- further changes to add dummy animation support to the viewer. Still under heavy construction, bone meshes are not rendered correctly with this version at the moment. I'm sorry. Will be fixed soon.

git-svn-id: https://assimp.svn.sourceforge.net/svnroot/assimp/trunk@202 67173fc5-114c-0410-ac8e-9d2fd5bffc1f
pull/1/head
ulfjorensen 2008-10-29 17:08:03 +00:00
parent ef3cd69ae6
commit 7101c33401
11 changed files with 738 additions and 153 deletions

View File

@ -90,8 +90,8 @@ void SkeletonMeshBuilder::CreateGeometry( const aiNode* pNode)
const aiMatrix4x4& childTransform = pNode->mChildren[a]->mTransformation;
aiVector3D childpos( childTransform.a4, childTransform.b4, childTransform.c4);
float distanceToChild = childpos.Length();
if( distanceToChild < 0.0001f)
continue;
if( distanceToChild < 0.0001f)
continue;
aiVector3D up = aiVector3D( childpos).Normalize();
aiVector3D orth( 1.0f, 0.0f, 0.0f);
@ -163,34 +163,34 @@ void SkeletonMeshBuilder::CreateGeometry( const aiNode* pNode)
}
unsigned int numVertices = mVertices.size() - vertexStartIndex;
if( numVertices > 0)
{
// create a bone affecting all the newly created vertices
aiBone* bone = new aiBone;
mBones.push_back( bone);
bone->mName = pNode->mName;
if( numVertices > 0)
{
// create a bone affecting all the newly created vertices
aiBone* bone = new aiBone;
mBones.push_back( bone);
bone->mName = pNode->mName;
// calculate the bone offset matrix by concatenating the inverse transformations of all parents
bone->mOffsetMatrix = aiMatrix4x4( pNode->mTransformation).Inverse();
for( aiNode* parent = pNode->mParent; parent != NULL; parent = parent->mParent)
bone->mOffsetMatrix = aiMatrix4x4( parent->mTransformation).Inverse() * bone->mOffsetMatrix;
// calculate the bone offset matrix by concatenating the inverse transformations of all parents
bone->mOffsetMatrix = aiMatrix4x4( pNode->mTransformation).Inverse();
for( aiNode* parent = pNode->mParent; parent != NULL; parent = parent->mParent)
bone->mOffsetMatrix = aiMatrix4x4( parent->mTransformation).Inverse() * bone->mOffsetMatrix;
// add all the vertices to the bone's influences
bone->mNumWeights = numVertices;
bone->mWeights = new aiVertexWeight[numVertices];
for( unsigned int a = 0; a < numVertices; a++)
bone->mWeights[a] = aiVertexWeight( vertexStartIndex + a, 1.0f);
// add all the vertices to the bone's influences
bone->mNumWeights = numVertices;
bone->mWeights = new aiVertexWeight[numVertices];
for( unsigned int a = 0; a < numVertices; a++)
bone->mWeights[a] = aiVertexWeight( vertexStartIndex + a, 1.0f);
// HACK: (thom) transform all vertices to the bone's local space. Should be done before adding
// them to the array, but I'm tired now and I'm annoyed.
aiMatrix4x4 boneToMeshTransform = aiMatrix4x4( bone->mOffsetMatrix).Inverse();
for( unsigned int a = vertexStartIndex; a < mVertices.size(); a++)
mVertices[a] = boneToMeshTransform * mVertices[a];
}
// HACK: (thom) transform all vertices to the bone's local space. Should be done before adding
// them to the array, but I'm tired now and I'm annoyed.
aiMatrix4x4 boneToMeshTransform = aiMatrix4x4( bone->mOffsetMatrix).Inverse();
for( unsigned int a = vertexStartIndex; a < mVertices.size(); a++)
mVertices[a] = boneToMeshTransform * mVertices[a];
}
// and finally recurse into the children list
for( unsigned int a = 0; a < pNode->mNumChildren; a++)
CreateGeometry( pNode->mChildren[a]);
// and finally recurse into the children list
for( unsigned int a = 0; a < pNode->mNumChildren; a++)
CreateGeometry( pNode->mChildren[a]);
}
// ------------------------------------------------------------------------------------------------

View File

@ -48,6 +48,9 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
namespace AssimpView
{
/** Calculates transformations for a given timestamp from a set of animation tracks. Not directly useful,
* better use the AnimPlayer class.
*/
class AnimEvaluator
{
public:

View File

@ -43,6 +43,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#if (!defined AV_ASSET_HELPER_H_INCLUDED)
#define AV_ASSET_HELPER_H_INCLUDED
class SceneAnimator;
//-------------------------------------------------------------------------------
/** \brief Class to wrap ASSIMP's asset output structures
@ -66,7 +67,11 @@ class AssetHelper
// default constructor
AssetHelper()
: iNormalSet(ORIGINAL)
{}
{
mAnimator = NULL;
apcMeshes = NULL;
pcScene = NULL;
}
//---------------------------------------------------------------
// default vertex data structure
@ -74,7 +79,7 @@ class AssetHelper
// required by the shader they will be committed to the GPU)
//---------------------------------------------------------------
struct Vertex
{
{
aiVector3D vPosition;
aiVector3D vNormal;
@ -82,30 +87,43 @@ class AssetHelper
aiVector3D vTangent;
aiVector3D vBitangent;
aiVector2D vTextureUV;
unsigned char mBoneIndices[4];
unsigned char mBoneWeights[4]; // last Weight not used, calculated inside the vertex shader
// retrieves the FVF code of the vertex type
static DWORD GetFVF()
/** Returns the vertex declaration elements to create a declaration from. */
static D3DVERTEXELEMENT9* GetDeclarationElements()
{
static D3DVERTEXELEMENT9 decl[] =
{
return D3DFVF_DIFFUSE | D3DFVF_XYZ | D3DFVF_NORMAL |
D3DFVF_TEX1 | D3DFVF_TEX2 | D3DFVF_TEX3 |
D3DFVF_TEXCOORDSIZE3(0) | D3DFVF_TEXCOORDSIZE3(1);
}
};
{ 0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0 },
{ 0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0 },
{ 0, 24, D3DDECLTYPE_D3DCOLOR, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_COLOR, 0 },
{ 0, 28, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TANGENT, 0 },
{ 0, 40, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BINORMAL, 0 },
{ 0, 52, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0 },
{ 0, 60, D3DDECLTYPE_UBYTE4, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BLENDINDICES, 0 },
{ 0, 64, D3DDECLTYPE_UBYTE4N, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_BLENDWEIGHT, 0 },
D3DDECL_END()
};
return decl;
}
};
//---------------------------------------------------------------
// FVF vertex structure used for normals
//---------------------------------------------------------------
struct LineVertex
{
{
aiVector3D vPosition;
DWORD dColorDiffuse;
// retrieves the FVF code of the vertex type
static DWORD GetFVF()
{
{
return D3DFVF_DIFFUSE | D3DFVF_XYZ;
}
};
}
};
//---------------------------------------------------------------
// Helper class to store GPU related resources created for
@ -191,6 +209,9 @@ class AssetHelper
// Scene wrapper instance
aiScene* pcScene;
// Animation player to animate the scene if necessary
SceneAnimator* mAnimator;
// Specifies the normal set to be used
unsigned int iNormalSet;

View File

@ -1016,6 +1016,13 @@ int CMaterialManager::CreateMaterial(
++iCurrent;
}
if( pcSource->HasBones())
{
sMacro[iCurrent].Name = "AV_SKINNING";
sMacro[iCurrent].Definition = "1";
++iCurrent;
}
// If a cubemap is active, we'll need to lookup it for calculating
// a physically correct reflection
if (CBackgroundPainter::TEXTURE_CUBE == CBackgroundPainter::Instance().GetMode())
@ -1059,11 +1066,11 @@ int CMaterialManager::CreateMaterial(
}
return 0;
} else
{
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
pcMesh->piEffect->SetTechnique( "MaterialFX_FF");
}
{
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
pcMesh->piEffect->SetTechnique( "MaterialFX_FF");
}
if( piBuffer) piBuffer->Release();
@ -1225,11 +1232,27 @@ int CMaterialManager::SetupMaterial (
}
}
// setup bones if neccessary
// if( pcMesh->HasBones())
{
static float matrices[4*3*60];
float* tempmat = matrices;
for( unsigned int a = 0; a < 60; a++)
{
// HACK: (thom) set identity matrices for all bones for the moment so that you see something
*tempmat++ = 1.0f; *tempmat++ = 0.0f; *tempmat++ = 0.0f; *tempmat++ = 0.0f;
*tempmat++ = 0.0f; *tempmat++ = 1.0f; *tempmat++ = 0.0f; *tempmat++ = 0.0f;
*tempmat++ = 0.0f; *tempmat++ = 0.0f; *tempmat++ = 1.0f; *tempmat++ = 0.0f;
}
pcMesh->piEffect->SetVectorArray( "gBoneMatrix", (const D3DXVECTOR4*) matrices, 3*60);
}
// setup the correct shader technique to be used for drawing
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
{
g_piDefaultEffect->SetTechnique( "MaterialFXSpecular_FF");
} else
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
{
g_piDefaultEffect->SetTechnique( "MaterialFXSpecular_FF");
} else
if (g_sCaps.PixelShaderVersion < D3DPS_VERSION(3,0) || g_sOptions.bLowQuality)
{
if (g_sOptions.b3Lights)

View File

@ -0,0 +1,230 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
#include "stdafx.h"
#include "assimp_view.h"
using namespace AssimpView;
// ------------------------------------------------------------------------------------------------
// Constructor for a given scene.
SceneAnimator::SceneAnimator( const aiScene* pScene, size_t pAnimIndex)
{
mScene = pScene;
mCurrentAnimIndex = -1;
mAnimEvaluator = NULL;
mRootNode = NULL;
// changing the current animation also creates the node tree for this animation
SetAnimIndex( pAnimIndex);
}
// ------------------------------------------------------------------------------------------------
// Destructor
SceneAnimator::~SceneAnimator()
{
delete mRootNode;
delete mAnimEvaluator;
}
// ------------------------------------------------------------------------------------------------
// Sets the animation to use for playback.
void SceneAnimator::SetAnimIndex( size_t pAnimIndex)
{
// no change
if( pAnimIndex == mCurrentAnimIndex)
return;
// kill data of the previous anim
delete mRootNode; mRootNode = NULL;
delete mAnimEvaluator; mAnimEvaluator = NULL;
mNodesByName.clear();
mCurrentAnimIndex = pAnimIndex;
// create the internal node tree. Do this even in case of invalid animation index
// so that the transformation matrices are properly set up to mimic the current scene
mRootNode = CreateNodeTree( mScene->mRootNode);
// invalid anim index
if( mCurrentAnimIndex >= mScene->mNumAnimations)
return;
// create an evaluator for this animation
mAnimEvaluator = new AnimEvaluator( mScene->mAnimations[mCurrentAnimIndex]);
}
// ------------------------------------------------------------------------------------------------
// Calculates the node transformations for the scene.
void SceneAnimator::Calculate( double pTime)
{
// invalid anim
if( !mAnimEvaluator)
return;
// calculate current local transformations
mAnimEvaluator->Evaluate( pTime);
// and update all node transformations with the results
UpdateTransforms( mRootNode, mAnimEvaluator->GetTransformations());
}
// ------------------------------------------------------------------------------------------------
// Retrieves the most recent local transformation matrix for the given node.
const aiMatrix4x4& SceneAnimator::GetLocalTransform( const std::string& pNodeName) const
{
NodeMap::const_iterator it = mNodesByName.find( pNodeName);
if( it == mNodesByName.end())
return mIdentityMatrix;
return it->second->mLocalTransform;
}
// ------------------------------------------------------------------------------------------------
// Retrieves the most recent global transformation matrix for the given node.
const aiMatrix4x4& SceneAnimator::GetGlobalTransform( const std::string& pNodeName) const
{
NodeMap::const_iterator it = mNodesByName.find( pNodeName);
if( it == mNodesByName.end())
return mIdentityMatrix;
return it->second->mLocalTransform;
}
// ------------------------------------------------------------------------------------------------
// Calculates the bone matrices for the given mesh.
const std::vector<aiMatrix4x4>& SceneAnimator::GetBoneMatrices( const aiNode* pNode, size_t pMeshIndex /* = 0 */)
{
assert( pMeshIndex < pNode->mNumMeshes);
size_t meshIndex = pNode->mMeshes[pMeshIndex];
assert( meshIndex < mScene->mNumMeshes);
const aiMesh* mesh = mScene->mMeshes[meshIndex];
// resize array and initialise it with identity matrices
mTransforms.resize( mesh->mNumBones, aiMatrix4x4());
// calculate the mesh's inverse global transform
aiMatrix4x4 globalInverseMeshTransform = GetGlobalTransform( std::string( pNode->mName.data));
globalInverseMeshTransform.Inverse();
// Bone matrices transform from mesh coordinates in bind pose to mesh coordinates in skinned pose
// Therefore the formula is offsetMatrix * currentGlobalTransform * inverseCurrentMeshTransform
for( size_t a = 0; a < mesh->mNumBones; ++a)
{
const aiBone* bone = mesh->mBones[a];
const aiMatrix4x4& currentGlobalTransform = GetGlobalTransform( std::string( bone->mName.data));
mTransforms[a] = bone->mOffsetMatrix * currentGlobalTransform * globalInverseMeshTransform;
}
// and return the result
return mTransforms;
}
// ------------------------------------------------------------------------------------------------
// Recursively creates an internal node structure matching the current scene and animation.
SceneAnimNode* SceneAnimator::CreateNodeTree( aiNode* pNode)
{
// create a node
SceneAnimNode* internalNode = new SceneAnimNode( pNode->mName.data);
mNodesByName[std::string( pNode->mName.data)] = internalNode;
// copy its transformation
internalNode->mLocalTransform = pNode->mTransformation;
CalculateGlobalTransform( internalNode);
// find the index of the animation track affecting this node, if any
if( mCurrentAnimIndex < mScene->mNumAnimations)
{
internalNode->mChannelIndex = -1;
const aiAnimation* currentAnim = mScene->mAnimations[mCurrentAnimIndex];
for( unsigned int a = 0; a < currentAnim->mNumChannels; a++)
{
if( currentAnim->mChannels[a]->mNodeName.data == internalNode->mName)
{
internalNode->mChannelIndex = a;
break;
}
}
}
// continue for all child nodes and assign the created internal nodes as our children
for( unsigned int a = 0; a < pNode->mNumChildren; a++)
{
SceneAnimNode* childNode = CreateNodeTree( pNode->mChildren[a]);
childNode->mParent = internalNode;
internalNode->mChildren.push_back( childNode);
}
return internalNode;
}
// ------------------------------------------------------------------------------------------------
// Recursively updates the internal node transformations from the given matrix array
void SceneAnimator::UpdateTransforms( SceneAnimNode* pNode, const std::vector<aiMatrix4x4>& pTransforms)
{
// update node local transform
if( pNode->mChannelIndex != -1)
{
assert( pNode->mChannelIndex < pTransforms.size());
pNode->mLocalTransform = pTransforms[pNode->mChannelIndex];
// update global transform as well
CalculateGlobalTransform( pNode);
}
// continue for all children
for( std::vector<SceneAnimNode*>::iterator it = pNode->mChildren.begin(); it != pNode->mChildren.end(); ++it)
UpdateTransforms( *it, pTransforms);
}
// ------------------------------------------------------------------------------------------------
// Calculates the global transformation matrix for the given internal node
void SceneAnimator::CalculateGlobalTransform( SceneAnimNode* pInternalNode)
{
// concatenate all parent transforms to get the global transform for this node
pInternalNode->mGlobalTransform = pInternalNode->mLocalTransform;
SceneAnimNode* node = pInternalNode->mParent;
while( node)
{
pInternalNode->mGlobalTransform *= node->mLocalTransform;
node = node->mParent;
}
}

View File

@ -0,0 +1,166 @@
/** Manages animations for a given scene and calculates present transformations for all nodes */
/*
---------------------------------------------------------------------------
Open Asset Import Library (ASSIMP)
---------------------------------------------------------------------------
Copyright (c) 2006-2008, ASSIMP Development Team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the ASSIMP team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the ASSIMP Development Team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
#ifndef AV_SCENEANIMATOR_H_INCLUDED
#define AV_SCENEANIMATOR_H_INCLUDED
namespace AssimpView
{
/** A little tree structure to match the scene's node structure, but holding additional data. Needs to be public
* to allow using it in templates at certain compilers.
*/
struct SceneAnimNode
{
std::string mName;
SceneAnimNode* mParent;
std::vector<SceneAnimNode*> mChildren;
aiMatrix4x4 mLocalTransform; // most recently calculated local transform
aiMatrix4x4 mGlobalTransform; // same, but in world space
size_t mChannelIndex; // index in the current animation's channel array. -1 if not animated.
SceneAnimNode() { mChannelIndex = -1; mParent = NULL; }
SceneAnimNode( const std::string& pName) : mName( pName) { mChannelIndex = -1; mParent = NULL; }
~SceneAnimNode() { for( std::vector<SceneAnimNode*>::iterator it = mChildren.begin(); it != mChildren.end(); ++it) delete *it; }
};
/** Calculates the animated node transformations for a given scene and timestamp. Create an instance for a aiScene
* you want to animate and set the current animation to play. You can then have the instance calculate the current pose
* for all nodes by calling Calculate() for a given timestamp. After this you can retrieve the present transformation for a given
* node by calling GetLocalTransform() or GetGlobalTransform(). A full set of bone matrices can be retrieved by GetBoneMatrices()
* for a given mesh.
*/
class SceneAnimator
{
public:
/** Constructor for a given scene. The object keeps a reference to the scene during its lifetime, but ownership
* stays at the caller.
* @param pScene The scene to animate.
* @param pAnimIndex [optional] Index of the animation to play. Assumed to be 0 if not given.
*/
SceneAnimator( const aiScene* pScene, size_t pAnimIndex = 0);
/** Destructor */
~SceneAnimator();
/** Sets the animation to use for playback. This also recreates the internal mapping structures,
* which might take a few cycles.
* @param pAnimIndex Index of the animation in the scene's animation array
*/
void SetAnimIndex( size_t pAnimIndex);
/** Calculates the node transformations for the scene. Call this to get uptodate results
* before calling one of the getters.
* @param pTime Current time. Can be an arbitrary range.
*/
void Calculate( double pTime);
/** Retrieves the most recent local transformation matrix for the given node. The returned
* matrix is in the node's parent's local space, just like the original node's transformation
* matrix. If the node is not animated, the node's original transformation is returned so that
* you can safely use or assign it to the node itsself. If there is no node with the given name,
* the identity matrix is returned. All transformations are updated whenever Calculate() is called.
* @param pNodeName Name of the node
* @return A reference to the node's most recently calculated local transformation matrix.
*/
const aiMatrix4x4& GetLocalTransform( const std::string& pNodeName) const;
/** Retrieves the most recent global transformation matrix for the given node. The returned
* matrix is in world space, which is the same coordinate space as the transformation of the
* scene's root node. If the node is not animated, the node's original transformation is
* returned so that you can safely use or assign it to the node itsself. If there is no node
* with the given name, the identity matrix is returned. All transformations are updated whenever
* Calculate() is called.
* @param pNodeName Name of the node
* @return A reference to the node's most recently calculated global transformation matrix.
*/
const aiMatrix4x4& GetGlobalTransform( const std::string& pNodeName) const;
/** Calculates the bone matrices for the given mesh. Each bone matrix transforms from
* mesh space in bind pose to mesh space in skinned pose, it does not contain the mesh's
* world matrix. Thus the usual matrix chain for using in the vertex shader is
* boneMatrix * worldMatrix * viewMatrix * projMatrix.
* @param pNode The node carrying the mesh.
* @param pMeshIndex Index of the mesh in the node's mesh array. The NODE's mesh array, not
* the scene's mesh array! Leave out to use the first mesh of the node, which is usually
* also the only one.
* @return A reference to a vector of bone matrices. Stays stable till the next call to GetBoneMatrices();
*/
const std::vector<aiMatrix4x4>& GetBoneMatrices( const aiNode* pNode, size_t pMeshIndex = 0);
protected:
/** Recursively creates an internal node structure matching the current scene and animation. */
SceneAnimNode* CreateNodeTree( aiNode* pNode);
/** Recursively updates the internal node transformations from the given matrix array */
void UpdateTransforms( SceneAnimNode* pNode, const std::vector<aiMatrix4x4>& pTransforms);
/** Calculates the global transformation matrix for the given internal node */
void CalculateGlobalTransform( SceneAnimNode* pInternalNode);
protected:
/** The scene we're operating on */
const aiScene* mScene;
/** Current animation index */
size_t mCurrentAnimIndex;
/** The AnimEvaluator we use to calculate the current pose for the current animation */
AnimEvaluator* mAnimEvaluator;
/** Root node of the internal scene structure */
SceneAnimNode* mRootNode;
/** Name to node map to quickly find nodes by their name */
typedef std::map<std::string, SceneAnimNode*> NodeMap;
NodeMap mNodesByName;
/** Array to return transformations results inside. */
std::vector<aiMatrix4x4> mTransforms;
/** Identity matrix to return a reference to in case of error */
aiMatrix4x4 mIdentityMatrix;
};
} // end of namespace AssimpView
#endif // AV_SCENEANIMATOR_H_INCLUDED

View File

@ -259,11 +259,20 @@ std::string g_szDefaultShader = std::string(
// position of the camera in worldspace\n"
"float3 vCameraPos : CAMERAPOSITION;\n"
// Bone matrices
"#ifdef AV_SKINNING \n"
"float4x3 gBoneMatrix[60]; \n"
"#endif // AV_SKINNING \n"
// Vertex shader input structure
"struct VS_INPUT\n"
"{\n"
"float3 Position : POSITION;\n"
"float3 Normal : NORMAL;\n"
"#ifdef AV_SKINNING \n"
"float4 BlendIndices : BLENDINDICES;\n"
"float4 BlendWeights : BLENDWEIGHT;\n"
"#endif // AV_SKINNING \n"
"};\n"
// Vertex shader output structure for pixel shader usage
@ -275,8 +284,8 @@ std::string g_szDefaultShader = std::string(
"};\n"
// Vertex shader output structure for fixed function
"struct VS_OUTPUT_FF\n"
"{\n"
"struct VS_OUTPUT_FF\n"
"{\n"
"float4 Position : POSITION;\n"
"float4 Color : COLOR;\n"
"};\n"
@ -286,9 +295,20 @@ std::string g_szDefaultShader = std::string(
"{\n"
"VS_OUTPUT Out;\n"
"#ifdef AV_SKINNING \n"
"float4 weights = IN.BlendWeights; \n"
"weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n"
"float3 objPos = mul( IN.Position, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n"
"#else \n"
"float3 objPos = IN.Position; \n"
"#endif // AV_SKINNING \n"
// Multiply with the WorldViewProjection matrix
"Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n"
"float3 WorldPos = mul(float4(IN.Position,1.0f),World);\n"
"Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n"
"float3 WorldPos = mul( float4( objPos, 1.0f), World);\n"
"Out.ViewDir = vCameraPos - WorldPos;\n"
"Out.Normal = mul(IN.Normal,WorldInverseTranspose);\n"
@ -300,15 +320,27 @@ std::string g_szDefaultShader = std::string(
"{\n"
"VS_OUTPUT_FF Out;\n"
// Multiply with the WorldViewProjection matrix
"Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n"
"float3 worldNormal = normalize( mul( IN.Normal, (float3x3) WorldInverseTranspose)); \n"
"#ifdef AV_SKINNING \n"
"float4 weights = IN.BlendWeights; \n"
"weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n"
"float3 objPos = mul( IN.Position, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n"
"#else \n"
"float3 objPos = IN.Position; \n"
"#endif // AV_SKINNING \n"
// per-vertex lighting. We simply assume light colors of unused lights to be black
"Out.Color = float4( 0.2f, 0.2f, 0.2f, 1.0f); \n"
"for( int a = 0; a < 2; a++)\n"
" Out.Color.rgb += saturate( dot( afLightDir[a], worldNormal)) * afLightColor[a].rgb; \n"
"return Out;\n"
// Multiply with the WorldViewProjection matrix
"Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n"
"float3 worldNormal = normalize( mul( IN.Normal, (float3x3) WorldInverseTranspose)); \n"
// per-vertex lighting. We simply assume light colors of unused lights to be black
"Out.Color = float4( 0.2f, 0.2f, 0.2f, 1.0f); \n"
"for( int a = 0; a < 2; a++)\n"
" Out.Color.rgb += saturate( dot( afLightDir[a], worldNormal)) * afLightColor[a].rgb; \n"
"return Out;\n"
"}\n"
// Pixel shader for one light
@ -434,17 +466,17 @@ std::string g_szDefaultShader = std::string(
"}\n"
"};\n"
// Technique for the default effect using the fixed function pixel pipeline
// Technique for the default effect using the fixed function pixel pipeline
"technique DefaultFXSpecular_FF\n"
"{\n"
"{\n"
"pass p0\n"
"{\n"
"{\n"
"CullMode=none;\n"
"VertexShader = compile vs_2_0 DefaultVShader_FF();\n"
"ColorOp[0] = SelectArg1;\n"
"ColorArg0[0] = Diffuse;\n"
"AlphaOp[0] = SelectArg1;\n"
"AlphaArg0[0] = Diffuse;\n"
"ColorOp[0] = SelectArg1;\n"
"ColorArg0[0] = Diffuse;\n"
"AlphaOp[0] = SelectArg1;\n"
"AlphaArg0[0] = Diffuse;\n"
"}\n"
"};\n"
);
@ -486,6 +518,11 @@ std::string g_szMaterialShader = std::string(
// position of the camera in worldspace
"float3 vCameraPos : CAMERAPOSITION;\n"
// Bone matrices
"#ifdef AV_SKINNING \n"
"float4x3 gBoneMatrix[60]; \n"
"#endif // AV_SKINNING \n"
"#ifdef AV_DIFFUSE_TEXTURE\n"
"texture DIFFUSE_TEXTURE;\n"
"sampler DIFFUSE_SAMPLER\n"
@ -574,6 +611,10 @@ std::string g_szMaterialShader = std::string(
"float3 Tangent : TEXCOORD0;\n"
"float3 Bitangent : TEXCOORD1;\n"
"float2 TexCoord0 : TEXCOORD2;\n"
"#ifdef AV_SKINNING \n"
"float4 BlendIndices : BLENDINDICES;\n"
"float4 BlendWeights : BLENDWEIGHT;\n"
"#endif // AV_SKINNING \n"
"};\n"
// Vertex shader output structure for pixel shader usage
@ -598,8 +639,8 @@ std::string g_szMaterialShader = std::string(
"struct VS_OUTPUT_FF\n"
"{\n"
"float4 Position : POSITION;\n"
"float4 DiffuseColor : COLOR0;\n"
"float4 SpecularColor : COLOR1;\n"
"float4 DiffuseColor : COLOR0;\n"
"float4 SpecularColor : COLOR1;\n"
"float2 TexCoord0 : TEXCOORD0;\n"
"};\n"
@ -650,9 +691,20 @@ std::string g_szMaterialShader = std::string(
"{\n"
"VS_OUTPUT Out;\n"
// Multiply with the WorldViewProjection matrix\n"
"Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n"
"float3 WorldPos = mul(float4(IN.Position,1.0f),World);\n"
"#ifdef AV_SKINNING \n"
"float4 weights = IN.BlendWeights; \n"
"weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n"
"float3 objPos = mul( IN.Position, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n"
"#else \n"
"float3 objPos = IN.Position; \n"
"#endif // AV_SKINNING \n"
// Multiply with the WorldViewProjection matrix
"Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n"
"float3 WorldPos = mul( float4( objPos, 1.0f), World);\n"
"Out.TexCoord0 = IN.TexCoord0;\n"
"#ifndef AV_NORMAL_TEXTURE\n"
@ -674,9 +726,20 @@ std::string g_szMaterialShader = std::string(
"{\n"
"VS_OUTPUT Out;\n"
// Multiply with the WorldViewProjection matrix\n"
"Out.Position = mul(float4(IN.Position,1.0f),WorldViewProjection);\n"
"float3 WorldPos = mul(float4(IN.Position,1.0f),World);\n"
"#ifdef AV_SKINNING \n"
"float4 weights = IN.BlendWeights; \n"
"weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n"
"float3 objPos = mul( IN.Position, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n"
"#else \n"
"float3 objPos = IN.Position; \n"
"#endif // AV_SKINNING \n"
// Multiply with the WorldViewProjection matrix
"Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n"
"float3 WorldPos = mul( float4( objPos, 1.0f), World);\n"
"Out.TexCoord0 = IN.TexCoord0;\n"
"#ifndef AV_NORMAL_TEXTURE\n"
@ -699,32 +762,43 @@ std::string g_szMaterialShader = std::string(
"{\n"
"VS_OUTPUT_FF Out;\n"
"#ifdef AV_SKINNING \n"
"float4 weights = IN.BlendWeights; \n"
"weights.w = 1.0f - dot( weights.xyz, float3( 1, 1, 1)); \n"
"float3 objPos = mul( IN.Position, gBoneMatrix[IN.BlendIndices.x]) * weights.x; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.y]) * weights.y; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.z]) * weights.z; \n"
"objPos += mul( IN.Position, gBoneMatrix[IN.BlendIndices.w]) * weights.w; \n"
"#else \n"
"float3 objPos = IN.Position; \n"
"#endif // AV_SKINNING \n"
// Multiply with the WorldViewProjection matrix
"Out.Position = mul( float4( IN.Position, 1.0f), WorldViewProjection);\n"
"float3 worldPos = mul( float4( IN.Position, 1.0f), World);\n"
"float3 worldNormal = normalize( mul( IN.Normal, (float3x3) WorldInverseTranspose)); \n"
"Out.Position = mul( float4( objPos, 1.0f), WorldViewProjection);\n"
"float3 worldPos = mul( float4( objPos, 1.0f), World);\n"
"float3 worldNormal = normalize( mul( IN.Normal, (float3x3) WorldInverseTranspose)); \n"
"Out.TexCoord0 = IN.TexCoord0;\n"
// calculate per-vertex diffuse lighting including ambient part
"float4 diffuseColor = float4( 0.0f, 0.0f, 0.0f, 1.0f); \n"
"for( int a = 0; a < 2; a++) \n"
" diffuseColor.rgb += saturate( dot( afLightDir[a], worldNormal)) * afLightColor[a].rgb; \n"
// factor in material properties and a bit of ambient lighting
"Out.DiffuseColor = diffuseColor * DIFFUSE_COLOR + float4( 0.2f, 0.2f, 0.2f, 1.0f) * AMBIENT_COLOR; ; \n"
// calculate per-vertex diffuse lighting including ambient part
"float4 diffuseColor = float4( 0.0f, 0.0f, 0.0f, 1.0f); \n"
"for( int a = 0; a < 2; a++) \n"
" diffuseColor.rgb += saturate( dot( afLightDir[a], worldNormal)) * afLightColor[a].rgb; \n"
// factor in material properties and a bit of ambient lighting
"Out.DiffuseColor = diffuseColor * DIFFUSE_COLOR + float4( 0.2f, 0.2f, 0.2f, 1.0f) * AMBIENT_COLOR; ; \n"
// and specular including emissive part
"float4 specularColor = float4( 0.0f, 0.0f, 0.0f, 1.0f); \n"
"#ifdef AV_SPECULAR_COMPONENT\n"
"float3 viewDir = normalize( worldPos - vCameraPos); \n"
"for( int a = 0; a < 2; a++) \n"
"{ \n"
" float3 reflDir = reflect( afLightDir[a], worldNormal); \n"
" float specIntensity = pow( saturate( dot( reflDir, viewDir)), SPECULARITY) * SPECULAR_STRENGTH; \n"
" specularColor.rgb += afLightColor[a] * specIntensity; \n"
"} \n"
"#endif // AV_SPECULAR_COMPONENT\n"
// factor in material properties and the emissive part
"Out.SpecularColor = specularColor * SPECULAR_COLOR + EMISSIVE_COLOR; \n"
// and specular including emissive part
"float4 specularColor = float4( 0.0f, 0.0f, 0.0f, 1.0f); \n"
"#ifdef AV_SPECULAR_COMPONENT\n"
"float3 viewDir = normalize( worldPos - vCameraPos); \n"
"for( int a = 0; a < 2; a++) \n"
"{ \n"
" float3 reflDir = reflect( afLightDir[a], worldNormal); \n"
" float specIntensity = pow( saturate( dot( reflDir, viewDir)), SPECULARITY) * SPECULAR_STRENGTH; \n"
" specularColor.rgb += afLightColor[a] * specIntensity; \n"
"} \n"
"#endif // AV_SPECULAR_COMPONENT\n"
// factor in material properties and the emissive part
"Out.SpecularColor = specularColor * SPECULAR_COLOR + EMISSIVE_COLOR; \n"
"return Out;\n"
"}\n"
@ -1157,14 +1231,14 @@ std::string g_szMaterialShader = std::string(
"pass p0\n"
"{\n"
"CullMode=none;\n"
"SpecularEnable = true; \n"
"SpecularEnable = true; \n"
"VertexShader = compile vs_2_0 MaterialVShader_FF();\n"
"ColorOp[0] = Modulate;\n"
"ColorArg0[0] = Texture;\n"
"ColorArg1[0] = Diffuse;\n"
"AlphaOp[0] = Modulate;\n"
"AlphaArg0[0] = Texture;\n"
"AlphaArg1[0] = Diffuse;\n"
"ColorOp[0] = Modulate;\n"
"ColorArg0[0] = Texture;\n"
"ColorArg1[0] = Diffuse;\n"
"AlphaOp[0] = Modulate;\n"
"AlphaArg0[0] = Texture;\n"
"AlphaArg1[0] = Diffuse;\n"
"}\n"
"};\n"
);

View File

@ -55,6 +55,7 @@ HINSTANCE g_hInstance = NULL;
HWND g_hDlg = NULL;
IDirect3D9* g_piD3D = NULL;
IDirect3DDevice9* g_piDevice = NULL;
IDirect3DVertexDeclaration9* gDefaultVertexDecl = NULL;
double g_fFPS = 0.0f;
char g_szFileName[MAX_PATH];
ID3DXEffect* g_piDefaultEffect = NULL;
@ -222,6 +223,9 @@ int LoadAsset(void)
g_pcAsset->apcMeshes[i] = new AssetHelper::MeshHelper();
}
// create animator
g_pcAsset->mAnimator = new SceneAnimator( g_pcAsset->pcScene);
// build a new caption string for the viewer
char szOut[MAX_PATH + 10];
sprintf(szOut,AI_VIEW_CAPTION_BASE " [%s]",g_szFileName);
@ -272,6 +276,7 @@ int DeleteAsset(void)
}
aiReleaseImport(g_pcAsset->pcScene);
delete[] g_pcAsset->apcMeshes;
delete g_pcAsset->mAnimator;
delete g_pcAsset;
g_pcAsset = NULL;
@ -430,23 +435,25 @@ int CreateAssetData()
for (unsigned int i = 0; i < g_pcAsset->pcScene->mNumMeshes;++i)
{
const aiMesh* mesh = g_pcAsset->pcScene->mMeshes[i];
// create the material for the mesh
if (!g_pcAsset->apcMeshes[i]->piEffect)
{
CMaterialManager::Instance().CreateMaterial(
g_pcAsset->apcMeshes[i],g_pcAsset->pcScene->mMeshes[i]);
g_pcAsset->apcMeshes[i],mesh);
}
if (g_pcAsset->pcScene->mMeshes[i]->mPrimitiveTypes != aiPrimitiveType_TRIANGLE)
if (mesh->mPrimitiveTypes != aiPrimitiveType_TRIANGLE)
{
continue;
}
// create vertex buffer
if(FAILED( g_piDevice->CreateVertexBuffer(sizeof(AssetHelper::Vertex) *
g_pcAsset->pcScene->mMeshes[i]->mNumVertices,
mesh->mNumVertices,
D3DUSAGE_WRITEONLY,
AssetHelper::Vertex::GetFVF(),
0,
D3DPOOL_DEFAULT, &g_pcAsset->apcMeshes[i]->piVB,NULL)))
{
MessageBox(g_hDlg,"Failed to create vertex buffer",
@ -459,11 +466,11 @@ int CreateAssetData()
dwUsage |= D3DUSAGE_DYNAMIC;
// check whether we can use 16 bit indices
if (g_pcAsset->pcScene->mMeshes[i]->mNumFaces * 3 >= 65536)
if (mesh->mNumFaces * 3 >= 65536)
{
// create 32 bit index buffer
if(FAILED( g_piDevice->CreateIndexBuffer( 4 *
g_pcAsset->pcScene->mMeshes[i]->mNumFaces * 3,
mesh->mNumFaces * 3,
D3DUSAGE_WRITEONLY | dwUsage,
D3DFMT_INDEX32,
D3DPOOL_DEFAULT,
@ -478,11 +485,11 @@ int CreateAssetData()
// now fill the index buffer
unsigned int* pbData;
g_pcAsset->apcMeshes[i]->piIB->Lock(0,0,(void**)&pbData,0);
for (unsigned int x = 0; x < g_pcAsset->pcScene->mMeshes[i]->mNumFaces;++x)
for (unsigned int x = 0; x < mesh->mNumFaces;++x)
{
for (unsigned int a = 0; a < 3;++a)
{
*pbData++ = g_pcAsset->pcScene->mMeshes[i]->mFaces[x].mIndices[a];
*pbData++ = mesh->mFaces[x].mIndices[a];
}
}
}
@ -490,7 +497,7 @@ int CreateAssetData()
{
// create 16 bit index buffer
if(FAILED( g_piDevice->CreateIndexBuffer( 2 *
g_pcAsset->pcScene->mMeshes[i]->mNumFaces * 3,
mesh->mNumFaces * 3,
D3DUSAGE_WRITEONLY | dwUsage,
D3DFMT_INDEX16,
D3DPOOL_DEFAULT,
@ -505,56 +512,86 @@ int CreateAssetData()
// now fill the index buffer
uint16_t* pbData;
g_pcAsset->apcMeshes[i]->piIB->Lock(0,0,(void**)&pbData,0);
for (unsigned int x = 0; x < g_pcAsset->pcScene->mMeshes[i]->mNumFaces;++x)
for (unsigned int x = 0; x < mesh->mNumFaces;++x)
{
for (unsigned int a = 0; a < 3;++a)
{
*pbData++ = (uint16_t)g_pcAsset->pcScene->mMeshes[i]->mFaces[x].mIndices[a];
*pbData++ = (uint16_t)mesh->mFaces[x].mIndices[a];
}
}
}
g_pcAsset->apcMeshes[i]->piIB->Unlock();
// collect weights on all vertices. Quick and careless
std::vector<std::vector<aiVertexWeight> > weightsPerVertex( mesh->mNumVertices);
for( unsigned int a = 0; a < mesh->mNumBones; a++)
{
const aiBone* bone = mesh->mBones[a];
for( unsigned int b = 0; b < bone->mNumWeights; b++)
weightsPerVertex[bone->mWeights[b].mVertexId].push_back( aiVertexWeight( a, bone->mWeights[b].mWeight));
}
// now fill the vertex buffer
AssetHelper::Vertex* pbData2;
g_pcAsset->apcMeshes[i]->piVB->Lock(0,0,(void**)&pbData2,0);
for (unsigned int x = 0; x < g_pcAsset->pcScene->mMeshes[i]->mNumVertices;++x)
for (unsigned int x = 0; x < mesh->mNumVertices;++x)
{
pbData2->vPosition = g_pcAsset->pcScene->mMeshes[i]->mVertices[x];
pbData2->vPosition = mesh->mVertices[x];
if (NULL == g_pcAsset->pcScene->mMeshes[i]->mNormals)
if (NULL == mesh->mNormals)
pbData2->vNormal = aiVector3D(0.0f,0.0f,0.0f);
else pbData2->vNormal = g_pcAsset->pcScene->mMeshes[i]->mNormals[x];
else pbData2->vNormal = mesh->mNormals[x];
if (NULL == g_pcAsset->pcScene->mMeshes[i]->mTangents)
if (NULL == mesh->mTangents)
{
pbData2->vTangent = aiVector3D(0.0f,0.0f,0.0f);
pbData2->vBitangent = aiVector3D(0.0f,0.0f,0.0f);
}
else
{
pbData2->vTangent = g_pcAsset->pcScene->mMeshes[i]->mTangents[x];
pbData2->vBitangent = g_pcAsset->pcScene->mMeshes[i]->mBitangents[x];
pbData2->vTangent = mesh->mTangents[x];
pbData2->vBitangent = mesh->mBitangents[x];
}
if (g_pcAsset->pcScene->mMeshes[i]->HasVertexColors( 0))
if (mesh->HasVertexColors( 0))
{
pbData2->dColorDiffuse = D3DCOLOR_ARGB(
((unsigned char)std::max( std::min( g_pcAsset->pcScene->mMeshes[i]->mColors[0][x].a * 255.0f, 255.0f),0.0f)),
((unsigned char)std::max( std::min( g_pcAsset->pcScene->mMeshes[i]->mColors[0][x].r * 255.0f, 255.0f),0.0f)),
((unsigned char)std::max( std::min( g_pcAsset->pcScene->mMeshes[i]->mColors[0][x].g * 255.0f, 255.0f),0.0f)),
((unsigned char)std::max( std::min( g_pcAsset->pcScene->mMeshes[i]->mColors[0][x].b * 255.0f, 255.0f),0.0f)));
((unsigned char)std::max( std::min( mesh->mColors[0][x].a * 255.0f, 255.0f),0.0f)),
((unsigned char)std::max( std::min( mesh->mColors[0][x].r * 255.0f, 255.0f),0.0f)),
((unsigned char)std::max( std::min( mesh->mColors[0][x].g * 255.0f, 255.0f),0.0f)),
((unsigned char)std::max( std::min( mesh->mColors[0][x].b * 255.0f, 255.0f),0.0f)));
}
else pbData2->dColorDiffuse = D3DCOLOR_ARGB(0xFF,0,0,0);
// ignore a third texture coordinate component
if (g_pcAsset->pcScene->mMeshes[i]->HasTextureCoords( 0))
if (mesh->HasTextureCoords( 0))
{
pbData2->vTextureUV = aiVector2D(
g_pcAsset->pcScene->mMeshes[i]->mTextureCoords[0][x].x,
g_pcAsset->pcScene->mMeshes[i]->mTextureCoords[0][x].y);
mesh->mTextureCoords[0][x].x,
mesh->mTextureCoords[0][x].y);
}
else pbData2->vTextureUV = aiVector2D(0.0f,0.0f);
// Bone indices and weights
if( mesh->HasBones())
{
unsigned char boneIndices[4] = { 0, 0, 0, 0 };
unsigned char boneWeights[4] = { 0, 0, 0, 0 };
assert( weightsPerVertex[x].size() <= 4);
for( unsigned int a = 0; a < weightsPerVertex[x].size(); a++)
{
boneIndices[a] = weightsPerVertex[x][a].mVertexId;
boneWeights[a] = (unsigned char) (weightsPerVertex[x][a].mWeight * 255.0f);
}
memcpy( pbData2->mBoneIndices, boneIndices, sizeof( boneIndices));
memcpy( pbData2->mBoneWeights, boneWeights, sizeof( boneWeights));
} else
{
memset( pbData2->mBoneIndices, 0, sizeof( pbData2->mBoneIndices));
memset( pbData2->mBoneWeights, 0, sizeof( pbData2->mBoneWeights));
}
++pbData2;
}
g_pcAsset->apcMeshes[i]->piVB->Unlock();
@ -562,7 +599,7 @@ int CreateAssetData()
// now generate the second vertex buffer, holding all normals
if (!g_pcAsset->apcMeshes[i]->piVBNormals)
{
GenerateNormalsAsLineList(g_pcAsset->apcMeshes[i],g_pcAsset->pcScene->mMeshes[i]);
GenerateNormalsAsLineList(g_pcAsset->apcMeshes[i],mesh);
}
}
return 1;
@ -743,6 +780,12 @@ int ShutdownDevice(void)
g_pcTexture = NULL;
}
if( NULL != gDefaultVertexDecl)
{
gDefaultVertexDecl->Release();
gDefaultVertexDecl = NULL;
}
// delete the main D3D device object
if (NULL != g_piDevice)
{
@ -914,13 +957,13 @@ int CreateDevice (bool p_bMultiSample,bool p_bSuperSample,bool bHW /*= true*/)
sParams.MultiSampleType = sMSOut;
}
// preget the device capabilities. If the hardware vertex shader is too old, we prefer software vertex processing
g_piD3D->GetDeviceCaps( 0, D3DDEVTYPE_HAL, &g_sCaps);
DWORD creationFlags = D3DCREATE_MULTITHREADED;
if( g_sCaps.VertexShaderVersion >= D3DVS_VERSION( 2, 0))
creationFlags |= D3DCREATE_HARDWARE_VERTEXPROCESSING;
else
creationFlags |= D3DCREATE_SOFTWARE_VERTEXPROCESSING;
// preget the device capabilities. If the hardware vertex shader is too old, we prefer software vertex processing
g_piD3D->GetDeviceCaps( 0, D3DDEVTYPE_HAL, &g_sCaps);
DWORD creationFlags = D3DCREATE_MULTITHREADED;
if( g_sCaps.VertexShaderVersion >= D3DVS_VERSION( 2, 0))
creationFlags |= D3DCREATE_HARDWARE_VERTEXPROCESSING;
else
creationFlags |= D3DCREATE_SOFTWARE_VERTEXPROCESSING;
// create the D3D9 device object. with software-vertexprocessing if VS2.0 isn`t supported in hardware
if(FAILED(g_piD3D->CreateDevice(0,eType, g_hDlg, creationFlags ,&sParams,&g_piDevice)))
@ -929,7 +972,15 @@ int CreateDevice (bool p_bMultiSample,bool p_bSuperSample,bool bHW /*= true*/)
if (bHW)return CreateDevice(p_bMultiSample,p_bSuperSample,false);
return 0;
}
g_piDevice->SetFVF(AssetHelper::Vertex::GetFVF());
// create a vertex declaration to match the vertex
D3DVERTEXELEMENT9* vdecl = AssetHelper::Vertex::GetDeclarationElements();
if( FAILED( g_piDevice->CreateVertexDeclaration( vdecl, &gDefaultVertexDecl)))
{
MessageBox( g_hDlg, "Failed to create vertex declaration", "Init", MB_OK);
return 0;
}
g_piDevice->SetVertexDeclaration( gDefaultVertexDecl);
// get the capabilities of the device object
g_piDevice->GetDeviceCaps(&g_sCaps);
@ -962,9 +1013,9 @@ int CreateDevice (bool p_bMultiSample,bool p_bSuperSample,bool bHW /*= true*/)
piBuffer = NULL;
}
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
g_piDefaultEffect->SetTechnique( "DefaultFXSpecular_FF");
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
g_piDefaultEffect->SetTechnique( "DefaultFXSpecular_FF");
// create the shader used to draw the HUD
if(FAILED( D3DXCreateEffect(g_piDevice,
@ -984,9 +1035,9 @@ int CreateDevice (bool p_bMultiSample,bool p_bSuperSample,bool bHW /*= true*/)
piBuffer = NULL;
}
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
g_piPassThroughEffect->SetTechnique( "PassThrough_FF");
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
g_piPassThroughEffect->SetTechnique( "PassThrough_FF");
// create the shader used to visualize normal vectors
if(FAILED( D3DXCreateEffect(g_piDevice,
@ -1006,9 +1057,9 @@ int CreateDevice (bool p_bMultiSample,bool p_bSuperSample,bool bHW /*= true*/)
piBuffer = NULL;
}
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
g_piNormalsEffect->SetTechnique( "RenderNormals_FF");
// use Fixed Function effect when working with shaderless cards
if( g_sCaps.PixelShaderVersion < D3DPS_VERSION(2,0))
g_piNormalsEffect->SetTechnique( "RenderNormals_FF");
// create the texture for the HUD
CreateHUDTexture();

View File

@ -73,7 +73,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
using namespace Assimp;
namespace AssimpView {
namespace AssimpView
{
#include "AssetHelper.h"
#include "Camera.h"
@ -86,6 +87,15 @@ namespace AssimpView {
#include "MeshRenderer.h"
#include "MaterialManager.h"
} // end of namespace AssimpView - for a while
// outside of namespace, to help Intellisense and solve boost::metatype_stuff_miracle
#include "AnimEvaluator.h"
#include "SceneAnimator.h"
namespace AssimpView
{
//-------------------------------------------------------------------------------
// Function prototypes
//-------------------------------------------------------------------------------
@ -196,6 +206,7 @@ enum EClickPos
extern HWND g_hDlg /*= NULL*/;
extern IDirect3D9* g_piD3D /*= NULL*/;
extern IDirect3DDevice9* g_piDevice /*= NULL*/;
extern IDirect3DVertexDeclaration9* gDefaultVertexDecl /*= NULL*/;
extern double g_fFPS /*= 0.0f*/;
extern char g_szFileName[MAX_PATH];
extern ID3DXEffect* g_piDefaultEffect /*= NULL*/;
@ -241,7 +252,7 @@ enum EClickPos
extern RenderOptions g_sOptions;
extern Camera g_sCamera;
extern AssetHelper *g_pcAsset /*= NULL*/;
//
// Contains the mask image for the HUD
@ -257,7 +268,4 @@ enum EClickPos
extern IDirect3DQuery9* g_piQuery;
}
// outside of namespace, to help Intellisense and solve boost::metatype_stuff_miracle
#include "AnimEvaluator.h"
#endif // !! AV_MAIN_H_INCLUDED

View File

@ -28,6 +28,7 @@
#include <windows.h>
// C RunTime-Headerdateien
#include <assert.h>
#include <stdlib.h>
#include <malloc.h>
#include <memory.h>

View File

@ -775,6 +775,14 @@
RelativePath="..\..\tools\assimp_view\Resource.h"
>
</File>
<File
RelativePath="..\..\tools\assimp_view\SceneAnimator.cpp"
>
</File>
<File
RelativePath="..\..\tools\assimp_view\SceneAnimator.h"
>
</File>
<File
RelativePath="..\..\tools\assimp_view\Shaders.cpp"
>