- fbx: refactor animation code.

pull/14/head
Alexander Gessler 2012-07-27 15:53:17 +02:00
parent ffd084a7a7
commit 80e7e18e28
1 changed files with 179 additions and 164 deletions

View File

@ -1400,171 +1400,13 @@ private:
double max_time = -1e10;
try {
NodeMap node_property_map;
BOOST_FOREACH(const NodeMap::value_type& kv, node_map) {
node_property_map.clear();
ai_assert(kv.second.size());
const AnimationCurveNode* curve_node;
BOOST_FOREACH(const AnimationCurveNode* node, kv.second) {
ai_assert(node);
if (node->TargetProperty().empty()) {
FBXImporter::LogWarn("target property for animation curve not set");
continue;
}
curve_node = node;
if (node->Curves().empty()) {
FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode");
continue;
}
node_property_map[node->TargetProperty()].push_back(node);
}
ai_assert(curve_node);
// check for all possible transformation components
NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
bool has_any = false;
bool has_complex = false;
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
// inverse pivots don't exist in the input, we just generate them
if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
chain[i] = node_property_map.end();
continue;
}
chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
if (chain[i] != node_property_map.end()) {
has_any = true;
if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling &&
comp != TransformationComp_Translation) {
has_complex = true;
}
}
}
if (!has_any) {
FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
continue;
}
ai_assert(curve_node->TargetAsModel());
// this needs to play nicely with GenerateTransformationNodeChain() which will
// be invoked _later_ (animations come first). If this node has only rotation,
// scaling and translation _and_ there are no animated other components either,
// we can use a single node and also a single node animation channel.
const Model& target = *curve_node->TargetAsModel();
if (!has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim* const nd = GenerateSimpleNodeAnim(kv.first, target, chain,
node_property_map.end(),
layer_map,
max_time,
min_time
);
ai_assert(nd);
node_anims.push_back(nd);
continue;
}
// otherwise, things get gruesome and we need separate animation channels
// for each part of the transformation chain.
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if (chain[i] != node_property_map.end()) {
const std::string& chain_name = NameTransformationChainNode(kv.first, comp);
aiNodeAnim* na;
switch(comp)
{
case TransformationComp_Rotation:
case TransformationComp_PreRotation:
case TransformationComp_PostRotation:
na = GenerateRotationNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time
);
break;
case TransformationComp_RotationOffset:
case TransformationComp_RotationPivot:
case TransformationComp_ScalingOffset:
case TransformationComp_ScalingPivot:
case TransformationComp_Translation:
na = GenerateTranslationNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time);
// pivoting requires us to generate an inverse channel to undo the pivot translation
if (comp == TransformationComp_RotationPivot) {
const std::string& invName = NameTransformationChainNode(kv.first, TransformationComp_RotationPivotInverse);
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time,
true);
ai_assert(inv);
node_anims.push_back(inv);
}
else if (comp == TransformationComp_ScalingPivot) {
const std::string& invName = NameTransformationChainNode(kv.first, TransformationComp_ScalingPivotInverse);
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time,
true);
ai_assert(inv);
node_anims.push_back(inv);
}
break;
case TransformationComp_Scaling:
na = GenerateScalingNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time
);
break;
default:
ai_assert(false);
}
ai_assert(na);
node_anims.push_back(na);
continue;
}
}
GenerateNodeAnimations(node_anims,
kv.first,
kv.second,
layer_map,
min_time,
max_time);
}
}
catch(std::exception&) {
@ -1593,6 +1435,179 @@ private:
}
// ------------------------------------------------------------------------------------------------
void GenerateNodeAnimations(std::vector<aiNodeAnim*>& node_anims,
const std::string& fixed_name,
const std::vector<const AnimationCurveNode*>& curves,
const LayerMap& layer_map,
double& max_time,
double& min_time)
{
NodeMap node_property_map;
ai_assert(curves.size());
const AnimationCurveNode* curve_node;
BOOST_FOREACH(const AnimationCurveNode* node, curves) {
ai_assert(node);
if (node->TargetProperty().empty()) {
FBXImporter::LogWarn("target property for animation curve not set");
continue;
}
curve_node = node;
if (node->Curves().empty()) {
FBXImporter::LogWarn("no animation curves assigned to AnimationCurveNode");
continue;
}
node_property_map[node->TargetProperty()].push_back(node);
}
ai_assert(curve_node);
// check for all possible transformation components
NodeMap::const_iterator chain[TransformationComp_MAXIMUM];
bool has_any = false;
bool has_complex = false;
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
// inverse pivots don't exist in the input, we just generate them
if (comp == TransformationComp_RotationPivotInverse || comp == TransformationComp_ScalingPivotInverse) {
chain[i] = node_property_map.end();
continue;
}
chain[i] = node_property_map.find(NameTransformationCompProperty(comp));
if (chain[i] != node_property_map.end()) {
has_any = true;
if (comp != TransformationComp_Rotation && comp != TransformationComp_Scaling &&
comp != TransformationComp_Translation) {
has_complex = true;
}
}
}
if (!has_any) {
FBXImporter::LogWarn("ignoring node animation, did not find any transformation key frames");
return;
}
ai_assert(curve_node->TargetAsModel());
// this needs to play nicely with GenerateTransformationNodeChain() which will
// be invoked _later_ (animations come first). If this node has only rotation,
// scaling and translation _and_ there are no animated other components either,
// we can use a single node and also a single node animation channel.
const Model& target = *curve_node->TargetAsModel();
if (!has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
node_property_map.end(),
layer_map,
max_time,
min_time
);
ai_assert(nd);
node_anims.push_back(nd);
return;
}
// otherwise, things get gruesome and we need separate animation channels
// for each part of the transformation chain.
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if (chain[i] != node_property_map.end()) {
const std::string& chain_name = NameTransformationChainNode(fixed_name, comp);
aiNodeAnim* na;
switch(comp)
{
case TransformationComp_Rotation:
case TransformationComp_PreRotation:
case TransformationComp_PostRotation:
na = GenerateRotationNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time
);
break;
case TransformationComp_RotationOffset:
case TransformationComp_RotationPivot:
case TransformationComp_ScalingOffset:
case TransformationComp_ScalingPivot:
case TransformationComp_Translation:
na = GenerateTranslationNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time);
// pivoting requires us to generate an inverse channel to undo the pivot translation
if (comp == TransformationComp_RotationPivot) {
const std::string& invName = NameTransformationChainNode(fixed_name, TransformationComp_RotationPivotInverse);
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time,
true);
ai_assert(inv);
node_anims.push_back(inv);
}
else if (comp == TransformationComp_ScalingPivot) {
const std::string& invName = NameTransformationChainNode(fixed_name, TransformationComp_ScalingPivotInverse);
aiNodeAnim* const inv = GenerateTranslationNodeAnim(invName,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time,
true);
ai_assert(inv);
node_anims.push_back(inv);
}
break;
case TransformationComp_Scaling:
na = GenerateScalingNodeAnim(chain_name,
target,
(*chain[i]).second,
layer_map,
max_time,
min_time
);
break;
default:
ai_assert(false);
}
ai_assert(na);
node_anims.push_back(na);
continue;
}
}
}
// ------------------------------------------------------------------------------------------------
aiNodeAnim* GenerateRotationNodeAnim(const std::string& name,
const Model& target,