Merge pull request #2818 from RichardTea/backfacing-odd-negative-scale-2383

Backfacing odd negative scale 2383
pull/2827/head
Gordon MacPherson 2019-12-09 19:06:32 +00:00 committed by GitHub
commit 6df5e10c88
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 794 additions and 826 deletions

View File

@ -137,8 +137,9 @@ public:
// -------------------------------------------------------------------
void Execute( aiScene* pScene);
protected:
void ProcessMesh( aiMesh* pMesh);
public:
/** Some other types of post-processing require winding order flips */
static void ProcessMesh( aiMesh* pMesh);
};
// ---------------------------------------------------------------------------

View File

@ -43,13 +43,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the aiProcess_OptimizGraph step
*/
#ifndef ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS
#include "OptimizeGraph.h"
#include "ProcessHelper.h"
#include <assimp/SceneCombiner.h>
#include "ConvertToLHProcess.h"
#include <assimp/Exceptional.h>
#include <assimp/SceneCombiner.h>
#include <stdio.h>
using namespace Assimp;
@ -60,21 +60,21 @@ using namespace Assimp;
* The unhashed variant should be faster, except for *very* large data sets
*/
#ifdef AI_OG_USE_HASHING
// Use our standard hashing function to compute the hash
# define AI_OG_GETKEY(str) SuperFastHash(str.data,str.length)
// Use our standard hashing function to compute the hash
#define AI_OG_GETKEY(str) SuperFastHash(str.data, str.length)
#else
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
# define AI_OG_GETKEY(str) std::string(str.data)
// Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying.
#define AI_OG_GETKEY(str) std::string(str.data)
#endif
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
OptimizeGraphProcess::OptimizeGraphProcess()
: mScene()
, nodes_in()
, nodes_out()
, count_merged() {
OptimizeGraphProcess::OptimizeGraphProcess() :
mScene(),
nodes_in(),
nodes_out(),
count_merged() {
// empty
}
@ -86,33 +86,33 @@ OptimizeGraphProcess::~OptimizeGraphProcess() {
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool OptimizeGraphProcess::IsActive( unsigned int pFlags) const {
bool OptimizeGraphProcess::IsActive(unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph));
}
// ------------------------------------------------------------------------------------------------
// Setup properties for the post-processing step
void OptimizeGraphProcess::SetupProperties(const Importer* pImp) {
void OptimizeGraphProcess::SetupProperties(const Importer *pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST,"");
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST, "");
AddLockedNodeList(tmp);
}
// ------------------------------------------------------------------------------------------------
// Collect new children
void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& nodes) {
void OptimizeGraphProcess::CollectNewChildren(aiNode *nd, std::list<aiNode *> &nodes) {
nodes_in += nd->mNumChildren;
// Process children
std::list<aiNode*> child_nodes;
std::list<aiNode *> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i],child_nodes);
CollectNewChildren(nd->mChildren[i], child_nodes);
nd->mChildren[i] = nullptr;
}
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end() ) {
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end()) {
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
@ -136,19 +136,19 @@ void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& no
nodes.push_back(nd);
// Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode* join_master = NULL;
aiNode *join_master = nullptr;
aiMatrix4x4 inv;
const LockedSetType::const_iterator end = locked.end();
std::list<aiNode*> join;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode* child = *it;
std::list<aiNode *> join;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode *child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
// There may be no instanced meshes
unsigned int n = 0;
for (; n < child->mNumMeshes;++n) {
for (; n < child->mNumMeshes; ++n) {
if (meshes[child->mMeshes[n]] > 1) {
break;
}
@ -159,7 +159,7 @@ void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& no
inv = join_master->mTransformation;
inv.Inverse();
} else {
child->mTransformation = inv * child->mTransformation ;
child->mTransformation = inv * child->mTransformation;
join.push_back(child);
it = child_nodes.erase(it);
@ -170,31 +170,40 @@ void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& no
++it;
}
if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i",count_merged++);
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i", count_merged++);
unsigned int out_meshes = 0;
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) {
for (std::list<aiNode *>::const_iterator it = join.cbegin(); it != join.cend(); ++it) {
out_meshes += (*it)->mNumMeshes;
}
// copy all mesh references in one array
if (out_meshes) {
unsigned int* meshes = new unsigned int[out_meshes+join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes;++n) {
unsigned int *meshes = new unsigned int[out_meshes + join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes; ++n) {
*tmp++ = join_master->mMeshes[n];
}
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) {
for (unsigned int n = 0; n < (*it)->mNumMeshes; ++n) {
for (const aiNode *join_node : join) {
for (unsigned int n = 0; n < join_node->mNumMeshes; ++n) {
*tmp = (*it)->mMeshes[n];
aiMesh* mesh = mScene->mMeshes[*tmp++];
*tmp = join_node->mMeshes[n];
aiMesh *mesh = mScene->mMeshes[*tmp++];
// Assume the transformation is affine
// manually move the mesh into the right coordinate system
const aiMatrix3x3 IT = aiMatrix3x3( (*it)->mTransformation ).Inverse().Transpose();
// Check for odd negative scale (mirror)
if (join_node->mTransformation.Determinant() < 0) {
// Reverse the mesh face winding order
FlipWindingOrderProcess::ProcessMesh(mesh);
}
// Update positions, normals and tangents
const aiMatrix3x3 IT = aiMatrix3x3(join_node->mTransformation).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
mesh->mVertices[a] *= (*it)->mTransformation;
mesh->mVertices[a] *= join_node->mTransformation;
if (mesh->HasNormals())
mesh->mNormals[a] *= IT;
@ -205,7 +214,7 @@ void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& no
}
}
}
delete *it; // bye, node
delete join_node; // bye, node
}
delete[] join_master->mMeshes;
join_master->mMeshes = meshes;
@ -219,17 +228,17 @@ void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& no
delete[] nd->mChildren;
if (!child_nodes.empty()) {
nd->mChildren = new aiNode*[child_nodes.size()];
}
else nd->mChildren = nullptr;
nd->mChildren = new aiNode *[child_nodes.size()];
} else
nd->mChildren = nullptr;
}
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
if (nd->mChildren) {
aiNode** tmp = nd->mChildren;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode* node = *tmp++ = *it;
aiNode **tmp = nd->mChildren;
for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode *node = *tmp++ = *it;
node->mParent = nd;
}
}
@ -239,12 +248,12 @@ void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& no
// ------------------------------------------------------------------------------------------------
// Execute the post-processing step on the given scene
void OptimizeGraphProcess::Execute( aiScene* pScene) {
void OptimizeGraphProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0;
mScene = pScene;
meshes.resize(pScene->mNumMeshes,0);
meshes.resize(pScene->mNumMeshes, 0);
FindInstancedMeshes(pScene->mRootNode);
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
@ -259,7 +268,7 @@ void OptimizeGraphProcess::Execute( aiScene* pScene) {
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim* anim = pScene->mAnimations[i]->mChannels[a];
aiNodeAnim *anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName));
}
}
@ -267,7 +276,7 @@ void OptimizeGraphProcess::Execute( aiScene* pScene) {
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
aiBone* bone = pScene->mMeshes[i]->mBones[a];
aiBone *bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName));
// HACK: Meshes referencing bones may not be transformed; we need to look them.
@ -277,35 +286,35 @@ void OptimizeGraphProcess::Execute( aiScene* pScene) {
}
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera* cam = pScene->mCameras[i];
aiCamera *cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName));
}
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight* lgh = pScene->mLights[i];
aiLight *lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName));
}
// Insert a dummy master node and make it read-only
aiNode* dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
aiNode *dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName));
const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root;
dummy_root->mChildren = new aiNode*[dummy_root->mNumChildren = 1];
dummy_root->mChildren = new aiNode *[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode;
// Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents.
std::list<aiNode*> nodes;
CollectNewChildren (dummy_root,nodes);
std::list<aiNode *> nodes;
CollectNewChildren(dummy_root, nodes);
ai_assert(nodes.size() == 1);
if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = NULL;
pScene->mRootNode = nullptr;
throw DeadlyImportError("After optimizing the scene graph, no data remains");
}
@ -314,19 +323,18 @@ void OptimizeGraphProcess::Execute( aiScene* pScene) {
// Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev;
}
else {
} else {
// Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0];
dummy_root->mChildren[0] = NULL;
dummy_root->mChildren[0] = nullptr;
delete dummy_root;
}
pScene->mRootNode->mParent = NULL;
pScene->mRootNode->mParent = nullptr;
if (!DefaultLogger::isNullLogger()) {
if ( nodes_in != nodes_out) {
if (nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
@ -338,9 +346,8 @@ void OptimizeGraphProcess::Execute( aiScene* pScene) {
// ------------------------------------------------------------------------------------------------
// Build a LUT of all instanced meshes
void OptimizeGraphProcess::FindInstancedMeshes (aiNode* pNode)
{
for (unsigned int i = 0; i < pNode->mNumMeshes;++i) {
void OptimizeGraphProcess::FindInstancedMeshes(aiNode *pNode) {
for (unsigned int i = 0; i < pNode->mNumMeshes; ++i) {
++meshes[pNode->mMeshes[i]];
}

View File

@ -75,13 +75,13 @@ public:
~OptimizeGraphProcess();
// -------------------------------------------------------------------
bool IsActive( unsigned int pFlags) const;
bool IsActive( unsigned int pFlags) const override;
// -------------------------------------------------------------------
void Execute( aiScene* pScene);
void Execute( aiScene* pScene) override;
// -------------------------------------------------------------------
void SetupProperties(const Importer* pImp);
void SetupProperties(const Importer* pImp) override;
// -------------------------------------------------------------------
/** @brief Add a list of node names to be locked and not modified.

View File

@ -45,11 +45,11 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the "PretransformVertices" post processing step
*/
#include "PretransformVertices.h"
#include "ConvertToLHProcess.h"
#include "ProcessHelper.h"
#include <assimp/SceneCombiner.h>
#include <assimp/Exceptional.h>
#include <assimp/SceneCombiner.h>
using namespace Assimp;
@ -59,12 +59,12 @@ using namespace Assimp;
// ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer
PretransformVertices::PretransformVertices()
: configKeepHierarchy (false)
, configNormalize(false)
, configTransform(false)
, configTransformation()
, mConfigPointCloud( false ) {
PretransformVertices::PretransformVertices() :
configKeepHierarchy(false),
configNormalize(false),
configTransform(false),
configTransformation(),
mConfigPointCloud(false) {
// empty
}
@ -76,20 +76,18 @@ PretransformVertices::~PretransformVertices() {
// ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field.
bool PretransformVertices::IsActive( unsigned int pFlags) const
{
bool PretransformVertices::IsActive(unsigned int pFlags) const {
return (pFlags & aiProcess_PreTransformVertices) != 0;
}
// ------------------------------------------------------------------------------------------------
// Setup import configuration
void PretransformVertices::SetupProperties(const Importer* pImp)
{
void PretransformVertices::SetupProperties(const Importer *pImp) {
// Get the current value of AI_CONFIG_PP_PTV_KEEP_HIERARCHY, AI_CONFIG_PP_PTV_NORMALIZE,
// AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION and AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION
configKeepHierarchy = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_KEEP_HIERARCHY,0));
configNormalize = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_NORMALIZE,0));
configTransform = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION,0));
configKeepHierarchy = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_KEEP_HIERARCHY, 0));
configNormalize = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_NORMALIZE, 0));
configTransform = (0 != pImp->GetPropertyInteger(AI_CONFIG_PP_PTV_ADD_ROOT_TRANSFORMATION, 0));
configTransformation = pImp->GetPropertyMatrix(AI_CONFIG_PP_PTV_ROOT_TRANSFORMATION, aiMatrix4x4());
@ -98,11 +96,9 @@ void PretransformVertices::SetupProperties(const Importer* pImp)
// ------------------------------------------------------------------------------------------------
// Count the number of nodes
unsigned int PretransformVertices::CountNodes( aiNode* pcNode )
{
unsigned int PretransformVertices::CountNodes(const aiNode *pcNode) const {
unsigned int iRet = 1;
for (unsigned int i = 0;i < pcNode->mNumChildren;++i)
{
for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
iRet += CountNodes(pcNode->mChildren[i]);
}
return iRet;
@ -110,8 +106,7 @@ unsigned int PretransformVertices::CountNodes( aiNode* pcNode )
// ------------------------------------------------------------------------------------------------
// Get a bitwise combination identifying the vertex format of a mesh
unsigned int PretransformVertices::GetMeshVFormat( aiMesh* pcMesh )
{
unsigned int PretransformVertices::GetMeshVFormat(aiMesh *pcMesh) const {
// the vertex format is stored in aiMesh::mBones for later retrieval.
// there isn't a good reason to compute it a few hundred times
// from scratch. The pointer is unused as animations are lost
@ -119,56 +114,47 @@ unsigned int PretransformVertices::GetMeshVFormat( aiMesh* pcMesh )
if (pcMesh->mBones)
return (unsigned int)(uint64_t)pcMesh->mBones;
const unsigned int iRet = GetMeshVFormatUnique(pcMesh);
// store the value for later use
pcMesh->mBones = (aiBone**)(uint64_t)iRet;
pcMesh->mBones = (aiBone **)(uint64_t)iRet;
return iRet;
}
// ------------------------------------------------------------------------------------------------
// Count the number of vertices in the whole scene and a given
// material index
void PretransformVertices::CountVerticesAndFaces( aiScene* pcScene, aiNode* pcNode, unsigned int iMat,
unsigned int iVFormat, unsigned int* piFaces, unsigned int* piVertices)
{
for (unsigned int i = 0; i < pcNode->mNumMeshes;++i)
{
aiMesh* pcMesh = pcScene->mMeshes[ pcNode->mMeshes[i] ];
if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh))
{
void PretransformVertices::CountVerticesAndFaces(const aiScene *pcScene, const aiNode *pcNode, unsigned int iMat,
unsigned int iVFormat, unsigned int *piFaces, unsigned int *piVertices) const {
for (unsigned int i = 0; i < pcNode->mNumMeshes; ++i) {
aiMesh *pcMesh = pcScene->mMeshes[pcNode->mMeshes[i]];
if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) {
*piVertices += pcMesh->mNumVertices;
*piFaces += pcMesh->mNumFaces;
}
}
for (unsigned int i = 0;i < pcNode->mNumChildren;++i)
{
CountVerticesAndFaces(pcScene,pcNode->mChildren[i],iMat,
iVFormat,piFaces,piVertices);
for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
CountVerticesAndFaces(pcScene, pcNode->mChildren[i], iMat,
iVFormat, piFaces, piVertices);
}
}
// ------------------------------------------------------------------------------------------------
// Collect vertex/face data
void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsigned int iMat,
unsigned int iVFormat, aiMesh* pcMeshOut,
unsigned int aiCurrent[2], unsigned int* num_refs)
{
void PretransformVertices::CollectData(const aiScene *pcScene, const aiNode *pcNode, unsigned int iMat,
unsigned int iVFormat, aiMesh *pcMeshOut,
unsigned int aiCurrent[2], unsigned int *num_refs) const {
// No need to multiply if there's no transformation
const bool identity = pcNode->mTransformation.IsIdentity();
for (unsigned int i = 0; i < pcNode->mNumMeshes;++i)
{
aiMesh* pcMesh = pcScene->mMeshes[ pcNode->mMeshes[i] ];
if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh))
{
for (unsigned int i = 0; i < pcNode->mNumMeshes; ++i) {
aiMesh *pcMesh = pcScene->mMeshes[pcNode->mMeshes[i]];
if (iMat == pcMesh->mMaterialIndex && iVFormat == GetMeshVFormat(pcMesh)) {
// Decrement mesh reference counter
unsigned int& num_ref = num_refs[pcNode->mMeshes[i]];
unsigned int &num_ref = num_refs[pcNode->mMeshes[i]];
ai_assert(0 != num_ref);
--num_ref;
// Save the name of the last mesh
if (num_ref==0)
{
if (num_ref == 0) {
pcMeshOut->mName = pcMesh->mName;
}
@ -184,8 +170,7 @@ void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsign
pcMesh->mNormals,
pcMesh->mNumVertices * sizeof(aiVector3D));
}
if (iVFormat & 0x4)
{
if (iVFormat & 0x4) {
// copy tangents without modifying them
::memcpy(pcMeshOut->mTangents + aiCurrent[AI_PTVS_VERTEX],
pcMesh->mTangents,
@ -195,12 +180,10 @@ void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsign
pcMesh->mBitangents,
pcMesh->mNumVertices * sizeof(aiVector3D));
}
}
else
{
} else {
// copy positions, transform them to worldspace
for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) {
pcMeshOut->mVertices[aiCurrent[AI_PTVS_VERTEX]+n] = pcNode->mTransformation * pcMesh->mVertices[n];
for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) {
pcMeshOut->mVertices[aiCurrent[AI_PTVS_VERTEX] + n] = pcNode->mTransformation * pcMesh->mVertices[n];
}
aiMatrix4x4 mWorldIT = pcNode->mTransformation;
mWorldIT.Inverse().Transpose();
@ -208,26 +191,23 @@ void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsign
// TODO: implement Inverse() for aiMatrix3x3
aiMatrix3x3 m = aiMatrix3x3(mWorldIT);
if (iVFormat & 0x2)
{
if (iVFormat & 0x2) {
// copy normals, transform them to worldspace
for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) {
pcMeshOut->mNormals[aiCurrent[AI_PTVS_VERTEX]+n] =
for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) {
pcMeshOut->mNormals[aiCurrent[AI_PTVS_VERTEX] + n] =
(m * pcMesh->mNormals[n]).Normalize();
}
}
if (iVFormat & 0x4)
{
if (iVFormat & 0x4) {
// copy tangents and bitangents, transform them to worldspace
for (unsigned int n = 0; n < pcMesh->mNumVertices;++n) {
pcMeshOut->mTangents [aiCurrent[AI_PTVS_VERTEX]+n] = (m * pcMesh->mTangents[n]).Normalize();
pcMeshOut->mBitangents[aiCurrent[AI_PTVS_VERTEX]+n] = (m * pcMesh->mBitangents[n]).Normalize();
for (unsigned int n = 0; n < pcMesh->mNumVertices; ++n) {
pcMeshOut->mTangents[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mTangents[n]).Normalize();
pcMeshOut->mBitangents[aiCurrent[AI_PTVS_VERTEX] + n] = (m * pcMesh->mBitangents[n]).Normalize();
}
}
}
unsigned int p = 0;
while (iVFormat & (0x100 << p))
{
while (iVFormat & (0x100 << p)) {
// copy texture coordinates
memcpy(pcMeshOut->mTextureCoords[p] + aiCurrent[AI_PTVS_VERTEX],
pcMesh->mTextureCoords[p],
@ -235,8 +215,7 @@ void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsign
++p;
}
p = 0;
while (iVFormat & (0x1000000 << p))
{
while (iVFormat & (0x1000000 << p)) {
// copy vertex colors
memcpy(pcMeshOut->mColors[p] + aiCurrent[AI_PTVS_VERTEX],
pcMesh->mColors[p],
@ -246,36 +225,33 @@ void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsign
// now we need to copy all faces. since we will delete the source mesh afterwards,
// we don't need to reallocate the array of indices except if this mesh is
// referenced multiple times.
for (unsigned int planck = 0;planck < pcMesh->mNumFaces;++planck)
{
aiFace& f_src = pcMesh->mFaces[planck];
aiFace& f_dst = pcMeshOut->mFaces[aiCurrent[AI_PTVS_FACE]+planck];
for (unsigned int planck = 0; planck < pcMesh->mNumFaces; ++planck) {
aiFace &f_src = pcMesh->mFaces[planck];
aiFace &f_dst = pcMeshOut->mFaces[aiCurrent[AI_PTVS_FACE] + planck];
const unsigned int num_idx = f_src.mNumIndices;
f_dst.mNumIndices = num_idx;
unsigned int* pi;
unsigned int *pi;
if (!num_ref) { /* if last time the mesh is referenced -> no reallocation */
pi = f_dst.mIndices = f_src.mIndices;
// offset all vertex indices
for (unsigned int hahn = 0; hahn < num_idx;++hahn){
for (unsigned int hahn = 0; hahn < num_idx; ++hahn) {
pi[hahn] += aiCurrent[AI_PTVS_VERTEX];
}
}
else {
} else {
pi = f_dst.mIndices = new unsigned int[num_idx];
// copy and offset all vertex indices
for (unsigned int hahn = 0; hahn < num_idx;++hahn){
for (unsigned int hahn = 0; hahn < num_idx; ++hahn) {
pi[hahn] = f_src.mIndices[hahn] + aiCurrent[AI_PTVS_VERTEX];
}
}
// Update the mPrimitiveTypes member of the mesh
switch (pcMesh->mFaces[planck].mNumIndices)
{
switch (pcMesh->mFaces[planck].mNumIndices) {
case 0x1:
pcMeshOut->mPrimitiveTypes |= aiPrimitiveType_POINT;
break;
@ -296,21 +272,19 @@ void PretransformVertices::CollectData( aiScene* pcScene, aiNode* pcNode, unsign
}
// append all children of us
for (unsigned int i = 0;i < pcNode->mNumChildren;++i) {
CollectData(pcScene,pcNode->mChildren[i],iMat,
iVFormat,pcMeshOut,aiCurrent,num_refs);
for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
CollectData(pcScene, pcNode->mChildren[i], iMat,
iVFormat, pcMeshOut, aiCurrent, num_refs);
}
}
// ------------------------------------------------------------------------------------------------
// Get a list of all vertex formats that occur for a given material index
// The output list contains duplicate elements
void PretransformVertices::GetVFormatList( aiScene* pcScene, unsigned int iMat,
std::list<unsigned int>& aiOut)
{
for (unsigned int i = 0; i < pcScene->mNumMeshes;++i)
{
aiMesh* pcMesh = pcScene->mMeshes[ i ];
void PretransformVertices::GetVFormatList(const aiScene *pcScene, unsigned int iMat,
std::list<unsigned int> &aiOut) const {
for (unsigned int i = 0; i < pcScene->mNumMeshes; ++i) {
aiMesh *pcMesh = pcScene->mMeshes[i];
if (iMat == pcMesh->mMaterialIndex) {
aiOut.push_back(GetMeshVFormat(pcMesh));
}
@ -319,35 +293,38 @@ void PretransformVertices::GetVFormatList( aiScene* pcScene, unsigned int iMat,
// ------------------------------------------------------------------------------------------------
// Compute the absolute transformation matrices of each node
void PretransformVertices::ComputeAbsoluteTransform( aiNode* pcNode )
{
void PretransformVertices::ComputeAbsoluteTransform(aiNode *pcNode) {
if (pcNode->mParent) {
pcNode->mTransformation = pcNode->mParent->mTransformation*pcNode->mTransformation;
pcNode->mTransformation = pcNode->mParent->mTransformation * pcNode->mTransformation;
}
for (unsigned int i = 0;i < pcNode->mNumChildren;++i) {
for (unsigned int i = 0; i < pcNode->mNumChildren; ++i) {
ComputeAbsoluteTransform(pcNode->mChildren[i]);
}
}
// ------------------------------------------------------------------------------------------------
// Apply the node transformation to a mesh
void PretransformVertices::ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat)
{
void PretransformVertices::ApplyTransform(aiMesh *mesh, const aiMatrix4x4 &mat) const {
// Check whether we need to transform the coordinates at all
if (!mat.IsIdentity()) {
// Check for odd negative scale (mirror)
if (mesh->HasFaces() && mat.Determinant() < 0) {
// Reverse the mesh face winding order
FlipWindingOrderProcess::ProcessMesh(mesh);
}
// Update positions
if (mesh->HasPositions()) {
for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
mesh->mVertices[i] = mat * mesh->mVertices[i];
}
}
if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) {
aiMatrix4x4 mWorldIT = mat;
mWorldIT.Inverse().Transpose();
// TODO: implement Inverse() for aiMatrix3x3
aiMatrix3x3 m = aiMatrix3x3(mWorldIT);
// Update normals and tangents
if (mesh->HasNormals() || mesh->HasTangentsAndBitangents()) {
const aiMatrix3x3 m = aiMatrix3x3(mat).Inverse().Transpose();
if (mesh->HasNormals()) {
for (unsigned int i = 0; i < mesh->mNumVertices; ++i) {
@ -366,29 +343,27 @@ void PretransformVertices::ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat)
// ------------------------------------------------------------------------------------------------
// Simple routine to build meshes in worldspace, no further optimization
void PretransformVertices::BuildWCSMeshes(std::vector<aiMesh*>& out, aiMesh** in,
unsigned int numIn, aiNode* node)
{
void PretransformVertices::BuildWCSMeshes(std::vector<aiMesh *> &out, aiMesh **in,
unsigned int numIn, aiNode *node) const {
// NOTE:
// aiMesh::mNumBones store original source mesh, or UINT_MAX if not a copy
// aiMesh::mBones store reference to abs. transform we multiplied with
// process meshes
for (unsigned int i = 0; i < node->mNumMeshes;++i) {
aiMesh* mesh = in[node->mMeshes[i]];
for (unsigned int i = 0; i < node->mNumMeshes; ++i) {
aiMesh *mesh = in[node->mMeshes[i]];
// check whether we can operate on this mesh
if (!mesh->mBones || *reinterpret_cast<aiMatrix4x4*>(mesh->mBones) == node->mTransformation) {
if (!mesh->mBones || *reinterpret_cast<aiMatrix4x4 *>(mesh->mBones) == node->mTransformation) {
// yes, we can.
mesh->mBones = reinterpret_cast<aiBone**> (&node->mTransformation);
mesh->mBones = reinterpret_cast<aiBone **>(&node->mTransformation);
mesh->mNumBones = UINT_MAX;
}
else {
} else {
// try to find us in the list of newly created meshes
for (unsigned int n = 0; n < out.size(); ++n) {
aiMesh* ctz = out[n];
if (ctz->mNumBones == node->mMeshes[i] && *reinterpret_cast<aiMatrix4x4*>(ctz->mBones) == node->mTransformation) {
aiMesh *ctz = out[n];
if (ctz->mNumBones == node->mMeshes[i] && *reinterpret_cast<aiMatrix4x4 *>(ctz->mBones) == node->mTransformation) {
// ok, use this one. Update node mesh index
node->mMeshes[i] = numIn + n;
@ -397,15 +372,15 @@ void PretransformVertices::BuildWCSMeshes(std::vector<aiMesh*>& out, aiMesh** in
if (node->mMeshes[i] < numIn) {
// Worst case. Need to operate on a full copy of the mesh
ASSIMP_LOG_INFO("PretransformVertices: Copying mesh due to mismatching transforms");
aiMesh* ntz;
aiMesh *ntz;
const unsigned int tmp = mesh->mNumBones; //
mesh->mNumBones = 0;
SceneCombiner::Copy(&ntz,mesh);
SceneCombiner::Copy(&ntz, mesh);
mesh->mNumBones = tmp;
ntz->mNumBones = node->mMeshes[i];
ntz->mBones = reinterpret_cast<aiBone**> (&node->mTransformation);
ntz->mBones = reinterpret_cast<aiBone **>(&node->mTransformation);
out.push_back(ntz);
@ -415,37 +390,34 @@ void PretransformVertices::BuildWCSMeshes(std::vector<aiMesh*>& out, aiMesh** in
}
// call children
for (unsigned int i = 0; i < node->mNumChildren;++i)
BuildWCSMeshes(out,in,numIn,node->mChildren[i]);
for (unsigned int i = 0; i < node->mNumChildren; ++i)
BuildWCSMeshes(out, in, numIn, node->mChildren[i]);
}
// ------------------------------------------------------------------------------------------------
// Reset transformation matrices to identity
void PretransformVertices::MakeIdentityTransform(aiNode* nd)
{
void PretransformVertices::MakeIdentityTransform(aiNode *nd) const {
nd->mTransformation = aiMatrix4x4();
// call children
for (unsigned int i = 0; i < nd->mNumChildren;++i)
for (unsigned int i = 0; i < nd->mNumChildren; ++i)
MakeIdentityTransform(nd->mChildren[i]);
}
// ------------------------------------------------------------------------------------------------
// Build reference counters for all meshes
void PretransformVertices::BuildMeshRefCountArray(aiNode* nd, unsigned int * refs)
{
for (unsigned int i = 0; i< nd->mNumMeshes;++i)
void PretransformVertices::BuildMeshRefCountArray(const aiNode *nd, unsigned int *refs) const {
for (unsigned int i = 0; i < nd->mNumMeshes; ++i)
refs[nd->mMeshes[i]]++;
// call children
for (unsigned int i = 0; i < nd->mNumChildren;++i)
BuildMeshRefCountArray(nd->mChildren[i],refs);
for (unsigned int i = 0; i < nd->mNumChildren; ++i)
BuildMeshRefCountArray(nd->mChildren[i], refs);
}
// ------------------------------------------------------------------------------------------------
// Executes the post processing step on the given imported data.
void PretransformVertices::Execute( aiScene* pScene)
{
void PretransformVertices::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("PretransformVerticesProcess begin");
// Return immediately if we have no meshes
@ -456,7 +428,7 @@ void PretransformVertices::Execute( aiScene* pScene)
const unsigned int iOldAnimationChannels = pScene->mNumAnimations;
const unsigned int iOldNodes = CountNodes(pScene->mRootNode);
if(configTransform) {
if (configTransform) {
pScene->mRootNode->mTransformation = configTransformation;
}
@ -466,10 +438,10 @@ void PretransformVertices::Execute( aiScene* pScene)
// Delete aiMesh::mBones for all meshes. The bones are
// removed during this step and we need the pointer as
// temporary storage
for (unsigned int i = 0; i < pScene->mNumMeshes;++i) {
aiMesh* mesh = pScene->mMeshes[i];
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
aiMesh *mesh = pScene->mMeshes[i];
for (unsigned int a = 0; a < mesh->mNumBones;++a)
for (unsigned int a = 0; a < mesh->mNumBones; ++a)
delete mesh->mBones[a];
delete[] mesh->mBones;
@ -477,74 +449,74 @@ void PretransformVertices::Execute( aiScene* pScene)
}
// now build a list of output meshes
std::vector<aiMesh*> apcOutMeshes;
std::vector<aiMesh *> apcOutMeshes;
// Keep scene hierarchy? It's an easy job in this case ...
// we go on and transform all meshes, if one is referenced by nodes
// with different absolute transformations a depth copy of the mesh
// is required.
if( configKeepHierarchy ) {
if (configKeepHierarchy) {
// Hack: store the matrix we're transforming a mesh with in aiMesh::mBones
BuildWCSMeshes(apcOutMeshes,pScene->mMeshes,pScene->mNumMeshes, pScene->mRootNode);
BuildWCSMeshes(apcOutMeshes, pScene->mMeshes, pScene->mNumMeshes, pScene->mRootNode);
// ... if new meshes have been generated, append them to the end of the scene
if (apcOutMeshes.size() > 0) {
aiMesh** npp = new aiMesh*[pScene->mNumMeshes + apcOutMeshes.size()];
aiMesh **npp = new aiMesh *[pScene->mNumMeshes + apcOutMeshes.size()];
memcpy(npp,pScene->mMeshes,sizeof(aiMesh*)*pScene->mNumMeshes);
memcpy(npp+pScene->mNumMeshes,&apcOutMeshes[0],sizeof(aiMesh*)*apcOutMeshes.size());
memcpy(npp, pScene->mMeshes, sizeof(aiMesh *) * pScene->mNumMeshes);
memcpy(npp + pScene->mNumMeshes, &apcOutMeshes[0], sizeof(aiMesh *) * apcOutMeshes.size());
pScene->mNumMeshes += static_cast<unsigned int>(apcOutMeshes.size());
delete[] pScene->mMeshes; pScene->mMeshes = npp;
delete[] pScene->mMeshes;
pScene->mMeshes = npp;
}
// now iterate through all meshes and transform them to worldspace
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
ApplyTransform(pScene->mMeshes[i],*reinterpret_cast<aiMatrix4x4*>( pScene->mMeshes[i]->mBones ));
ApplyTransform(pScene->mMeshes[i], *reinterpret_cast<aiMatrix4x4 *>(pScene->mMeshes[i]->mBones));
// prevent improper destruction
pScene->mMeshes[i]->mBones = NULL;
pScene->mMeshes[i]->mNumBones = 0;
}
} else {
apcOutMeshes.reserve(pScene->mNumMaterials<<1u);
apcOutMeshes.reserve(pScene->mNumMaterials << 1u);
std::list<unsigned int> aiVFormats;
std::vector<unsigned int> s(pScene->mNumMeshes,0);
BuildMeshRefCountArray(pScene->mRootNode,&s[0]);
std::vector<unsigned int> s(pScene->mNumMeshes, 0);
BuildMeshRefCountArray(pScene->mRootNode, &s[0]);
for (unsigned int i = 0; i < pScene->mNumMaterials;++i) {
for (unsigned int i = 0; i < pScene->mNumMaterials; ++i) {
// get the list of all vertex formats for this material
aiVFormats.clear();
GetVFormatList(pScene,i,aiVFormats);
GetVFormatList(pScene, i, aiVFormats);
aiVFormats.sort();
aiVFormats.unique();
for (std::list<unsigned int>::const_iterator j = aiVFormats.begin();j != aiVFormats.end();++j) {
for (std::list<unsigned int>::const_iterator j = aiVFormats.begin(); j != aiVFormats.end(); ++j) {
unsigned int iVertices = 0;
unsigned int iFaces = 0;
CountVerticesAndFaces(pScene,pScene->mRootNode,i,*j,&iFaces,&iVertices);
if (0 != iFaces && 0 != iVertices)
{
CountVerticesAndFaces(pScene, pScene->mRootNode, i, *j, &iFaces, &iVertices);
if (0 != iFaces && 0 != iVertices) {
apcOutMeshes.push_back(new aiMesh());
aiMesh* pcMesh = apcOutMeshes.back();
aiMesh *pcMesh = apcOutMeshes.back();
pcMesh->mNumFaces = iFaces;
pcMesh->mNumVertices = iVertices;
pcMesh->mFaces = new aiFace[iFaces];
pcMesh->mVertices = new aiVector3D[iVertices];
pcMesh->mMaterialIndex = i;
if ((*j) & 0x2)pcMesh->mNormals = new aiVector3D[iVertices];
if ((*j) & 0x4)
{
if ((*j) & 0x2) pcMesh->mNormals = new aiVector3D[iVertices];
if ((*j) & 0x4) {
pcMesh->mTangents = new aiVector3D[iVertices];
pcMesh->mBitangents = new aiVector3D[iVertices];
}
iFaces = 0;
while ((*j) & (0x100 << iFaces))
{
while ((*j) & (0x100 << iFaces)) {
pcMesh->mTextureCoords[iFaces] = new aiVector3D[iVertices];
if ((*j) & (0x10000 << iFaces))pcMesh->mNumUVComponents[iFaces] = 3;
else pcMesh->mNumUVComponents[iFaces] = 2;
if ((*j) & (0x10000 << iFaces))
pcMesh->mNumUVComponents[iFaces] = 3;
else
pcMesh->mNumUVComponents[iFaces] = 2;
iFaces++;
}
iFaces = 0;
@ -552,8 +524,8 @@ void PretransformVertices::Execute( aiScene* pScene)
pcMesh->mColors[iFaces++] = new aiColor4D[iVertices];
// fill the mesh ...
unsigned int aiTemp[2] = {0,0};
CollectData(pScene,pScene->mRootNode,i,*j,pcMesh,aiTemp,&s[0]);
unsigned int aiTemp[2] = { 0, 0 };
CollectData(pScene, pScene->mRootNode, i, *j, pcMesh, aiTemp, &s[0]);
}
}
}
@ -562,13 +534,10 @@ void PretransformVertices::Execute( aiScene* pScene)
if (apcOutMeshes.empty()) {
throw DeadlyImportError("No output meshes: all meshes are orphaned and are not referenced by any nodes");
}
else
{
} else {
// now delete all meshes in the scene and build a new mesh list
for (unsigned int i = 0; i < pScene->mNumMeshes;++i)
{
aiMesh* mesh = pScene->mMeshes[i];
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
aiMesh *mesh = pScene->mMeshes[i];
mesh->mNumBones = 0;
mesh->mBones = NULL;
@ -591,14 +560,14 @@ void PretransformVertices::Execute( aiScene* pScene)
// It is impossible that we have more output meshes than
// input meshes, so we can easily reuse the old mesh array
pScene->mNumMeshes = (unsigned int)apcOutMeshes.size();
for (unsigned int i = 0; i < pScene->mNumMeshes;++i) {
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
pScene->mMeshes[i] = apcOutMeshes[i];
}
}
}
// remove all animations from the scene
for (unsigned int i = 0; i < pScene->mNumAnimations;++i)
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i)
delete pScene->mAnimations[i];
delete[] pScene->mAnimations;
@ -606,56 +575,50 @@ void PretransformVertices::Execute( aiScene* pScene)
pScene->mNumAnimations = 0;
// --- we need to keep all cameras and lights
for (unsigned int i = 0; i < pScene->mNumCameras;++i)
{
aiCamera* cam = pScene->mCameras[i];
const aiNode* nd = pScene->mRootNode->FindNode(cam->mName);
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera *cam = pScene->mCameras[i];
const aiNode *nd = pScene->mRootNode->FindNode(cam->mName);
ai_assert(NULL != nd);
// multiply all properties of the camera with the absolute
// transformation of the corresponding node
cam->mPosition = nd->mTransformation * cam->mPosition;
cam->mLookAt = aiMatrix3x3( nd->mTransformation ) * cam->mLookAt;
cam->mUp = aiMatrix3x3( nd->mTransformation ) * cam->mUp;
cam->mLookAt = aiMatrix3x3(nd->mTransformation) * cam->mLookAt;
cam->mUp = aiMatrix3x3(nd->mTransformation) * cam->mUp;
}
for (unsigned int i = 0; i < pScene->mNumLights;++i)
{
aiLight* l = pScene->mLights[i];
const aiNode* nd = pScene->mRootNode->FindNode(l->mName);
for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight *l = pScene->mLights[i];
const aiNode *nd = pScene->mRootNode->FindNode(l->mName);
ai_assert(NULL != nd);
// multiply all properties of the camera with the absolute
// transformation of the corresponding node
l->mPosition = nd->mTransformation * l->mPosition;
l->mDirection = aiMatrix3x3( nd->mTransformation ) * l->mDirection;
l->mUp = aiMatrix3x3( nd->mTransformation ) * l->mUp;
l->mDirection = aiMatrix3x3(nd->mTransformation) * l->mDirection;
l->mUp = aiMatrix3x3(nd->mTransformation) * l->mUp;
}
if( !configKeepHierarchy ) {
if (!configKeepHierarchy) {
// now delete all nodes in the scene and build a new
// flat node graph with a root node and some level 1 children
aiNode* newRoot = new aiNode();
aiNode *newRoot = new aiNode();
newRoot->mName = pScene->mRootNode->mName;
delete pScene->mRootNode;
pScene->mRootNode = newRoot;
if (1 == pScene->mNumMeshes && !pScene->mNumLights && !pScene->mNumCameras)
{
if (1 == pScene->mNumMeshes && !pScene->mNumLights && !pScene->mNumCameras) {
pScene->mRootNode->mNumMeshes = 1;
pScene->mRootNode->mMeshes = new unsigned int[1];
pScene->mRootNode->mMeshes[0] = 0;
}
else
{
pScene->mRootNode->mNumChildren = pScene->mNumMeshes+pScene->mNumLights+pScene->mNumCameras;
aiNode** nodes = pScene->mRootNode->mChildren = new aiNode*[pScene->mRootNode->mNumChildren];
} else {
pScene->mRootNode->mNumChildren = pScene->mNumMeshes + pScene->mNumLights + pScene->mNumCameras;
aiNode **nodes = pScene->mRootNode->mChildren = new aiNode *[pScene->mRootNode->mNumChildren];
// generate mesh nodes
for (unsigned int i = 0; i < pScene->mNumMeshes;++i,++nodes)
{
aiNode* pcNode = new aiNode();
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i, ++nodes) {
aiNode *pcNode = new aiNode();
*nodes = pcNode;
pcNode->mParent = pScene->mRootNode;
pcNode->mName = pScene->mMeshes[i]->mName;
@ -666,52 +629,49 @@ void PretransformVertices::Execute( aiScene* pScene)
pcNode->mMeshes[0] = i;
}
// generate light nodes
for (unsigned int i = 0; i < pScene->mNumLights;++i,++nodes)
{
aiNode* pcNode = new aiNode();
for (unsigned int i = 0; i < pScene->mNumLights; ++i, ++nodes) {
aiNode *pcNode = new aiNode();
*nodes = pcNode;
pcNode->mParent = pScene->mRootNode;
pcNode->mName.length = ai_snprintf(pcNode->mName.data, MAXLEN, "light_%u",i);
pcNode->mName.length = ai_snprintf(pcNode->mName.data, MAXLEN, "light_%u", i);
pScene->mLights[i]->mName = pcNode->mName;
}
// generate camera nodes
for (unsigned int i = 0; i < pScene->mNumCameras;++i,++nodes)
{
aiNode* pcNode = new aiNode();
for (unsigned int i = 0; i < pScene->mNumCameras; ++i, ++nodes) {
aiNode *pcNode = new aiNode();
*nodes = pcNode;
pcNode->mParent = pScene->mRootNode;
pcNode->mName.length = ::ai_snprintf(pcNode->mName.data,MAXLEN,"cam_%u",i);
pcNode->mName.length = ::ai_snprintf(pcNode->mName.data, MAXLEN, "cam_%u", i);
pScene->mCameras[i]->mName = pcNode->mName;
}
}
}
else {
} else {
// ... and finally set the transformation matrix of all nodes to identity
MakeIdentityTransform(pScene->mRootNode);
}
if (configNormalize) {
// compute the boundary of all meshes
aiVector3D min,max;
MinMaxChooser<aiVector3D> ()(min,max);
aiVector3D min, max;
MinMaxChooser<aiVector3D>()(min, max);
for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
aiMesh* m = pScene->mMeshes[a];
for (unsigned int i = 0; i < m->mNumVertices;++i) {
min = std::min(m->mVertices[i],min);
max = std::max(m->mVertices[i],max);
aiMesh *m = pScene->mMeshes[a];
for (unsigned int i = 0; i < m->mNumVertices; ++i) {
min = std::min(m->mVertices[i], min);
max = std::max(m->mVertices[i], max);
}
}
// find the dominant axis
aiVector3D d = max-min;
const ai_real div = std::max(d.x,std::max(d.y,d.z))*ai_real( 0.5);
aiVector3D d = max - min;
const ai_real div = std::max(d.x, std::max(d.y, d.z)) * ai_real(0.5);
d = min + d * (ai_real)0.5;
for (unsigned int a = 0; a < pScene->mNumMeshes; ++a) {
aiMesh* m = pScene->mMeshes[a];
for (unsigned int i = 0; i < m->mNumVertices;++i) {
m->mVertices[i] = (m->mVertices[i]-d)/div;
aiMesh *m = pScene->mMeshes[a];
for (unsigned int i = 0; i < m->mNumVertices; ++i) {
m->mVertices[i] = (m->mVertices[i] - d) / div;
}
}
}
@ -721,8 +681,8 @@ void PretransformVertices::Execute( aiScene* pScene)
ASSIMP_LOG_DEBUG("PretransformVerticesProcess finished");
ASSIMP_LOG_INFO_F("Removed ", iOldNodes, " nodes and ", iOldAnimationChannels, " animation channels (",
CountNodes(pScene->mRootNode) ," output nodes)" );
ASSIMP_LOG_INFO_F("Kept ", pScene->mNumLights, " lights and ", pScene->mNumCameras, " cameras." );
CountNodes(pScene->mRootNode), " output nodes)");
ASSIMP_LOG_INFO_F("Kept ", pScene->mNumLights, " lights and ", pScene->mNumCameras, " cameras.");
ASSIMP_LOG_INFO_F("Moved ", iOldMeshes, " meshes to WCS (number of output meshes: ", pScene->mNumMeshes, ")");
}
}

View File

@ -68,20 +68,20 @@ namespace Assimp {
*/
class ASSIMP_API PretransformVertices : public BaseProcess {
public:
PretransformVertices ();
~PretransformVertices ();
PretransformVertices();
~PretransformVertices();
// -------------------------------------------------------------------
// Check whether step is active
bool IsActive( unsigned int pFlags) const;
bool IsActive(unsigned int pFlags) const override;
// -------------------------------------------------------------------
// Execute step on a given scene
void Execute( aiScene* pScene);
void Execute(aiScene *pScene) override;
// -------------------------------------------------------------------
// Setup import settings
void SetupProperties(const Importer* pImp);
void SetupProperties(const Importer *pImp) override;
// -------------------------------------------------------------------
/** @brief Toggle the 'keep hierarchy' option
@ -102,56 +102,56 @@ public:
private:
// -------------------------------------------------------------------
// Count the number of nodes
unsigned int CountNodes( aiNode* pcNode );
unsigned int CountNodes(const aiNode *pcNode) const;
// -------------------------------------------------------------------
// Get a bitwise combination identifying the vertex format of a mesh
unsigned int GetMeshVFormat(aiMesh* pcMesh);
unsigned int GetMeshVFormat(aiMesh *pcMesh) const;
// -------------------------------------------------------------------
// Count the number of vertices in the whole scene and a given
// material index
void CountVerticesAndFaces( aiScene* pcScene, aiNode* pcNode,
void CountVerticesAndFaces(const aiScene *pcScene, const aiNode *pcNode,
unsigned int iMat,
unsigned int iVFormat,
unsigned int* piFaces,
unsigned int* piVertices);
unsigned int *piFaces,
unsigned int *piVertices) const;
// -------------------------------------------------------------------
// Collect vertex/face data
void CollectData( aiScene* pcScene, aiNode* pcNode,
void CollectData(const aiScene *pcScene, const aiNode *pcNode,
unsigned int iMat,
unsigned int iVFormat,
aiMesh* pcMeshOut,
aiMesh *pcMeshOut,
unsigned int aiCurrent[2],
unsigned int* num_refs);
unsigned int *num_refs) const;
// -------------------------------------------------------------------
// Get a list of all vertex formats that occur for a given material
// The output list contains duplicate elements
void GetVFormatList( aiScene* pcScene, unsigned int iMat,
std::list<unsigned int>& aiOut);
void GetVFormatList(const aiScene *pcScene, unsigned int iMat,
std::list<unsigned int> &aiOut) const;
// -------------------------------------------------------------------
// Compute the absolute transformation matrices of each node
void ComputeAbsoluteTransform( aiNode* pcNode );
void ComputeAbsoluteTransform(aiNode *pcNode);
// -------------------------------------------------------------------
// Simple routine to build meshes in worldspace, no further optimization
void BuildWCSMeshes(std::vector<aiMesh*>& out, aiMesh** in,
unsigned int numIn, aiNode* node);
void BuildWCSMeshes(std::vector<aiMesh *> &out, aiMesh **in,
unsigned int numIn, aiNode *node) const;
// -------------------------------------------------------------------
// Apply the node transformation to a mesh
void ApplyTransform(aiMesh* mesh, const aiMatrix4x4& mat);
void ApplyTransform(aiMesh *mesh, const aiMatrix4x4 &mat) const;
// -------------------------------------------------------------------
// Reset transformation matrices to identity
void MakeIdentityTransform(aiNode* nd);
void MakeIdentityTransform(aiNode *nd) const;
// -------------------------------------------------------------------
// Build reference counters for all meshes
void BuildMeshRefCountArray(aiNode* nd, unsigned int * refs);
void BuildMeshRefCountArray(const aiNode *nd, unsigned int *refs) const;
//! Configuration option: keep scene hierarchy as long as possible
bool configKeepHierarchy;