(na->mRotationKeys, keys, inputs, false, maxTime, minTime, order);
|
||||
}
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue