Merge branch 'master' into master
commit
6566dcaf34
|
@ -43,7 +43,7 @@ __Importers__:
|
|||
- AMJ
|
||||
- ASE
|
||||
- ASK
|
||||
- B3D;
|
||||
- B3D
|
||||
- BLEND (Blender)
|
||||
- BVH
|
||||
- COB
|
||||
|
|
22
doc/dox.h
22
doc/dox.h
|
@ -561,17 +561,27 @@ The output UV coordinate system has its origin in the lower-left corner:
|
|||
@endcode
|
||||
Use the #aiProcess_FlipUVs flag to get UV coordinates with the upper-left corner als origin.
|
||||
|
||||
All matrices in the library are row-major. That means that the matrices are stored row by row in memory,
|
||||
which is similar to the OpenGL matrix layout. A typical 4x4 matrix including a translational part looks like this:
|
||||
A typical 4x4 matrix including a translational part looks like this:
|
||||
@code
|
||||
X1 Y1 Z1 T1
|
||||
X2 Y2 Z2 T2
|
||||
X3 Y3 Z3 T3
|
||||
0 0 0 1
|
||||
0 0 0 1
|
||||
@endcode
|
||||
with (X1, X2, X3) being the X base vector, (Y1, Y2, Y3) being the Y base vector, (Z1, Z2, Z3)
|
||||
being the Z base vector and (T1, T2, T3) being the translation part. If you want to use these matrices
|
||||
in DirectX functions, you have to transpose them.
|
||||
with <tt>(X1, X2, X3)</tt> being the local X base vector, <tt>(Y1, Y2, Y3)</tt> being the local
|
||||
Y base vector, <tt>(Z1, Z2, Z3)</tt> being the local Z base vector and <tt>(T1, T2, T3)</tt> being the
|
||||
offset of the local origin (the translational part).
|
||||
All matrices in the library use row-major storage order. That means that the matrix elements are
|
||||
stored row-by-row, i.e. they end up like this in memory:
|
||||
<tt>[X1, Y1, Z1, T1, X2, Y2, Z2, T2, X3, Y3, Z3, T3, 0, 0, 0, 1]</tt>.
|
||||
|
||||
Note that this is neither the OpenGL format nor the DirectX format, because both of them specify the
|
||||
matrix layout such that the translational part occupies three consecutive addresses in memory (so those
|
||||
matrices end with <tt>[..., T1, T2, T3, 1]</tt>), whereas the translation in an Assimp matrix is found at
|
||||
the offsets 3, 7 and 11 (spread across the matrix). You can transpose an Assimp matrix to end up with
|
||||
the format that OpenGL and DirectX mandate. To be very precise: The transposition has nothing
|
||||
to do with a left-handed or right-handed coordinate system but 'converts' between row-major and
|
||||
column-major storage format.
|
||||
|
||||
<hr>
|
||||
|
||||
|
|
|
@ -0,0 +1,96 @@
|
|||
#!/usr/bin/env python
|
||||
# -*- Coding: UTF-8 -*-
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Open Asset Import Library (ASSIMP)
|
||||
# ---------------------------------------------------------------------------
|
||||
#
|
||||
# Copyright (c) 2006-2010, ASSIMP Development Team
|
||||
#
|
||||
# All rights reserved.
|
||||
#
|
||||
# Redistribution and use of this software in source and binary forms,
|
||||
# with or without modification, are permitted provided that the following
|
||||
# conditions are met:
|
||||
#
|
||||
# * Redistributions of source code must retain the above
|
||||
# copyright notice, this list of conditions and the
|
||||
# following disclaimer.
|
||||
#
|
||||
# * Redistributions in binary form must reproduce the above
|
||||
# copyright notice, this list of conditions and the
|
||||
# following disclaimer in the documentation and/or other
|
||||
# materials provided with the distribution.
|
||||
#
|
||||
# * Neither the name of the ASSIMP team, nor the names of its
|
||||
# contributors may be used to endorse or promote products
|
||||
# derived from this software without specific prior
|
||||
# written permission of the ASSIMP Development Team.
|
||||
#
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
"""Update PyAssimp's texture type constants C/C++ headers.
|
||||
|
||||
This script is meant to be executed in the source tree, directly from
|
||||
port/PyAssimp/gen
|
||||
"""
|
||||
|
||||
import os
|
||||
import re
|
||||
|
||||
REenumTextureType = re.compile(r''
|
||||
r'enum\saiTextureType' # enum aiTextureType
|
||||
r'[^{]*?\{' # {
|
||||
r'(?P<code>.*?)' # code
|
||||
r'\};' # };
|
||||
, re.IGNORECASE + re.DOTALL + re.MULTILINE)
|
||||
|
||||
# Replace comments
|
||||
RErpcom = re.compile(r''
|
||||
r'\s*(/\*+\s|\*+/|\B\*\s?|///?!?)' # /**
|
||||
r'(?P<line>.*?)' # * line
|
||||
, re.IGNORECASE + re.DOTALL)
|
||||
|
||||
# Remove trailing commas
|
||||
RErmtrailcom = re.compile(r',$', re.IGNORECASE + re.DOTALL)
|
||||
|
||||
# Remove #ifdef __cplusplus
|
||||
RErmifdef = re.compile(r''
|
||||
r'#ifndef SWIG' # #ifndef SWIG
|
||||
r'(?P<code>.*)' # code
|
||||
r'#endif(\s*//\s*!?\s*SWIG)*' # #endif
|
||||
, re.IGNORECASE + re.DOTALL)
|
||||
|
||||
path = '../../../include/assimp'
|
||||
|
||||
files = os.listdir (path)
|
||||
enumText = ''
|
||||
for fileName in files:
|
||||
if fileName.endswith('.h'):
|
||||
text = open(os.path.join(path, fileName)).read()
|
||||
for enum in REenumTextureType.findall(text):
|
||||
enumText = enum
|
||||
|
||||
text = ''
|
||||
for line in enumText.split('\n'):
|
||||
line = line.lstrip().rstrip()
|
||||
line = RErmtrailcom.sub('', line)
|
||||
text += RErpcom.sub('# \g<line>', line) + '\n'
|
||||
text = RErmifdef.sub('', text)
|
||||
|
||||
file = open('material.py', 'w')
|
||||
file.write(text)
|
||||
file.close()
|
||||
|
||||
print("Generation done. You can now review the file 'material.py' and merge it.")
|
|
@ -1,89 +1,89 @@
|
|||
## <hr>Dummy value.
|
||||
# Dummy value.
|
||||
#
|
||||
# No texture, but the value to be used as 'texture semantic'
|
||||
# (#aiMaterialProperty::mSemantic) for all material properties
|
||||
# *not* related to textures.
|
||||
# No texture, but the value to be used as 'texture semantic'
|
||||
# (#aiMaterialProperty::mSemantic) for all material properties
|
||||
# # not* related to textures.
|
||||
#
|
||||
aiTextureType_NONE = 0x0
|
||||
|
||||
## <hr>The texture is combined with the result of the diffuse
|
||||
# lighting equation.
|
||||
# The texture is combined with the result of the diffuse
|
||||
# lighting equation.
|
||||
#
|
||||
aiTextureType_DIFFUSE = 0x1
|
||||
|
||||
## <hr>The texture is combined with the result of the specular
|
||||
# lighting equation.
|
||||
# The texture is combined with the result of the specular
|
||||
# lighting equation.
|
||||
#
|
||||
aiTextureType_SPECULAR = 0x2
|
||||
|
||||
## <hr>The texture is combined with the result of the ambient
|
||||
# lighting equation.
|
||||
# The texture is combined with the result of the ambient
|
||||
# lighting equation.
|
||||
#
|
||||
aiTextureType_AMBIENT = 0x3
|
||||
|
||||
## <hr>The texture is added to the result of the lighting
|
||||
# calculation. It isn't influenced by incoming light.
|
||||
# The texture is added to the result of the lighting
|
||||
# calculation. It isn't influenced by incoming light.
|
||||
#
|
||||
aiTextureType_EMISSIVE = 0x4
|
||||
|
||||
## <hr>The texture is a height map.
|
||||
# The texture is a height map.
|
||||
#
|
||||
# By convention, higher gray-scale values stand for
|
||||
# higher elevations from the base height.
|
||||
# By convention, higher gray-scale values stand for
|
||||
# higher elevations from the base height.
|
||||
#
|
||||
aiTextureType_HEIGHT = 0x5
|
||||
|
||||
## <hr>The texture is a (tangent space) normal-map.
|
||||
# The texture is a (tangent space) normal-map.
|
||||
#
|
||||
# Again, there are several conventions for tangent-space
|
||||
# normal maps. Assimp does (intentionally) not
|
||||
# distinguish here.
|
||||
# Again, there are several conventions for tangent-space
|
||||
# normal maps. Assimp does (intentionally) not
|
||||
# distinguish here.
|
||||
#
|
||||
aiTextureType_NORMALS = 0x6
|
||||
|
||||
## <hr>The texture defines the glossiness of the material.
|
||||
# The texture defines the glossiness of the material.
|
||||
#
|
||||
# The glossiness is in fact the exponent of the specular
|
||||
# (phong) lighting equation. Usually there is a conversion
|
||||
# function defined to map the linear color values in the
|
||||
# texture to a suitable exponent. Have fun.
|
||||
# The glossiness is in fact the exponent of the specular
|
||||
# (phong) lighting equation. Usually there is a conversion
|
||||
# function defined to map the linear color values in the
|
||||
# texture to a suitable exponent. Have fun.
|
||||
#
|
||||
aiTextureType_SHININESS = 0x7
|
||||
|
||||
## <hr>The texture defines per-pixel opacity.
|
||||
# The texture defines per-pixel opacity.
|
||||
#
|
||||
# Usually 'white' means opaque and 'black' means
|
||||
# 'transparency'. Or quite the opposite. Have fun.
|
||||
# Usually 'white' means opaque and 'black' means
|
||||
# 'transparency'. Or quite the opposite. Have fun.
|
||||
#
|
||||
aiTextureType_OPACITY = 0x8
|
||||
|
||||
## <hr>Displacement texture
|
||||
# Displacement texture
|
||||
#
|
||||
# The exact purpose and format is application-dependent.
|
||||
# Higher color values stand for higher vertex displacements.
|
||||
# The exact purpose and format is application-dependent.
|
||||
# Higher color values stand for higher vertex displacements.
|
||||
#
|
||||
aiTextureType_DISPLACEMENT = 0x9
|
||||
|
||||
## <hr>Lightmap texture (aka Ambient Occlusion)
|
||||
# Lightmap texture (aka Ambient Occlusion)
|
||||
#
|
||||
# Both 'Lightmaps' and dedicated 'ambient occlusion maps' are
|
||||
# covered by this material property. The texture contains a
|
||||
# scaling value for the final color value of a pixel. Its
|
||||
# intensity is not affected by incoming light.
|
||||
# Both 'Lightmaps' and dedicated 'ambient occlusion maps' are
|
||||
# covered by this material property. The texture contains a
|
||||
# scaling value for the final color value of a pixel. Its
|
||||
# intensity is not affected by incoming light.
|
||||
#
|
||||
aiTextureType_LIGHTMAP = 0xA
|
||||
|
||||
## <hr>Reflection texture
|
||||
# Reflection texture
|
||||
#
|
||||
#Contains the color of a perfect mirror reflection.
|
||||
#Rarely used, almost never for real-time applications.
|
||||
# Contains the color of a perfect mirror reflection.
|
||||
# Rarely used, almost never for real-time applications.
|
||||
#
|
||||
aiTextureType_REFLECTION = 0xB
|
||||
|
||||
## <hr>Unknown texture
|
||||
# Unknown texture
|
||||
#
|
||||
# A texture reference that does not match any of the definitions
|
||||
# above is considered to be 'unknown'. It is still imported
|
||||
# but is excluded from any further postprocessing.
|
||||
# A texture reference that does not match any of the definitions
|
||||
# above is considered to be 'unknown'. It is still imported
|
||||
# but is excluded from any further postprocessing.
|
||||
#
|
||||
aiTextureType_UNKNOWN = 0xC
|
||||
|
|
Loading…
Reference in New Issue