Merge pull request #1021 from smalcom/export_x3d

Export x3d
pull/1027/head
Kim Kulling 2016-10-07 13:05:02 +02:00 committed by GitHub
commit 6f6dd69270
13 changed files with 1153 additions and 76 deletions

View File

@ -611,6 +611,8 @@ ADD_ASSIMP_IMPORTER( X
)
ADD_ASSIMP_IMPORTER(X3D
X3DExporter.cpp
X3DExporter.hpp
X3DImporter.cpp
X3DImporter.hpp
X3DImporter_Geometry2D.cpp

View File

@ -91,6 +91,7 @@ void ExportSceneGLTF(const char*, IOSystem*, const aiScene*, const ExportPropert
void ExportSceneGLB(const char*, IOSystem*, const aiScene*, const ExportProperties*);
void ExportSceneAssbin(const char*, IOSystem*, const aiScene*, const ExportProperties*);
void ExportSceneAssxml(const char*, IOSystem*, const aiScene*, const ExportProperties*);
void ExportSceneX3D(const char*, IOSystem*, const aiScene*, const ExportProperties*);
// ------------------------------------------------------------------------------------------------
// global array of all export formats which Assimp supports in its current build
@ -151,6 +152,10 @@ Exporter::ExportFormatEntry gExporters[] =
#ifndef ASSIMP_BUILD_NO_ASSXML_EXPORTER
Exporter::ExportFormatEntry( "assxml", "Assxml Document", "assxml" , &ExportSceneAssxml, 0),
#endif
#ifndef ASSIMP_BUILD_NO_X3D_EXPORTER
Exporter::ExportFormatEntry( "x3d", "Extensible 3D", "x3d" , &ExportSceneX3D, 0),
#endif
};
#define ASSIMP_NUM_EXPORTERS (sizeof(gExporters)/sizeof(gExporters[0]))

View File

@ -1237,8 +1237,8 @@ void SceneCombiner::Copy (aiMetadata** _dest, const aiMetadata* src)
case AI_BOOL:
out.mData = new bool(*static_cast<bool*>(in.mData));
break;
case AI_INT:
out.mData = new int(*static_cast<int*>(in.mData));
case AI_INT32:
out.mData = new int32_t(*static_cast<int32_t*>(in.mData));
break;
case AI_UINT64:
out.mData = new uint64_t(*static_cast<uint64_t*>(in.mData));

View File

@ -0,0 +1,730 @@
/// \file X3DExporter.cpp
/// \brief X3D-format files exporter for Assimp. Implementation.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_EXPORT
#ifndef ASSIMP_BUILD_NO_X3D_EXPORTER
#include "X3DExporter.hpp"
// Header files, Assimp.
#include "Exceptional.h"
#include <assimp/Exporter.hpp>
#include <assimp/IOSystem.hpp>
using namespace std;
namespace Assimp
{
void ExportSceneX3D(const char* pFile, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties)
{
X3DExporter exporter(pFile, pIOSystem, pScene, pProperties);
}
}// namespace Assimp
namespace Assimp
{
void X3DExporter::IndentationStringSet(const size_t pNewLevel)
{
if(pNewLevel > mIndentationString.size())
{
if(pNewLevel > mIndentationString.capacity()) mIndentationString.reserve(pNewLevel + 1);
for(size_t i = 0, i_e = pNewLevel - mIndentationString.size(); i < i_e; i++) mIndentationString.push_back('\t');
}
else if(pNewLevel < mIndentationString.size())
{
mIndentationString.resize(pNewLevel);
}
}
void X3DExporter::XML_Write(const string& pData)
{
if(pData.size() == 0) return;
if(mOutFile->Write((void*)pData.data(), pData.length(), 1) != 1) throw DeadlyExportError("Failed to write scene data!");
}
aiMatrix4x4 X3DExporter::Matrix_GlobalToCurrent(const aiNode& pNode) const
{
aiNode* cur_node;
std::list<aiMatrix4x4> matr;
aiMatrix4x4 out_matr;
// starting walk from current element to root
matr.push_back(pNode.mTransformation);
cur_node = pNode.mParent;
if(cur_node != nullptr)
{
do
{
matr.push_back(cur_node->mTransformation);
cur_node = cur_node->mParent;
} while(cur_node != nullptr);
}
// multiplicate all matrices in reverse order
for(std::list<aiMatrix4x4>::reverse_iterator rit = matr.rbegin(); rit != matr.rend(); rit++) out_matr = out_matr * (*rit);
return out_matr;
}
void X3DExporter::AttrHelper_FloatToString(const float pValue, std::string& pTargetString)
{
pTargetString = to_string(pValue);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, string& pTargetString)
{
pTargetString.clear();
pTargetString.reserve(pArray_Size * 6);// (Number + space) * 3.
for(size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " " + to_string(pArray[idx].z) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Vec2DArrToString(const aiVector2D* pArray, const size_t pArray_Size, std::string& pTargetString)
{
pTargetString.clear();
pTargetString.reserve(pArray_Size * 4);// (Number + space) * 2.
for(size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Vec3DAsVec2fArrToString(const aiVector3D* pArray, const size_t pArray_Size, string& pTargetString)
{
pTargetString.clear();
pTargetString.reserve(pArray_Size * 4);// (Number + space) * 2.
for(size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].x) + " " + to_string(pArray[idx].y) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Col4DArrToString(const aiColor4D* pArray, const size_t pArray_Size, string& pTargetString)
{
pTargetString.clear();
pTargetString.reserve(pArray_Size * 8);// (Number + space) * 4.
for(size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].r) + " " + to_string(pArray[idx].g) + " " + to_string(pArray[idx].b) + " " +
to_string(pArray[idx].a) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Col3DArrToString(const aiColor3D* pArray, const size_t pArray_Size, std::string& pTargetString)
{
pTargetString.clear();
pTargetString.reserve(pArray_Size * 6);// (Number + space) * 3.
for(size_t idx = 0; idx < pArray_Size; idx++)
pTargetString.append(to_string(pArray[idx].r) + " " + to_string(pArray[idx].g) + " " + to_string(pArray[idx].b) + " ");
// remove last space symbol.
pTargetString.resize(pTargetString.length() - 1);
AttrHelper_CommaToPoint(pTargetString);
}
void X3DExporter::AttrHelper_Color3ToAttrList(std::list<SAttribute> pList, const std::string& pName, const aiColor3D& pValue, const aiColor3D& pDefaultValue)
{
string tstr;
if(pValue == pDefaultValue) return;
AttrHelper_Col3DArrToString(&pValue, 1, tstr);
pList.push_back({pName, tstr});
}
void X3DExporter::AttrHelper_FloatToAttrList(std::list<SAttribute> pList, const string& pName, const float pValue, const float pDefaultValue)
{
string tstr;
if(pValue == pDefaultValue) return;
AttrHelper_FloatToString(pValue, tstr);
pList.push_back({pName, tstr});
};
void X3DExporter::NodeHelper_OpenNode(const string& pNodeName, const size_t pTabLevel, const bool pEmptyElement, const list<SAttribute>& pAttrList)
{
// Write indentation.
IndentationStringSet(pTabLevel);
XML_Write(mIndentationString);
// Begin of the element
XML_Write("<" + pNodeName);
// Write attributes
for(const SAttribute& attr: pAttrList) { XML_Write(" " + attr.Name + "='" + attr.Value + "'"); }
// End of the element
if(pEmptyElement)
{
XML_Write("/>\n");
}
else
{
XML_Write(">\n");
}
}
void X3DExporter::NodeHelper_OpenNode(const string& pNodeName, const size_t pTabLevel, const bool pEmptyElement)
{
const list<SAttribute> attr_list;
NodeHelper_OpenNode(pNodeName, pTabLevel, pEmptyElement, attr_list);
}
void X3DExporter::NodeHelper_CloseNode(const string& pNodeName, const size_t pTabLevel)
{
// Write indentation.
IndentationStringSet(pTabLevel);
XML_Write(mIndentationString);
// Write element
XML_Write("</" + pNodeName + ">\n");
}
void X3DExporter::Export_Node(const aiNode *pNode, const size_t pTabLevel)
{
bool transform = false;
list<SAttribute> attr_list;
// In Assimp lights is stored in next way: light source store in mScene->mLights and in node tree must present aiNode with name same as
// light source has. Considering it we must compare every aiNode name with light sources names. Why not to look where ligths is present
// and save them to fili? Because corresponding aiNode can be already written to file and we can only add information to file not to edit.
if(CheckAndExport_Light(*pNode, pTabLevel)) return;
// Check if need DEF.
if(pNode->mName.length) attr_list.push_back({"DEF", pNode->mName.C_Str()});
// Check if need <Transformation> node against <Group>.
if(!pNode->mTransformation.IsIdentity())
{
auto Vector2String = [this](const aiVector3D pVector) -> string
{
string tstr = to_string(pVector.x) + " " + to_string(pVector.y) + " " + to_string(pVector.z);
AttrHelper_CommaToPoint(tstr);
return tstr;
};
auto Rotation2String = [this](const aiVector3D pAxis, const ai_real pAngle) -> string
{
string tstr = to_string(pAxis.x) + " " + to_string(pAxis.y) + " " + to_string(pAxis.z) + " " + to_string(pAngle);
AttrHelper_CommaToPoint(tstr);
return tstr;
};
aiVector3D scale, translate, rotate_axis;
ai_real rotate_angle;
transform = true;
pNode->mTransformation.Decompose(scale, rotate_axis, rotate_angle, translate);
// Check if values different from default
if((rotate_angle != 0) && (rotate_axis.Length() > 0))
attr_list.push_back({"rotation", Rotation2String(rotate_axis, rotate_angle)});
if(!scale.Equal({1, 1, 1})) attr_list.push_back({"scale", Vector2String(scale)});
if(translate.Length() > 0) attr_list.push_back({"translation", Vector2String(translate)});
}
// Begin node if need.
if(transform)
NodeHelper_OpenNode("Transform", pTabLevel, false, attr_list);
else
NodeHelper_OpenNode("Group", pTabLevel);
// Export metadata
if(pNode->mMetaData != nullptr)
{
for(size_t idx_prop = 0; idx_prop < pNode->mMetaData->mNumProperties; idx_prop++)
{
const aiString* key;
const aiMetadataEntry* entry;
if(pNode->mMetaData->Get(idx_prop, key, entry))
{
switch(entry->mType)
{
case AI_BOOL:
Export_MetadataBoolean(*key, *static_cast<bool*>(entry->mData), pTabLevel + 1);
break;
case AI_DOUBLE:
Export_MetadataDouble(*key, *static_cast<double*>(entry->mData), pTabLevel + 1);
break;
case AI_FLOAT:
Export_MetadataFloat(*key, *static_cast<float*>(entry->mData), pTabLevel + 1);
break;
case AI_INT32:
Export_MetadataInteger(*key, *static_cast<int32_t*>(entry->mData), pTabLevel + 1);
break;
case AI_AISTRING:
Export_MetadataString(*key, *static_cast<aiString*>(entry->mData), pTabLevel + 1);
break;
default:
LogError("Unsupported metadata type: " + to_string(entry->mType));
break;
}// switch(entry->mType)
}
}
}// if(pNode->mMetaData != nullptr)
// Export meshes.
for(size_t idx_mesh = 0; idx_mesh < pNode->mNumMeshes; idx_mesh++) Export_Mesh(pNode->mMeshes[idx_mesh], pTabLevel + 1);
// Export children.
for(size_t idx_node = 0; idx_node < pNode->mNumChildren; idx_node++) Export_Node(pNode->mChildren[idx_node], pTabLevel + 1);
// End node if need.
if(transform)
NodeHelper_CloseNode("Transform", pTabLevel);
else
NodeHelper_CloseNode("Group", pTabLevel);
}
void X3DExporter::Export_Mesh(const size_t pIdxMesh, const size_t pTabLevel)
{
const char* NodeName_IFS = "IndexedFaceSet";
const char* NodeName_Shape = "Shape";
list<SAttribute> attr_list;
aiMesh& mesh = *mScene->mMeshes[pIdxMesh];// create alias for conveniance.
// Check if mesh already defined early.
if(mDEF_Map_Mesh.find(pIdxMesh) != mDEF_Map_Mesh.end())
{
// Mesh already defined, just refer to it
attr_list.push_back({"USE", mDEF_Map_Mesh.at(pIdxMesh)});
NodeHelper_OpenNode(NodeName_Shape, pTabLevel, true, attr_list);
return;
}
string mesh_name(mesh.mName.C_Str() + string("_IDX_") + to_string(pIdxMesh));// Create mesh name
// Define mesh name.
attr_list.push_back({"DEF", mesh_name});
mDEF_Map_Mesh[pIdxMesh] = mesh_name;
//
// "Shape" node.
//
NodeHelper_OpenNode(NodeName_Shape, pTabLevel, false, attr_list);
attr_list.clear();
//
// "Appearance" node.
//
Export_Material(mesh.mMaterialIndex, pTabLevel + 1);
//
// "IndexedFaceSet" node.
//
// Fill attributes which differ from default. In Assimp for colors, vertices and normals used one indices set. So, only "coordIndex" must be set.
string coordIndex;
// fill coordinates index.
coordIndex.reserve(mesh.mNumVertices * 4);// Index + space + Face delimiter
for(size_t idx_face = 0; idx_face < mesh.mNumFaces; idx_face++)
{
const aiFace& face_cur = mesh.mFaces[idx_face];
for(size_t idx_vert = 0; idx_vert < face_cur.mNumIndices; idx_vert++)
{
coordIndex.append(to_string(face_cur.mIndices[idx_vert]) + " ");
}
coordIndex.append("-1 ");// face delimiter.
}
// remove last space symbol.
coordIndex.resize(coordIndex.length() - 1);
attr_list.push_back({"coordIndex", coordIndex});
// create node
NodeHelper_OpenNode(NodeName_IFS, pTabLevel + 1, false, attr_list);
attr_list.clear();
// Child nodes for "IndexedFaceSet" needed when used colors, textures or normals.
string attr_value;
// Export <Coordinate>
AttrHelper_Vec3DArrToString(mesh.mVertices, mesh.mNumVertices, attr_value);
attr_list.push_back({"point", attr_value});
NodeHelper_OpenNode("Coordinate", pTabLevel + 2, true, attr_list);
attr_list.clear();
// Export <ColorRGBA>
if(mesh.HasVertexColors(0))
{
AttrHelper_Col4DArrToString(mesh.mColors[0], mesh.mNumVertices, attr_value);
attr_list.push_back({"color", attr_value});
NodeHelper_OpenNode("ColorRGBA", pTabLevel + 2, true, attr_list);
attr_list.clear();
}
// Export <TextureCoordinate>
if(mesh.HasTextureCoords(0))
{
AttrHelper_Vec3DAsVec2fArrToString(mesh.mTextureCoords[0], mesh.mNumVertices, attr_value);
attr_list.push_back({"point", attr_value});
NodeHelper_OpenNode("TextureCoordinate", pTabLevel + 2, true, attr_list);
attr_list.clear();
}
// Export <Normal>
if(mesh.HasNormals())
{
AttrHelper_Vec3DArrToString(mesh.mNormals, mesh.mNumVertices, attr_value);
attr_list.push_back({"vector", attr_value});
NodeHelper_OpenNode("Normal", pTabLevel + 2, true, attr_list);
attr_list.clear();
}
//
// Close opened nodes.
//
NodeHelper_CloseNode(NodeName_IFS, pTabLevel + 1);
NodeHelper_CloseNode(NodeName_Shape, pTabLevel);
}
void X3DExporter::Export_Material(const size_t pIdxMaterial, const size_t pTabLevel)
{
const char* NodeName_A = "Appearance";
list<SAttribute> attr_list;
aiMaterial& material = *mScene->mMaterials[pIdxMaterial];// create alias for conveniance.
// Check if material already defined early.
if(mDEF_Map_Material.find(pIdxMaterial) != mDEF_Map_Material.end())
{
// Material already defined, just refer to it
attr_list.push_back({"USE", mDEF_Map_Material.at(pIdxMaterial)});
NodeHelper_OpenNode(NodeName_A, pTabLevel, true, attr_list);
return;
}
string material_name(string("_IDX_") + to_string(pIdxMaterial));// Create material name
aiString ai_mat_name;
if(material.Get(AI_MATKEY_NAME, ai_mat_name) == AI_SUCCESS) material_name.insert(0, ai_mat_name.C_Str());
// Define material name.
attr_list.push_back({"DEF", material_name});
mDEF_Map_Material[pIdxMaterial] = material_name;
//
// "Appearance" node.
//
NodeHelper_OpenNode(NodeName_A, pTabLevel, false, attr_list);
attr_list.clear();
//
// "Material" node.
//
{
auto Color4ToAttrList = [&](const string& pAttrName, const aiColor4D& pAttrValue, const aiColor3D& pAttrDefaultValue)
{
string tstr;
if(aiColor3D(pAttrValue.r, pAttrValue.g, pAttrValue.b) != pAttrDefaultValue)
{
AttrHelper_Col4DArrToString(&pAttrValue, 1, tstr);
attr_list.push_back({pAttrName, tstr});
}
};
float tvalf;
aiColor3D color3;
aiColor4D color4;
// ambientIntensity="0.2" SFFloat [inputOutput]
if(material.Get(AI_MATKEY_COLOR_AMBIENT, color3) == AI_SUCCESS)
AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", (color3.r + color3.g + color3.b) / 3.0f, 0.2f);
else if(material.Get(AI_MATKEY_COLOR_AMBIENT, color4) == AI_SUCCESS)
AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", (color4.r + color4.g + color4.b) / 3.0f, 0.2f);
// diffuseColor="0.8 0.8 0.8" SFColor [inputOutput]
if(material.Get(AI_MATKEY_COLOR_DIFFUSE, color3) == AI_SUCCESS)
AttrHelper_Color3ToAttrList(attr_list, "diffuseColor", color3, aiColor3D(0.8f, 0.8f, 0.8f));
else if(material.Get(AI_MATKEY_COLOR_DIFFUSE, color4) == AI_SUCCESS)
Color4ToAttrList("diffuseColor", color4, aiColor3D(0.8f, 0.8f, 0.8f));
// emissiveColor="0 0 0" SFColor [inputOutput]
if(material.Get(AI_MATKEY_COLOR_EMISSIVE, color3) == AI_SUCCESS)
AttrHelper_Color3ToAttrList(attr_list, "emissiveColor", color3, aiColor3D(0, 0, 0));
else if(material.Get(AI_MATKEY_COLOR_EMISSIVE, color4) == AI_SUCCESS)
Color4ToAttrList("emissiveColor", color4, aiColor3D(0, 0, 0));
// shininess="0.2" SFFloat [inputOutput]
if(material.Get(AI_MATKEY_SHININESS, tvalf) == AI_SUCCESS) AttrHelper_FloatToAttrList(attr_list, "shininess", tvalf, 0.2f);
// specularColor="0 0 0" SFColor [inputOutput]
if(material.Get(AI_MATKEY_COLOR_SPECULAR, color3) == AI_SUCCESS)
AttrHelper_Color3ToAttrList(attr_list, "specularColor", color3, aiColor3D(0, 0, 0));
else if(material.Get(AI_MATKEY_COLOR_SPECULAR, color4) == AI_SUCCESS)
Color4ToAttrList("specularColor", color4, aiColor3D(0, 0, 0));
// transparency="0" SFFloat [inputOutput]
if(material.Get(AI_MATKEY_OPACITY, tvalf) == AI_SUCCESS)
{
if(tvalf > 1) tvalf = 1;
tvalf = 1.0f - tvalf;
AttrHelper_FloatToAttrList(attr_list, "transparency", tvalf, 0);
}
NodeHelper_OpenNode("Material", pTabLevel + 1, true, attr_list);
attr_list.clear();
}// "Material" node. END.
//
// "ImageTexture" node.
//
{
auto RepeatToAttrList = [&](const string& pAttrName, const bool pAttrValue)
{
if(!pAttrValue) attr_list.push_back({pAttrName, "false"});
};
bool tvalb;
aiString tstring;
// url="" MFString
if(material.Get(AI_MATKEY_TEXTURE_DIFFUSE(0), tstring) == AI_SUCCESS)
{
if(strncmp(tstring.C_Str(), AI_EMBEDDED_TEXNAME_PREFIX, strlen(AI_EMBEDDED_TEXNAME_PREFIX)) == 0)
LogError("Embedded texture is not supported");
else
attr_list.push_back({"url", string("\"") + tstring.C_Str() + "\""});
}
// repeatS="true" SFBool
if(material.Get(AI_MATKEY_MAPPINGMODE_U_DIFFUSE(0), tvalb) == AI_SUCCESS) RepeatToAttrList("repeatS", tvalb);
// repeatT="true" SFBool
if(material.Get(AI_MATKEY_MAPPINGMODE_V_DIFFUSE(0), tvalb) == AI_SUCCESS) RepeatToAttrList("repeatT", tvalb);
NodeHelper_OpenNode("ImageTexture", pTabLevel + 1, true, attr_list);
attr_list.clear();
}// "ImageTexture" node. END.
//
// "TextureTransform" node.
//
{
auto Vec2ToAttrList = [&](const string& pAttrName, const aiVector2D& pAttrValue, const aiVector2D& pAttrDefaultValue)
{
string tstr;
if(pAttrValue != pAttrDefaultValue)
{
AttrHelper_Vec2DArrToString(&pAttrValue, 1, tstr);
attr_list.push_back({pAttrName, tstr});
}
};
aiUVTransform transform;
if(material.Get(AI_MATKEY_UVTRANSFORM_DIFFUSE(0), transform) == AI_SUCCESS)
{
Vec2ToAttrList("translation", transform.mTranslation, aiVector2D(0, 0));
AttrHelper_FloatToAttrList(attr_list, "rotation", transform.mRotation, 0);
Vec2ToAttrList("scale", transform.mScaling, aiVector2D(1, 1));
NodeHelper_OpenNode("TextureTransform", pTabLevel + 1, true, attr_list);
attr_list.clear();
}
}// "TextureTransform" node. END.
//
// Close opened nodes.
//
NodeHelper_CloseNode(NodeName_A, pTabLevel);
}
void X3DExporter::Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel)
{
list<SAttribute> attr_list;
attr_list.push_back({"name", pKey.C_Str()});
attr_list.push_back({"value", pValue ? "true" : "false"});
NodeHelper_OpenNode("MetadataBoolean", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataDouble(const aiString& pKey, const double pValue, const size_t pTabLevel)
{
list<SAttribute> attr_list;
attr_list.push_back({"name", pKey.C_Str()});
attr_list.push_back({"value", to_string(pValue)});
NodeHelper_OpenNode("MetadataDouble", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataFloat(const aiString& pKey, const float pValue, const size_t pTabLevel)
{
list<SAttribute> attr_list;
attr_list.push_back({"name", pKey.C_Str()});
attr_list.push_back({"value", to_string(pValue)});
NodeHelper_OpenNode("MetadataFloat", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataInteger(const aiString& pKey, const int32_t pValue, const size_t pTabLevel)
{
list<SAttribute> attr_list;
attr_list.push_back({"name", pKey.C_Str()});
attr_list.push_back({"value", to_string(pValue)});
NodeHelper_OpenNode("MetadataInteger", pTabLevel, true, attr_list);
}
void X3DExporter::Export_MetadataString(const aiString& pKey, const aiString& pValue, const size_t pTabLevel)
{
list<SAttribute> attr_list;
attr_list.push_back({"name", pKey.C_Str()});
attr_list.push_back({"value", pValue.C_Str()});
NodeHelper_OpenNode("MetadataString", pTabLevel, true, attr_list);
}
bool X3DExporter::CheckAndExport_Light(const aiNode& pNode, const size_t pTabLevel)
{
list<SAttribute> attr_list;
auto Vec3ToAttrList = [&](const string& pAttrName, const aiVector3D& pAttrValue, const aiVector3D& pAttrDefaultValue)
{
string tstr;
if(pAttrValue != pAttrDefaultValue)
{
AttrHelper_Vec3DArrToString(&pAttrValue, 1, tstr);
attr_list.push_back({pAttrName, tstr});
}
};
size_t idx_light;
bool found = false;
// Name of the light source can not be empty.
if(pNode.mName.length == 0) return false;
// search for light with name like node has.
for(idx_light = 0; mScene->mNumLights; idx_light++)
{
if(pNode.mName == mScene->mLights[idx_light]->mName)
{
found = true;
break;
}
}
if(!found) return false;
// Light source is found.
const aiLight& light = *mScene->mLights[idx_light];// Alias for conveniance.
aiMatrix4x4 trafo_mat = Matrix_GlobalToCurrent(pNode).Inverse();
attr_list.push_back({"DEF", light.mName.C_Str()});
attr_list.push_back({"global", "true"});// "false" is not supported.
// ambientIntensity="0" SFFloat [inputOutput]
AttrHelper_FloatToAttrList(attr_list, "ambientIntensity", aiVector3D(light.mColorAmbient.r, light.mColorAmbient.g, light.mColorAmbient.b).Length(), 0);
// color="1 1 1" SFColor [inputOutput]
AttrHelper_Color3ToAttrList(attr_list, "color", light.mColorDiffuse, aiColor3D(1, 1, 1));
switch(light.mType)
{
case aiLightSource_DIRECTIONAL:
{
aiVector3D direction = trafo_mat * light.mDirection;
Vec3ToAttrList("direction", direction, aiVector3D(0, 0, -1));
NodeHelper_OpenNode("DirectionalLight", pTabLevel, true, attr_list);
}
break;
case aiLightSource_POINT:
{
aiVector3D attenuation(light.mAttenuationConstant, light.mAttenuationLinear, light.mAttenuationQuadratic);
aiVector3D location = trafo_mat * light.mPosition;
Vec3ToAttrList("attenuation", attenuation, aiVector3D(1, 0, 0));
Vec3ToAttrList("location", location, aiVector3D(0, 0, 0));
NodeHelper_OpenNode("PointLight", pTabLevel, true, attr_list);
}
break;
case aiLightSource_SPOT:
{
aiVector3D attenuation(light.mAttenuationConstant, light.mAttenuationLinear, light.mAttenuationQuadratic);
aiVector3D location = trafo_mat * light.mPosition;
aiVector3D direction = trafo_mat * light.mDirection;
Vec3ToAttrList("attenuation", attenuation, aiVector3D(1, 0, 0));
Vec3ToAttrList("location", location, aiVector3D(0, 0, 0));
Vec3ToAttrList("direction", direction, aiVector3D(0, 0, -1));
AttrHelper_FloatToAttrList(attr_list, "beamWidth", light.mAngleInnerCone, 0.7854f);
AttrHelper_FloatToAttrList(attr_list, "cutOffAngle", light.mAngleOuterCone, 1.570796f);
NodeHelper_OpenNode("SpotLight", pTabLevel, true, attr_list);
}
break;
default:
throw DeadlyExportError("Unknown light type: " + to_string(light.mType));
}// switch(light.mType)
return true;
}
X3DExporter::X3DExporter(const char* pFileName, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties)
: mScene(pScene)
{
list<SAttribute> attr_list;
mOutFile = pIOSystem->Open(pFileName, "wt");
if(mOutFile == nullptr) throw DeadlyExportError("Could not open output .x3d file: " + string(pFileName));
// Begin document
XML_Write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n");
XML_Write("<!DOCTYPE X3D PUBLIC \"ISO//Web3D//DTD X3D 3.3//EN\" \"http://www.web3d.org/specifications/x3d-3.3.dtd\">\n");
// Root node
attr_list.push_back({"profile", "Interchange"});
attr_list.push_back({"version", "3.3"});
attr_list.push_back({"xmlns:xsd", "http://www.w3.org/2001/XMLSchema-instance"});
attr_list.push_back({"xsd:noNamespaceSchemaLocation", "http://www.web3d.org/specifications/x3d-3.3.xsd"});
NodeHelper_OpenNode("X3D", 0, false, attr_list);
attr_list.clear();
// <head>: meta data.
NodeHelper_OpenNode("head", 1);
XML_Write(mIndentationString + "<!-- All \"meta\" from this section tou will found in <Scene> node as MetadataString nodes. -->\n");
NodeHelper_CloseNode("head", 1);
// Scene node.
NodeHelper_OpenNode("Scene", 1);
Export_Node(mScene->mRootNode, 2);
NodeHelper_CloseNode("Scene", 1);
// Close Root node.
NodeHelper_CloseNode("X3D", 0);
// Cleanup
pIOSystem->Close(mOutFile);
mOutFile = nullptr;
}
}// namespace Assimp
#endif // ASSIMP_BUILD_NO_X3D_EXPORTER
#endif // ASSIMP_BUILD_NO_EXPORT

View File

@ -0,0 +1,235 @@
/// \file X3DExporter.hpp
/// \brief X3D-format files exporter for Assimp.
/// \date 2016
/// \author smal.root@gmail.com
// Thanks to acorn89 for support.
#ifndef INCLUDED_AI_X3D_EXPORTER_H
#define INCLUDED_AI_X3D_EXPORTER_H
// Header files, Assimp.
#include <assimp/DefaultLogger.hpp>
#include <assimp/Exporter.hpp>
#include <assimp/material.h>
#include <assimp/scene.h>
// Header files, stdlib.
#include <list>
#include <string>
namespace Assimp
{
/// \class X3DExporter
/// Class which export aiScene to X3D file.
///
/// Limitations.
///
/// Pay attention that X3D is format for interactive graphic and simulations for web browsers. aiScene can not contain all features of the X3D format.
/// Also, aiScene contain rasterized-like data. For example, X3D can describe circle all cylinder with one tag, but aiScene contain result of tesselation:
/// vertices, faces etc. Yes, you can use algorithm for detecting figures or shapes, but thats not good idea at all.
///
/// Supported nodes:
/// Core component:
/// "MetadataBoolean", "MetadataDouble", "MetadataFloat", "MetadataInteger", "MetadataSet", "MetadataString"
/// Geometry3D component:
/// "IndexedFaceSet"
/// Grouping component:
/// "Group", "Transform"
/// Lighting component:
/// "DirectionalLight", "PointLight", "SpotLight"
/// Rendering component:
/// "ColorRGBA", "Coordinate", "Normal"
/// Shape component:
/// "Shape", "Appearance", "Material"
/// Texturing component:
/// "ImageTexture", "TextureCoordinate", "TextureTransform"
///
class X3DExporter
{
/***********************************************/
/******************** Types ********************/
/***********************************************/
struct SAttribute
{
const std::string Name;
const std::string Value;
};
/***********************************************/
/****************** Constants ******************/
/***********************************************/
const aiScene* const mScene;
/***********************************************/
/****************** Variables ******************/
/***********************************************/
IOStream* mOutFile;
std::map<size_t, std::string> mDEF_Map_Mesh;
std::map<size_t, std::string> mDEF_Map_Material;
private:
std::string mIndentationString;
/***********************************************/
/****************** Functions ******************/
/***********************************************/
/// \fn void IndentationStringSet(const size_t pNewLevel)
/// Set value of the indentation string.
/// \param [in] pNewLevel - new level of the indentation.
void IndentationStringSet(const size_t pNewLevel);
/// \fn void XML_Write(const std::string& pData)
/// Write data to XML-file.
/// \param [in] pData - reference to string which must be written.
void XML_Write(const std::string& pData);
/// \fn aiMatrix4x4 Matrix_GlobalToCurrent(const aiNode& pNode) const
/// Calculate transformation matrix for transformation from global coordinate system to pointed aiNode.
/// \param [in] pNode - reference to local node.
/// \return calculated matrix.
aiMatrix4x4 Matrix_GlobalToCurrent(const aiNode& pNode) const;
/// \fn void AttrHelper_CommaToPoint(std::string& pStringWithComma)
/// Convert commas in string to points. Thats need because "std::to_string" result depend on locale (regional settings).
/// \param [in, out] pStringWithComma - reference to string, which must be modified.
void AttrHelper_CommaToPoint(std::string& pStringWithComma) { for(char& c: pStringWithComma) { if(c == ',') c = '.'; } }
/// \fn void AttrHelper_FloatToString(const float pValue, std::string& pTargetString)
/// Converts float to string.
/// \param [in] pValue - value for converting.
/// \param [out] pTargetString - reference to string where result will be placed. Will be cleared before using.
void AttrHelper_FloatToString(const float pValue, std::string& pTargetString);
/// \fn void AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// Converts array of vectors to string.
/// \param [in] pArray - pointer to array of vectors.
/// \param [in] pArray_Size - count of elements in array.
/// \param [out] pTargetString - reference to string where result will be placed. Will be cleared before using.
void AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString);
/// \fn void AttrHelper_Vec2DArrToString(const aiVector2D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// \overload void AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString)
void AttrHelper_Vec2DArrToString(const aiVector2D* pArray, const size_t pArray_Size, std::string& pTargetString);
/// \fn void AttrHelper_Vec3DAsVec2fArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// \overload void AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// Only x, y is used from aiVector3D.
void AttrHelper_Vec3DAsVec2fArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString);
/// \fn void AttrHelper_Col4DArrToString(const aiColor4D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// \overload void AttrHelper_Vec3DArrToString(const aiVector3D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// Converts array of colors to string.
void AttrHelper_Col4DArrToString(const aiColor4D* pArray, const size_t pArray_Size, std::string& pTargetString);
/// \fn void AttrHelper_Col3DArrToString(const aiColor3D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// \overload void AttrHelper_Col4DArrToString(const aiColor4D* pArray, const size_t pArray_Size, std::string& pTargetString)
/// Converts array of colors to string.
void AttrHelper_Col3DArrToString(const aiColor3D* pArray, const size_t pArray_Size, std::string& pTargetString);
/// \fn void AttrHelper_FloatToAttrList(std::list<SAttribute> pList, const std::string& pName, const float pValue, const float pDefaultValue)
/// \overload void AttrHelper_Col3DArrToString(const aiColor3D* pArray, const size_t pArray_Size, std::string& pTargetString)
void AttrHelper_FloatToAttrList(std::list<SAttribute> pList, const std::string& pName, const float pValue, const float pDefaultValue);
/// \fn void AttrHelper_Color3ToAttrList(std::list<SAttribute> pList, const std::string& pName, const aiColor3D& pValue, const aiColor3D& pDefaultValue)
/// Add attribute to list if value not equal to default.
/// \param [in] pList - target list of the attributes.
/// \param [in] pName - name of new attribute.
/// \param [in] pValue - value of the new attribute.
/// \param [in] pDefaultValue - default value for checking: if pValue is equal to pDefaultValue then attribute will not be added.
void AttrHelper_Color3ToAttrList(std::list<SAttribute> pList, const std::string& pName, const aiColor3D& pValue, const aiColor3D& pDefaultValue);
/// \fn void NodeHelper_OpenNode(const std::string& pNodeName, const size_t pTabLevel, const bool pEmptyElement, const std::list<SAttribute>& pAttrList)
/// Begin new XML-node element.
/// \param [in] pNodeName - name of the element.
/// \param [in] pTabLevel - indentation level.
/// \param [in] pEmtyElement - if true then empty element will be created.
/// \param [in] pAttrList - list of the attributes for element.
void NodeHelper_OpenNode(const std::string& pNodeName, const size_t pTabLevel, const bool pEmptyElement, const std::list<SAttribute>& pAttrList);
/// \fn void NodeHelper_OpenNode(const std::string& pNodeName, const size_t pTabLevel, const bool pEmptyElement = false)
/// \overload void NodeHelper_OpenNode(const std::string& pNodeName, const size_t pTabLevel, const bool pEmptyElement, const std::list<SAttribute>& pAttrList)
void NodeHelper_OpenNode(const std::string& pNodeName, const size_t pTabLevel, const bool pEmptyElement = false);
/// \fn void NodeHelper_CloseNode(const std::string& pNodeName, const size_t pTabLevel)
/// End XML-node element.
/// \param [in] pNodeName - name of the element.
/// \param [in] pTabLevel - indentation level.
void NodeHelper_CloseNode(const std::string& pNodeName, const size_t pTabLevel);
/// \fn void Export_Node(const aiNode* pNode, const size_t pTabLevel)
/// Export data from scene to XML-file: aiNode.
/// \param [in] pNode - source aiNode.
/// \param [in] pTabLevel - indentation level.
void Export_Node(const aiNode* pNode, const size_t pTabLevel);
/// \fn void Export_Mesh(const size_t pIdxMesh, const size_t pTabLevel)
/// Export data from scene to XML-file: aiMesh.
/// \param [in] pMesh - index of the source aiMesh.
/// \param [in] pTabLevel - indentation level.
void Export_Mesh(const size_t pIdxMesh, const size_t pTabLevel);
/// \fn void Export_Material(const size_t pIdxMaterial, const size_t pTabLevel)
/// Export data from scene to XML-file: aiMaterial.
/// \param [in] pIdxMaterial - index of the source aiMaterial.
/// \param [in] pTabLevel - indentation level.
void Export_Material(const size_t pIdxMaterial, const size_t pTabLevel);
/// \fn void Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel)
/// Export data from scene to XML-file: aiMetadata.
/// \param [in] pKey - source data: value of the metadata key.
/// \param [in] pValue - source data: value of the metadata value.
/// \param [in] pTabLevel - indentation level.
void Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel);
/// \fn void Export_MetadataDouble(const aiString& pKey, const double pValue, const size_t pTabLevel)
/// \overload void Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel)
void Export_MetadataDouble(const aiString& pKey, const double pValue, const size_t pTabLevel);
/// \fn void Export_MetadataFloat(const aiString& pKey, const float pValue, const size_t pTabLevel)
/// \overload void Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel)
void Export_MetadataFloat(const aiString& pKey, const float pValue, const size_t pTabLevel);
/// \fn void Export_MetadataInteger(const aiString& pKey, const int32_t pValue, const size_t pTabLevel)
/// \overload void Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel)
void Export_MetadataInteger(const aiString& pKey, const int32_t pValue, const size_t pTabLevel);
/// \fn void Export_MetadataString(const aiString& pKey, const aiString& pValue, const size_t pTabLevel)
/// \overload void Export_MetadataBoolean(const aiString& pKey, const bool pValue, const size_t pTabLevel)
void Export_MetadataString(const aiString& pKey, const aiString& pValue, const size_t pTabLevel);
/// \fn bool CheckAndExport_Light(const aiNode& pNode, const size_t pTabLevel)
/// Check if node point to light source. If yes then export light source.
/// \param [in] pNode - reference to node for checking.
/// \param [in] pTabLevel - indentation level.
/// \return true - if node assigned with light and it was exported, else - return false.
bool CheckAndExport_Light(const aiNode& pNode, const size_t pTabLevel);
/***********************************************/
/************** Functions: LOG set *************/
/***********************************************/
/// \fn void LogError(const std::string& pMessage)
/// Short variant for calling \ref DefaultLogger::get()->error()
void LogError(const std::string& pMessage) { DefaultLogger::get()->error(pMessage); }
public:
/// \fn X3DExporter()
/// Default constructor.
X3DExporter(const char* pFileName, IOSystem* pIOSystem, const aiScene* pScene, const ExportProperties* pProperties);
/// \fn ~X3DExporter()
/// Default destructor.
~X3DExporter() {}
};// class X3DExporter
}// namespace Assimp
#endif // INCLUDED_AI_X3D_EXPORTER_H

View File

@ -1418,7 +1418,6 @@ void X3DImporter::ParseFile(const std::string& pFile, IOSystem* pIOHandler)
void X3DImporter::ParseNode_Root()
{
LogInfo("ParseNode_Root b");
// search for root tag <X3D>
if ( !XML_SearchNode( "X3D" ) )
{
@ -1427,7 +1426,6 @@ void X3DImporter::ParseNode_Root()
ParseHelper_Group_Begin();// create root node element.
// parse other contents
LogInfo("ParseNode_Root. read loop");
while(mReader->read())
{
if ( mReader->getNodeType() != irr::io::EXN_ELEMENT )
@ -1442,11 +1440,9 @@ void X3DImporter::ParseNode_Root()
else
XML_CheckNode_SkipUnsupported("Root");
}
LogInfo("ParseNode_Root. end loop");
// exit from root node element.
ParseHelper_Node_Exit();
LogInfo("ParseNode_Root e");
}
void X3DImporter::ParseNode_Head()

View File

@ -397,12 +397,6 @@ private:
/// Short variant for calling \ref DefaultLogger::get()->info()
void LogInfo(const std::string& pMessage) { DefaultLogger::get()->info(pMessage); }
/// Short variant for calling \ref DefaultLogger::get()->warn()
void LogWarning(const std::string& pMessage) { DefaultLogger::get()->warn(pMessage); }
/// Short variant for calling \ref DefaultLogger::get()->error()
void LogError(const std::string& pMessage) { DefaultLogger::get()->error(pMessage); }
/***********************************************/
/************** Functions: XML set *************/
/***********************************************/

View File

@ -780,24 +780,27 @@ void X3DImporter::Postprocess_CollectMetadata(const CX3DImporter_NodeElement& pN
}
else if((*it)->Type == CX3DImporter_NodeElement::ENET_MetaDouble)
{
// at this case also converting double to float.
if(((CX3DImporter_NodeElement_MetaBoolean*)cur_meta)->Value.size() > 0)
if(((CX3DImporter_NodeElement_MetaDouble*)cur_meta)->Value.size() > 0)
pSceneNode.mMetaData->Set(meta_idx, cur_meta->Name, (float)*(((CX3DImporter_NodeElement_MetaDouble*)cur_meta)->Value.begin()));
}
else if((*it)->Type == CX3DImporter_NodeElement::ENET_MetaFloat)
{
if(((CX3DImporter_NodeElement_MetaBoolean*)cur_meta)->Value.size() > 0)
if(((CX3DImporter_NodeElement_MetaFloat*)cur_meta)->Value.size() > 0)
pSceneNode.mMetaData->Set(meta_idx, cur_meta->Name, *(((CX3DImporter_NodeElement_MetaFloat*)cur_meta)->Value.begin()));
}
else if((*it)->Type == CX3DImporter_NodeElement::ENET_MetaInteger)
{
if(((CX3DImporter_NodeElement_MetaBoolean*)cur_meta)->Value.size() > 0)
if(((CX3DImporter_NodeElement_MetaInteger*)cur_meta)->Value.size() > 0)
pSceneNode.mMetaData->Set(meta_idx, cur_meta->Name, *(((CX3DImporter_NodeElement_MetaInteger*)cur_meta)->Value.begin()));
}
else if((*it)->Type == CX3DImporter_NodeElement::ENET_MetaString)
{
if(((CX3DImporter_NodeElement_MetaBoolean*)cur_meta)->Value.size() > 0)
pSceneNode.mMetaData->Set(meta_idx, cur_meta->Name, ((CX3DImporter_NodeElement_MetaString*)cur_meta)->Value.begin()->data());
if(((CX3DImporter_NodeElement_MetaString*)cur_meta)->Value.size() > 0)
{
aiString tstr(((CX3DImporter_NodeElement_MetaString*)cur_meta)->Value.begin()->data());
pSceneNode.mMetaData->Set(meta_idx, cur_meta->Name, tstr);
}
}
else
{

View File

@ -941,7 +941,6 @@ void X3DImporter::ParseNode_Rendering_Normal()
std::string use, def;
std::list<aiVector3D> vector;
CX3DImporter_NodeElement* ne;
LogInfo("TRACE: scene rendering Normal b");
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECKUSEDEF_RET(def, use);
@ -968,7 +967,6 @@ LogInfo("TRACE: scene rendering Normal b");
NodeElement_List.push_back(ne);// add element to node element list because its a new object in graph
}// if(!use.empty()) else
LogInfo("TRACE: scene rendering Normal e");
}
}// namespace Assimp

View File

@ -93,7 +93,15 @@ public:
public:
// array access operators
/** @fn TReal* operator[] (unsigned int p_iIndex)
* @param [in] p_iIndex - index of the row.
* @return pointer to pointed row.
*/
TReal* operator[] (unsigned int p_iIndex);
/** @fn const TReal* operator[] (unsigned int p_iIndex) const
* @overload TReal* operator[] (unsigned int p_iIndex)
*/
const TReal* operator[] (unsigned int p_iIndex) const;
// comparison operators
@ -140,6 +148,27 @@ public:
void Decompose (aiVector3t<TReal>& scaling, aiQuaterniont<TReal>& rotation,
aiVector3t<TReal>& position) const;
// -------------------------------------------------------------------
/** @fn void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const
* @brief Decompose a trafo matrix into its original components.
* Thx to good FAQ at http://www.gamedev.ru/code/articles/faq_matrix_quat
* @param [out] pScaling - Receives the output scaling for the x,y,z axes.
* @param [out] pRotation - Receives the output rotation as a Euler angles.
* @param [out] pPosition - Receives the output position for the x,y,z axes.
*/
void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const;
// -------------------------------------------------------------------
/** @fn void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle, aiVector3t<TReal>& pPosition) const
* @brief Decompose a trafo matrix into its original components
* Thx to good FAQ at http://www.gamedev.ru/code/articles/faq_matrix_quat
* @param [out] pScaling - Receives the output scaling for the x,y,z axes.
* @param [out] pRotationAxis - Receives the output rotation axis.
* @param [out] pRotationAngle - Receives the output rotation angle for @ref pRotationAxis.
* @param [out] pPosition - Receives the output position for the x,y,z axes.
*/
void Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle, aiVector3t<TReal>& pPosition) const;
// -------------------------------------------------------------------
/** @brief Decompose a trafo matrix with no scaling into its
* original components

View File

@ -299,57 +299,126 @@ inline bool aiMatrix4x4t<TReal>::Equal(const aiMatrix4x4t<TReal>& m, TReal epsil
}
// ----------------------------------------------------------------------------------------
#define ASSIMP_MATRIX4_4_DECOMPOSE_PART \
const aiMatrix4x4t<TReal>& _this = *this;/* Create alias for conveniance. */ \
\
/* extract translation */ \
pPosition.x = _this[0][3]; \
pPosition.y = _this[1][3]; \
pPosition.z = _this[2][3]; \
\
/* extract the columns of the matrix. */ \
aiVector3t<TReal> vCols[3] = { \
aiVector3t<TReal>(_this[0][0],_this[1][0],_this[2][0]), \
aiVector3t<TReal>(_this[0][1],_this[1][1],_this[2][1]), \
aiVector3t<TReal>(_this[0][2],_this[1][2],_this[2][2]) \
}; \
\
/* extract the scaling factors */ \
pScaling.x = vCols[0].Length(); \
pScaling.y = vCols[1].Length(); \
pScaling.z = vCols[2].Length(); \
\
/* and the sign of the scaling */ \
if (Determinant() < 0) pScaling = -pScaling; \
\
/* and remove all scaling from the matrix */ \
if(pScaling.x) vCols[0] /= pScaling.x; \
if(pScaling.y) vCols[1] /= pScaling.y; \
if(pScaling.z) vCols[2] /= pScaling.z; \
\
do {} while(false)
template <typename TReal>
inline void aiMatrix4x4t<TReal>::Decompose (aiVector3t<TReal>& scaling, aiQuaterniont<TReal>& rotation,
aiVector3t<TReal>& position) const
inline void aiMatrix4x4t<TReal>::Decompose (aiVector3t<TReal>& pScaling, aiQuaterniont<TReal>& pRotation,
aiVector3t<TReal>& pPosition) const
{
const aiMatrix4x4t<TReal>& _this = *this;
// extract translation
position.x = _this[0][3];
position.y = _this[1][3];
position.z = _this[2][3];
// extract the rows of the matrix
aiVector3t<TReal> vRows[3] = {
aiVector3t<TReal>(_this[0][0],_this[1][0],_this[2][0]),
aiVector3t<TReal>(_this[0][1],_this[1][1],_this[2][1]),
aiVector3t<TReal>(_this[0][2],_this[1][2],_this[2][2])
};
// extract the scaling factors
scaling.x = vRows[0].Length();
scaling.y = vRows[1].Length();
scaling.z = vRows[2].Length();
// and the sign of the scaling
if (Determinant() < 0) {
scaling.x = -scaling.x;
scaling.y = -scaling.y;
scaling.z = -scaling.z;
}
// and remove all scaling from the matrix
if(scaling.x)
{
vRows[0] /= scaling.x;
}
if(scaling.y)
{
vRows[1] /= scaling.y;
}
if(scaling.z)
{
vRows[2] /= scaling.z;
}
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
// build a 3x3 rotation matrix
aiMatrix3x3t<TReal> m(vRows[0].x,vRows[1].x,vRows[2].x,
vRows[0].y,vRows[1].y,vRows[2].y,
vRows[0].z,vRows[1].z,vRows[2].z);
aiMatrix3x3t<TReal> m(vCols[0].x,vCols[1].x,vCols[2].x,
vCols[0].y,vCols[1].y,vCols[2].y,
vCols[0].z,vCols[1].z,vCols[2].z);
// and generate the rotation quaternion from it
rotation = aiQuaterniont<TReal>(m);
pRotation = aiQuaterniont<TReal>(m);
}
template <typename TReal>
inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotation, aiVector3t<TReal>& pPosition) const
{
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
/*
| CE -CF D 0 |
M = | BDE+AF -BDF+AE -BC 0 |
| -ADE+BF -ADF+BE AC 0 |
| 0 0 0 1 |
A = cos(angle_x), B = sin(angle_x);
C = cos(angle_y), D = sin(angle_y);
E = cos(angle_z), F = sin(angle_z);
*/
// Use a small epsilon to solve floating-point inaccuracies
const TReal epsilon = 10e-3f;
pRotation.y = asin(vCols[2].x);// D. Angle around oY.
TReal C = cos(pRotation.y);
if(fabs(C) > epsilon)
{
// Finding angle around oX.
TReal tan_x = vCols[2].z / C;// A
TReal tan_y = -vCols[2].y / C;// B
pRotation.x = atan2(tan_y, tan_x);
// Finding angle around oZ.
tan_x = vCols[0].x / C;// E
tan_y = -vCols[1].x / C;// F
pRotation.z = atan2(tan_y, tan_x);
}
else
{// oY is fixed.
pRotation.x = 0;// Set angle around oX to 0. => A == 1, B == 0, C == 0, D == 1.
// And finding angle around oZ.
TReal tan_x = vCols[1].y;// -BDF+AE => E
TReal tan_y = vCols[0].y;// BDE+AF => F
pRotation.z = atan2(tan_y, tan_x);
}
}
#undef ASSIMP_MATRIX4_4_DECOMPOSE_PART
template <typename TReal>
inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector3t<TReal>& pRotationAxis, TReal& pRotationAngle,
aiVector3t<TReal>& pPosition) const
{
aiQuaterniont<TReal> pRotation;
Decompose(pScaling, pRotation, pPosition);
pRotation.Normalize();
TReal angle_cos = pRotation.w;
TReal angle_sin = sqrt(1.0f - angle_cos * angle_cos);
pRotationAngle = acos(angle_cos) * 2;
// Use a small epsilon to solve floating-point inaccuracies
const TReal epsilon = 10e-3f;
if(fabs(angle_sin) < epsilon) angle_sin = 1;
pRotationAxis.x = pRotation.x / angle_sin;
pRotationAxis.y = pRotation.y / angle_sin;
pRotationAxis.z = pRotation.z / angle_sin;
}
// ----------------------------------------------------------------------------------------

View File

@ -65,7 +65,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
typedef enum aiMetadataType
{
AI_BOOL = 0,
AI_INT = 1,
AI_INT32 = 1,
AI_UINT64 = 2,
AI_FLOAT = 3,
AI_DOUBLE = 4,
@ -106,7 +106,7 @@ struct aiMetadataEntry
*/
// -------------------------------------------------------------------------------
inline aiMetadataType GetAiType( bool ) { return AI_BOOL; }
inline aiMetadataType GetAiType( int ) { return AI_INT; }
inline aiMetadataType GetAiType( int32_t ) { return AI_INT32; }
inline aiMetadataType GetAiType( uint64_t ) { return AI_UINT64; }
inline aiMetadataType GetAiType( float ) { return AI_FLOAT; }
inline aiMetadataType GetAiType( double ) { return AI_DOUBLE; }
@ -165,8 +165,8 @@ struct aiMetadata
case AI_BOOL:
delete static_cast<bool*>(data);
break;
case AI_INT:
delete static_cast<int*>(data);
case AI_INT32:
delete static_cast<int32_t*>(data);
break;
case AI_UINT64:
delete static_cast<uint64_t*>(data);
@ -248,6 +248,22 @@ struct aiMetadata
return Get(aiString(key), value);
}
/// \fn inline bool Get(size_t pIndex, const aiString*& pKey, const aiMetadataEntry*& pEntry)
/// Return metadata entry for analyzing it by user.
/// \param [in] pIndex - index of the entry.
/// \param [out] pKey - pointer to the key value.
/// \param [out] pEntry - pointer to the entry: type and value.
/// \return false - if pIndex is out of range, else - true.
inline bool Get(size_t pIndex, const aiString*& pKey, const aiMetadataEntry*& pEntry)
{
if(pIndex >= mNumProperties) return false;
pKey = &mKeys[pIndex];
pEntry = &mValues[pIndex];
return true;
}
#endif // __cplusplus
};

View File

@ -155,8 +155,8 @@ struct aiTexture
* absent color channel and just use 0 for bitness. For example:
* 1. Image contain RGBA and 8 bit per channel, achFormatHint == "rgba8888";
* 2. Image contain ARGB and 8 bit per channel, achFormatHint == "argb8888";
* 2. Image contain RGB and 5 bit for R and B channels and 6 bit for G channel, achFormatHint == "rgba5650";
* 3. One color image with B channel and 1 bit for it, achFormatHint == "rgba0010";
* 3. Image contain RGB and 5 bit for R and B channels and 6 bit for G channel, achFormatHint == "rgba5650";
* 4. One color image with B channel and 1 bit for it, achFormatHint == "rgba0010";
* If mHeight == 0 then achFormatHint is set set to '\\0\\0\\0\\0' if the loader has no additional
* information about the texture file format used OR the
* file extension of the format without a trailing dot. If there