Fix for blendshapes import when using the JoinIdenticalVertices optimization flag

pull/1919/head
Sebastian Matusik 2018-04-26 17:34:27 +01:00
parent 3d589d8fc8
commit 78d04c137d
2 changed files with 178 additions and 122 deletions

View File

@ -114,179 +114,58 @@ void JoinVerticesProcess::Execute( aiScene* pScene)
pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT; pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT;
} }
// ------------------------------------------------------------------------------------------------ namespace {
// Unites identical vertices in the given mesh
int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex) bool areVerticesEqual(const Vertex &lhs, const Vertex &rhs, bool complex)
{ {
static_assert( AI_MAX_NUMBER_OF_COLOR_SETS == 8, "AI_MAX_NUMBER_OF_COLOR_SETS == 8");
static_assert( AI_MAX_NUMBER_OF_TEXTURECOORDS == 8, "AI_MAX_NUMBER_OF_TEXTURECOORDS == 8");
// Return early if we don't have any positions
if (!pMesh->HasPositions() || !pMesh->HasFaces()) {
return 0;
}
// We'll never have more vertices afterwards.
std::vector<Vertex> uniqueVertices;
uniqueVertices.reserve( pMesh->mNumVertices);
// For each vertex the index of the vertex it was replaced by.
// Since the maximal number of vertices is 2^31-1, the most significand bit can be used to mark
// whether a new vertex was created for the index (true) or if it was replaced by an existing
// unique vertex (false). This saves an additional std::vector<bool> and greatly enhances
// branching performance.
static_assert(AI_MAX_VERTICES == 0x7fffffff, "AI_MAX_VERTICES == 0x7fffffff");
std::vector<unsigned int> replaceIndex( pMesh->mNumVertices, 0xffffffff);
// A little helper to find locally close vertices faster. // A little helper to find locally close vertices faster.
// Try to reuse the lookup table from the last step. // Try to reuse the lookup table from the last step.
const static float epsilon = 1e-5f; const static float epsilon = 1e-5f;
// float posEpsilonSqr;
SpatialSort* vertexFinder = NULL;
SpatialSort _vertexFinder;
typedef std::pair<SpatialSort,float> SpatPair;
if (shared) {
std::vector<SpatPair >* avf;
shared->GetProperty(AI_SPP_SPATIAL_SORT,avf);
if (avf) {
SpatPair& blubb = (*avf)[meshIndex];
vertexFinder = &blubb.first;
// posEpsilonSqr = blubb.second;
}
}
if (!vertexFinder) {
// bad, need to compute it.
_vertexFinder.Fill(pMesh->mVertices, pMesh->mNumVertices, sizeof( aiVector3D));
vertexFinder = &_vertexFinder;
// posEpsilonSqr = ComputePositionEpsilon(pMesh);
}
// Squared because we check against squared length of the vector difference // Squared because we check against squared length of the vector difference
static const float squareEpsilon = epsilon * epsilon; static const float squareEpsilon = epsilon * epsilon;
// Again, better waste some bytes than a realloc ... // Square compare is useful for animeshes vertexes compare
std::vector<unsigned int> verticesFound; if ((lhs.position - rhs.position).SquareLength() > squareEpsilon) {
verticesFound.reserve(10); return false;
}
// Run an optimized code path if we don't have multiple UVs or vertex colors.
// This should yield false in more than 99% of all imports ...
const bool complex = ( pMesh->GetNumColorChannels() > 0 || pMesh->GetNumUVChannels() > 1);
// Now check each vertex if it brings something new to the table
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
// collect the vertex data
Vertex v(pMesh,a);
// collect all vertices that are close enough to the given position
vertexFinder->FindIdenticalPositions( v.position, verticesFound);
unsigned int matchIndex = 0xffffffff;
// check all unique vertices close to the position if this vertex is already present among them
for( unsigned int b = 0; b < verticesFound.size(); b++) {
const unsigned int vidx = verticesFound[b];
const unsigned int uidx = replaceIndex[ vidx];
if( uidx & 0x80000000)
continue;
const Vertex& uv = uniqueVertices[ uidx];
// Position mismatch is impossible - the vertex finder already discarded all non-matching positions
// We just test the other attributes even if they're not present in the mesh. // We just test the other attributes even if they're not present in the mesh.
// In this case they're initialized to 0 so the comparison succeeds. // In this case they're initialized to 0 so the comparison succeeds.
// By this method the non-present attributes are effectively ignored in the comparison. // By this method the non-present attributes are effectively ignored in the comparison.
if( (uv.normal - v.normal).SquareLength() > squareEpsilon) if ((lhs.normal - rhs.normal).SquareLength() > squareEpsilon) {
continue; return false;
if( (uv.texcoords[0] - v.texcoords[0]).SquareLength() > squareEpsilon) }
continue;
if( (uv.tangent - v.tangent).SquareLength() > squareEpsilon) if ((lhs.texcoords[0] - rhs.texcoords[0]).SquareLength() > squareEpsilon) {
continue; return false;
if( (uv.bitangent - v.bitangent).SquareLength() > squareEpsilon) }
continue;
if ((lhs.tangent - rhs.tangent).SquareLength() > squareEpsilon) {
return false;
}
if ((lhs.bitangent - rhs.bitangent).SquareLength() > squareEpsilon) {
return false;
}
// Usually we won't have vertex colors or multiple UVs, so we can skip from here // Usually we won't have vertex colors or multiple UVs, so we can skip from here
// Actually this increases runtime performance slightly, at least if branch // Actually this increases runtime performance slightly, at least if branch
// prediction is on our side. // prediction is on our side.
if (complex) { if (complex) {
// manually unrolled because continue wouldn't work as desired in an inner loop, for (int i = 0; i < 8; i++) {
// also because some compilers seem to fail the task. Colors and UV coords if (i > 0 && (lhs.texcoords[i] - rhs.texcoords[i]).SquareLength() > squareEpsilon) {
// are interleaved since the higher entries are most likely to be return false;
// zero and thus useless. By interleaving the arrays, vertices are,
// on average, rejected earlier.
if( (uv.texcoords[1] - v.texcoords[1]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[0], v.colors[0]) > squareEpsilon)
continue;
if( (uv.texcoords[2] - v.texcoords[2]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[1], v.colors[1]) > squareEpsilon)
continue;
if( (uv.texcoords[3] - v.texcoords[3]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[2], v.colors[2]) > squareEpsilon)
continue;
if( (uv.texcoords[4] - v.texcoords[4]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[3], v.colors[3]) > squareEpsilon)
continue;
if( (uv.texcoords[5] - v.texcoords[5]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[4], v.colors[4]) > squareEpsilon)
continue;
if( (uv.texcoords[6] - v.texcoords[6]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[5], v.colors[5]) > squareEpsilon)
continue;
if( (uv.texcoords[7] - v.texcoords[7]).SquareLength() > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[6], v.colors[6]) > squareEpsilon)
continue;
if( GetColorDifference( uv.colors[7], v.colors[7]) > squareEpsilon)
continue;
} }
if (GetColorDifference(lhs.colors[i], rhs.colors[i]) > squareEpsilon) {
// we're still here -> this vertex perfectly matches our given vertex return false;
matchIndex = uidx;
break;
}
// found a replacement vertex among the uniques?
if( matchIndex != 0xffffffff)
{
// store where to found the matching unique vertex
replaceIndex[a] = matchIndex | 0x80000000;
}
else
{
// no unique vertex matches it up to now -> so add it
replaceIndex[a] = (unsigned int)uniqueVertices.size();
uniqueVertices.push_back( v);
} }
} }
}
if (!DefaultLogger::isNullLogger() && DefaultLogger::get()->getLogSeverity() == Logger::VERBOSE) { return true;
DefaultLogger::get()->debug((Formatter::format(),
"Mesh ",meshIndex,
" (",
(pMesh->mName.length ? pMesh->mName.data : "unnamed"),
") | Verts in: ",pMesh->mNumVertices,
" out: ",
uniqueVertices.size(),
" | ~",
((pMesh->mNumVertices - uniqueVertices.size()) / (float)pMesh->mNumVertices) * 100.f,
"%"
));
} }
template<class XMesh>
void updateXMeshVertices(XMesh *pMesh, std::vector<Vertex> &uniqueVertices) {
// replace vertex data with the unique data sets // replace vertex data with the unique data sets
pMesh->mNumVertices = (unsigned int)uniqueVertices.size(); pMesh->mNumVertices = (unsigned int)uniqueVertices.size();
@ -296,11 +175,15 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
// dislikes branches, even if they're easily predictable. // dislikes branches, even if they're easily predictable.
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// Position // Position, if present (check made for aiAnimMesh)
if (pMesh->mVertices)
{
delete [] pMesh->mVertices; delete [] pMesh->mVertices;
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices]; pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
pMesh->mVertices[a] = uniqueVertices[a].position; pMesh->mVertices[a] = uniqueVertices[a].position;
}
}
// Normals, if present // Normals, if present
if (pMesh->mNormals) if (pMesh->mNormals)
@ -347,6 +230,155 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a]; pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a];
} }
} }
}
} // namespace
// ------------------------------------------------------------------------------------------------
// Unites identical vertices in the given mesh
int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
{
static_assert( AI_MAX_NUMBER_OF_COLOR_SETS == 8, "AI_MAX_NUMBER_OF_COLOR_SETS == 8");
static_assert( AI_MAX_NUMBER_OF_TEXTURECOORDS == 8, "AI_MAX_NUMBER_OF_TEXTURECOORDS == 8");
// Return early if we don't have any positions
if (!pMesh->HasPositions() || !pMesh->HasFaces()) {
return 0;
}
// We'll never have more vertices afterwards.
std::vector<Vertex> uniqueVertices;
uniqueVertices.reserve( pMesh->mNumVertices);
// For each vertex the index of the vertex it was replaced by.
// Since the maximal number of vertices is 2^31-1, the most significand bit can be used to mark
// whether a new vertex was created for the index (true) or if it was replaced by an existing
// unique vertex (false). This saves an additional std::vector<bool> and greatly enhances
// branching performance.
static_assert(AI_MAX_VERTICES == 0x7fffffff, "AI_MAX_VERTICES == 0x7fffffff");
std::vector<unsigned int> replaceIndex( pMesh->mNumVertices, 0xffffffff);
// float posEpsilonSqr;
SpatialSort* vertexFinder = NULL;
SpatialSort _vertexFinder;
typedef std::pair<SpatialSort,float> SpatPair;
if (shared) {
std::vector<SpatPair >* avf;
shared->GetProperty(AI_SPP_SPATIAL_SORT,avf);
if (avf) {
SpatPair& blubb = (*avf)[meshIndex];
vertexFinder = &blubb.first;
// posEpsilonSqr = blubb.second;
}
}
if (!vertexFinder) {
// bad, need to compute it.
_vertexFinder.Fill(pMesh->mVertices, pMesh->mNumVertices, sizeof( aiVector3D));
vertexFinder = &_vertexFinder;
// posEpsilonSqr = ComputePositionEpsilon(pMesh);
}
// Again, better waste some bytes than a realloc ...
std::vector<unsigned int> verticesFound;
verticesFound.reserve(10);
// Run an optimized code path if we don't have multiple UVs or vertex colors.
// This should yield false in more than 99% of all imports ...
const bool complex = ( pMesh->GetNumColorChannels() > 0 || pMesh->GetNumUVChannels() > 1);
const bool hasAnimMeshes = pMesh->mNumAnimMeshes > 0;
// We'll never have more vertices afterwards.
std::vector<Vertex> uniqueAnimatedVertices[pMesh->mNumAnimMeshes];
if (hasAnimMeshes) {
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
uniqueAnimatedVertices[animMeshIndex].reserve(pMesh->mNumVertices);
}
}
// Now check each vertex if it brings something new to the table
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
// collect the vertex data
Vertex v(pMesh,a);
// collect all vertices that are close enough to the given position
vertexFinder->FindIdenticalPositions( v.position, verticesFound);
unsigned int matchIndex = 0xffffffff;
// check all unique vertices close to the position if this vertex is already present among them
for( unsigned int b = 0; b < verticesFound.size(); b++) {
const unsigned int vidx = verticesFound[b];
const unsigned int uidx = replaceIndex[ vidx];
if( uidx & 0x80000000)
continue;
const Vertex& uv = uniqueVertices[ uidx];
if (!areVerticesEqual(v, uv, complex)) {
continue;
}
if (hasAnimMeshes) {
// If given vertex is animated, then it has to be preserver 1 to 1 (base mesh and animated mesh require same topology)
// NOTE: not doing this totaly breaks anim meshes as they don't have their own faces (they use pMesh->mFaces)
bool breaksAnimMesh = false;
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
const Vertex& animatedUV = uniqueAnimatedVertices[animMeshIndex][ uidx];
Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
if (!areVerticesEqual(aniMeshVertex, animatedUV, complex)) {
breaksAnimMesh = true;
break;
}
}
if (breaksAnimMesh) {
continue;
}
}
// we're still here -> this vertex perfectly matches our given vertex
matchIndex = uidx;
break;
}
// found a replacement vertex among the uniques?
if( matchIndex != 0xffffffff)
{
// store where to found the matching unique vertex
replaceIndex[a] = matchIndex | 0x80000000;
}
else
{
// no unique vertex matches it up to now -> so add it
replaceIndex[a] = (unsigned int)uniqueVertices.size();
uniqueVertices.push_back( v);
if (hasAnimMeshes) {
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
uniqueAnimatedVertices[animMeshIndex].push_back(aniMeshVertex);
}
}
}
}
if (!DefaultLogger::isNullLogger() && DefaultLogger::get()->getLogSeverity() == Logger::VERBOSE) {
DefaultLogger::get()->debug((Formatter::format(),
"Mesh ",meshIndex,
" (",
(pMesh->mName.length ? pMesh->mName.data : "unnamed"),
") | Verts in: ",pMesh->mNumVertices,
" out: ",
uniqueVertices.size(),
" | ~",
((pMesh->mNumVertices - uniqueVertices.size()) / (float)pMesh->mNumVertices) * 100.f,
"%"
));
}
updateXMeshVertices(pMesh, uniqueVertices);
if (hasAnimMeshes) {
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
updateXMeshVertices(pMesh->mAnimMeshes[animMeshIndex], uniqueAnimatedVertices[animMeshIndex]);
}
}
// adjust the indices in all faces // adjust the indices in all faces
for( unsigned int a = 0; a < pMesh->mNumFaces; a++) for( unsigned int a = 0; a < pMesh->mNumFaces; a++)

View File

@ -134,6 +134,30 @@ public:
} }
} }
// ----------------------------------------------------------------------------
/** Extract a particular vertex from a anim mesh and interleave all components */
explicit Vertex(const aiAnimMesh* msh, unsigned int idx) {
ai_assert(idx < msh->mNumVertices);
position = msh->mVertices[idx];
if (msh->HasNormals()) {
normal = msh->mNormals[idx];
}
if (msh->HasTangentsAndBitangents()) {
tangent = msh->mTangents[idx];
bitangent = msh->mBitangents[idx];
}
for (unsigned int i = 0; msh->HasTextureCoords(i); ++i) {
texcoords[i] = msh->mTextureCoords[i][idx];
}
for (unsigned int i = 0; msh->HasVertexColors(i); ++i) {
colors[i] = msh->mColors[i][idx];
}
}
public: public:
Vertex& operator += (const Vertex& v) { Vertex& operator += (const Vertex& v) {