[+] Added few functions for conveniance. Decompose overload.

pull/1021/head
Alexandr Arutjunov 2016-10-05 00:01:53 +03:00
parent 9e0f594aa3
commit 70614ce205
2 changed files with 141 additions and 42 deletions

View File

@ -93,7 +93,15 @@ public:
public:
// array access operators
/** @fn TReal* operator[] (unsigned int p_iIndex)
* @param [in] p_iIndex - index of the row.
* @return pointer to pointed row.
*/
TReal* operator[] (unsigned int p_iIndex);
/** @fn const TReal* operator[] (unsigned int p_iIndex) const
* @overload TReal* operator[] (unsigned int p_iIndex)
*/
const TReal* operator[] (unsigned int p_iIndex) const;
// comparison operators
@ -140,6 +148,25 @@ public:
void Decompose (aiVector3t<TReal>& scaling, aiQuaterniont<TReal>& rotation,
aiVector3t<TReal>& position) const;
// -------------------------------------------------------------------
/** @fn void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const
* @brief Decompose a trafo matrix into its original components
* @param [out] pScaling - Receives the output scaling for the x,y,z axes.
* @param [out] pRotation - Receives the output rotation as a Euler angles.
* @param [out] pPosition - Receives the output position for the x,y,z axes.
*/
void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const;
// -------------------------------------------------------------------
/** @fn void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle, aiVector3t<TReal>& pPosition) const
* @brief Decompose a trafo matrix into its original components
* @param [out] pScaling - Receives the output scaling for the x,y,z axes.
* @param [out] pRotationAxis - Receives the output rotation axis.
* @param [out] pRotationAngle - Receives the output rotation angle for @ref pRotationAxis.
* @param [out] pPosition - Receives the output position for the x,y,z axes.
*/
void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle, aiVector3t<TReal>& pPosition) const;
// -------------------------------------------------------------------
/** @brief Decompose a trafo matrix with no scaling into its
* original components

View File

@ -299,49 +299,45 @@ inline bool aiMatrix4x4t<TReal>::Equal(const aiMatrix4x4t<TReal>& m, TReal epsil
}
// ----------------------------------------------------------------------------------------
#define ASSIMP_MATRIX4_4_DECOMPOSE_PART \
const aiMatrix4x4t<TReal>& _this = *this;/* Create alias for conveniance. */ \
\
/* extract translation */ \
pPosition.x = _this[0][3]; \
pPosition.y = _this[1][3]; \
pPosition.z = _this[2][3]; \
\
/* extract the rows of the matrix. */ \
aiVector3t<TReal> vRows[3] = { \
aiVector3t<TReal>(_this[0][0],_this[1][0],_this[2][0]), \
aiVector3t<TReal>(_this[0][1],_this[1][1],_this[2][1]), \
aiVector3t<TReal>(_this[0][2],_this[1][2],_this[2][2]) \
}; \
\
/* extract the scaling factors */ \
pScaling.x = vRows[0].Length(); \
pScaling.y = vRows[1].Length(); \
pScaling.z = vRows[2].Length(); \
\
/* and the sign of the scaling */ \
if (Determinant() < 0) pScaling = -pScaling; \
\
/* and remove all scaling from the matrix */ \
if(pScaling.x) vRows[0] /= pScaling.x; \
if(pScaling.y) vRows[1] /= pScaling.y; \
if(pScaling.z) vRows[2] /= pScaling.z; \
\
do {} while(false)
template <typename TReal>
inline void aiMatrix4x4t<TReal>::Decompose (aiVector3t<TReal>& scaling, aiQuaterniont<TReal>& rotation,
aiVector3t<TReal>& position) const
inline void aiMatrix4x4t<TReal>::Decompose (aiVector3t<TReal>& pScaling, aiQuaterniont<TReal>& pRotation,
aiVector3t<TReal>& pPosition) const
{
const aiMatrix4x4t<TReal>& _this = *this;
// extract translation
position.x = _this[0][3];
position.y = _this[1][3];
position.z = _this[2][3];
// extract the rows of the matrix
aiVector3t<TReal> vRows[3] = {
aiVector3t<TReal>(_this[0][0],_this[1][0],_this[2][0]),
aiVector3t<TReal>(_this[0][1],_this[1][1],_this[2][1]),
aiVector3t<TReal>(_this[0][2],_this[1][2],_this[2][2])
};
// extract the scaling factors
scaling.x = vRows[0].Length();
scaling.y = vRows[1].Length();
scaling.z = vRows[2].Length();
// and the sign of the scaling
if (Determinant() < 0) {
scaling.x = -scaling.x;
scaling.y = -scaling.y;
scaling.z = -scaling.z;
}
// and remove all scaling from the matrix
if(scaling.x)
{
vRows[0] /= scaling.x;
}
if(scaling.y)
{
vRows[1] /= scaling.y;
}
if(scaling.z)
{
vRows[2] /= scaling.z;
}
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
// build a 3x3 rotation matrix
aiMatrix3x3t<TReal> m(vRows[0].x,vRows[1].x,vRows[2].x,
@ -349,7 +345,83 @@ inline void aiMatrix4x4t<TReal>::Decompose (aiVector3t<TReal>& scaling, aiQuater
vRows[0].z,vRows[1].z,vRows[2].z);
// and generate the rotation quaternion from it
rotation = aiQuaterniont<TReal>(m);
pRotation = aiQuaterniont<TReal>(m);
}
template <typename TReal>
inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const
{
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
/*
| CE -CF -D 0 |
M = | -BDE+AF BDF+AE -BC 0 |
| ADE+BF -ADF+BE AC 0 |
| 0 0 0 1 |
A = cos(angle_x);
B = sin(angle_x);
C = cos(angle_y);
D = sin(angle_y);
E = cos(angle_z);
F = sin(angle_z);
*/
// Use a small epsilon to solve floating-point inaccuracies
constexpr TReal epsilon = 10e-3f;
pRotation.y = -asin(_this[0][2]);// Angle around oY.
TReal C = cos(pRotation.y);
if(fabs(C) > epsilon)
{
// Finding angle around oX.
TReal tan_x = _this[2][2] / C;
TReal tan_y = -_this[1][2] / C;
pRotation.x = atan2(tan_y, tan_x);
// Finding angle around oZ.
tan_x = _this[0][0] / C;
tan_y = -_this[0][1] / C;
pRotation.z = atan2(tan_y, tan_x);
}
else
{
pRotation.x = 0;// Set angle around oX to 0.
// And finding angle around oZ.
TReal tan_x = _this[1][1];
TReal tan_y = _this[1][0];
pRotation.z = atan2(tan_y, tan_x);
}
}
#undef ASSIMP_MATRIX4_4_DECOMPOSE_PART
template <typename TReal>
inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle,
aiVector3t<TReal>& pPosition) const
{
aiQuaterniont<TReal> pRotation;
Decompose(pScaling, pRotation, pPosition);
pRotation.Normalize();
TReal angle_cos = pRotation.w;
TReal angle_sin = sqrt(1.0f - angle_cos * angle_cos);
pRotationAngle = acos(angle_cos) * 2;
// Use a small epsilon to solve floating-point inaccuracies
constexpr TReal epsilon = 10e-3f;
if(fabs(angle_sin) < epsilon) angle_sin = 1;
pRotationAxis.x = pRotation.x / angle_sin;
pRotationAxis.y = pRotation.y / angle_sin;
pRotationAxis.z = pRotation.z / angle_sin;
}
// ----------------------------------------------------------------------------------------