Merge branch 'master' into develop_kimkulling

pull/1805/head
Kim Kulling 2018-02-23 17:54:58 +01:00 committed by GitHub
commit 606a28dbe8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 127 additions and 22 deletions

View File

@ -142,6 +142,7 @@ void Converter::ConvertNodes( uint64_t id, aiNode& parent, const aiMatrix4x4& pa
nodes.reserve( conns.size() );
std::vector<aiNode*> nodes_chain;
std::vector<aiNode*> post_nodes_chain;
try {
for( const Connection* con : conns ) {
@ -161,6 +162,7 @@ void Converter::ConvertNodes( uint64_t id, aiNode& parent, const aiMatrix4x4& pa
if ( model ) {
nodes_chain.clear();
post_nodes_chain.clear();
aiMatrix4x4 new_abs_transform = parent_transform;
@ -168,7 +170,7 @@ void Converter::ConvertNodes( uint64_t id, aiNode& parent, const aiMatrix4x4& pa
// assimp (or rather: the complicated transformation chain that
// is employed by fbx) means that we may need multiple aiNode's
// to represent a fbx node's transformation.
GenerateTransformationNodeChain( *model, nodes_chain );
GenerateTransformationNodeChain( *model, nodes_chain, post_nodes_chain );
ai_assert( nodes_chain.size() );
@ -213,8 +215,25 @@ void Converter::ConvertNodes( uint64_t id, aiNode& parent, const aiMatrix4x4& pa
// attach geometry
ConvertModel( *model, *nodes_chain.back(), new_abs_transform );
// now link the geometric transform inverse nodes,
// before we attach any child nodes
for( aiNode* postnode : post_nodes_chain ) {
ai_assert( postnode );
if ( last_parent != &parent ) {
last_parent->mNumChildren = 1;
last_parent->mChildren = new aiNode*[ 1 ];
last_parent->mChildren[ 0 ] = postnode;
}
postnode->mParent = last_parent;
last_parent = postnode;
new_abs_transform *= postnode->mTransformation;
}
// attach sub-nodes
ConvertNodes( model->ID(), *nodes_chain.back(), new_abs_transform );
ConvertNodes( model->ID(), *last_parent, new_abs_transform );
if ( doc.Settings().readLights ) {
ConvertLights( *model );
@ -396,6 +415,12 @@ const char* Converter::NameTransformationComp( TransformationComp comp )
return "GeometricRotation";
case TransformationComp_GeometricTranslation:
return "GeometricTranslation";
case TransformationComp_GeometricScalingInverse:
return "GeometricScalingInverse";
case TransformationComp_GeometricRotationInverse:
return "GeometricRotationInverse";
case TransformationComp_GeometricTranslationInverse:
return "GeometricTranslationInverse";
case TransformationComp_MAXIMUM: // this is to silence compiler warnings
default:
break;
@ -437,6 +462,12 @@ const char* Converter::NameTransformationCompProperty( TransformationComp comp )
return "GeometricRotation";
case TransformationComp_GeometricTranslation:
return "GeometricTranslation";
case TransformationComp_GeometricScalingInverse:
return "GeometricScalingInverse";
case TransformationComp_GeometricRotationInverse:
return "GeometricRotationInverse";
case TransformationComp_GeometricTranslationInverse:
return "GeometricTranslationInverse";
case TransformationComp_MAXIMUM: // this is to silence compiler warnings
break;
}
@ -548,17 +579,25 @@ bool Converter::NeedsComplexTransformationChain( const Model& model )
bool ok;
const float zero_epsilon = 1e-6f;
const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
for ( size_t i = 0; i < TransformationComp_MAXIMUM; ++i ) {
const TransformationComp comp = static_cast< TransformationComp >( i );
if ( comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
comp == TransformationComp_GeometricScaling || comp == TransformationComp_GeometricRotation || comp == TransformationComp_GeometricTranslation ) {
if ( comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ) {
continue;
}
bool scale_compare = ( comp == TransformationComp_GeometricScaling || comp == TransformationComp_Scaling );
const aiVector3D& v = PropertyGet<aiVector3D>( props, NameTransformationCompProperty( comp ), ok );
if ( ok && v.SquareLength() > zero_epsilon ) {
return true;
if ( ok && scale_compare ) {
if ( (v - all_ones).SquareLength() > zero_epsilon ) {
return true;
}
} else if ( ok ) {
if ( v.SquareLength() > zero_epsilon ) {
return true;
}
}
}
@ -570,7 +609,7 @@ std::string Converter::NameTransformationChainNode( const std::string& name, Tra
return name + std::string( MAGIC_NODE_TAG ) + "_" + NameTransformationComp( comp );
}
void Converter::GenerateTransformationNodeChain( const Model& model, std::vector<aiNode*>& output_nodes )
void Converter::GenerateTransformationNodeChain( const Model& model, std::vector<aiNode*>& output_nodes, std::vector<aiNode*>& post_output_nodes )
{
const PropertyTable& props = model.Props();
const Model::RotOrder rot = model.RotationOrder();
@ -582,6 +621,7 @@ void Converter::GenerateTransformationNodeChain( const Model& model, std::vector
// generate transformation matrices for all the different transformation components
const float zero_epsilon = 1e-6f;
const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
bool is_complex = false;
const aiVector3D& PreRotation = PropertyGet<aiVector3D>( props, "PreRotation", ok );
@ -634,7 +674,7 @@ void Converter::GenerateTransformationNodeChain( const Model& model, std::vector
}
const aiVector3D& Scaling = PropertyGet<aiVector3D>( props, "Lcl Scaling", ok );
if ( ok && std::fabs( Scaling.SquareLength() - 1.0f ) > zero_epsilon ) {
if ( ok && (Scaling - all_ones).SquareLength() > zero_epsilon ) {
aiMatrix4x4::Scaling( Scaling, chain[ TransformationComp_Scaling ] );
}
@ -644,18 +684,38 @@ void Converter::GenerateTransformationNodeChain( const Model& model, std::vector
}
const aiVector3D& GeometricScaling = PropertyGet<aiVector3D>( props, "GeometricScaling", ok );
if ( ok && std::fabs( GeometricScaling.SquareLength() - 1.0f ) > zero_epsilon ) {
if ( ok && (GeometricScaling - all_ones).SquareLength() > zero_epsilon ) {
is_complex = true;
aiMatrix4x4::Scaling( GeometricScaling, chain[ TransformationComp_GeometricScaling ] );
aiVector3D GeometricScalingInverse = GeometricScaling;
bool canscale = true;
for (size_t i = 0; i < 3; ++i) {
if ( std::fabs( GeometricScalingInverse[i] ) > zero_epsilon ) {
GeometricScalingInverse[i] = 1.0f / GeometricScaling[i];
} else {
FBXImporter::LogError( "cannot invert geometric scaling matrix with a 0.0 scale component" );
canscale = false;
break;
}
}
if (canscale) {
aiMatrix4x4::Scaling( GeometricScalingInverse, chain[ TransformationComp_GeometricScalingInverse ] );
}
}
const aiVector3D& GeometricRotation = PropertyGet<aiVector3D>( props, "GeometricRotation", ok );
if ( ok && GeometricRotation.SquareLength() > zero_epsilon ) {
is_complex = true;
GetRotationMatrix( rot, GeometricRotation, chain[ TransformationComp_GeometricRotation ] );
GetRotationMatrix( rot, GeometricRotation, chain[ TransformationComp_GeometricRotationInverse ] );
chain[ TransformationComp_GeometricRotationInverse ].Inverse();
}
const aiVector3D& GeometricTranslation = PropertyGet<aiVector3D>( props, "GeometricTranslation", ok );
if ( ok && GeometricTranslation.SquareLength() > zero_epsilon ) {
is_complex = true;
aiMatrix4x4::Translation( GeometricTranslation, chain[ TransformationComp_GeometricTranslation ] );
aiMatrix4x4::Translation( -GeometricTranslation, chain[ TransformationComp_GeometricTranslationInverse ] );
}
// is_complex needs to be consistent with NeedsComplexTransformationChain()
@ -690,10 +750,18 @@ void Converter::GenerateTransformationNodeChain( const Model& model, std::vector
}
aiNode* nd = new aiNode();
output_nodes.push_back( nd );
nd->mName.Set( NameTransformationChainNode( name, comp ) );
nd->mTransformation = chain[ i ];
// geometric inverses go in a post-node chain
if ( comp == TransformationComp_GeometricScalingInverse ||
comp == TransformationComp_GeometricRotationInverse ||
comp == TransformationComp_GeometricTranslationInverse
) {
post_output_nodes.push_back( nd );
} else {
output_nodes.push_back( nd );
}
}
ai_assert( output_nodes.size() );
@ -2209,8 +2277,7 @@ void Converter::GenerateNodeAnimations( std::vector<aiNodeAnim*>& node_anims,
has_any = true;
if ( comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation &&
comp != TransformationComp_GeometricScaling && comp != TransformationComp_GeometricRotation && comp != TransformationComp_GeometricTranslation )
if ( comp != TransformationComp_Rotation && comp != TransformationComp_Scaling && comp != TransformationComp_Translation )
{
has_complex = true;
}

View File

@ -82,7 +82,10 @@ public:
* The different parts that make up the final local transformation of a fbx-node
*/
enum TransformationComp {
TransformationComp_Translation = 0,
TransformationComp_GeometricScalingInverse = 0,
TransformationComp_GeometricRotationInverse,
TransformationComp_GeometricTranslationInverse,
TransformationComp_Translation,
TransformationComp_RotationOffset,
TransformationComp_RotationPivot,
TransformationComp_PreRotation,
@ -153,7 +156,7 @@ private:
/**
* note: memory for output_nodes will be managed by the caller
*/
void GenerateTransformationNodeChain(const Model& model, std::vector<aiNode*>& output_nodes);
void GenerateTransformationNodeChain(const Model& model, std::vector<aiNode*>& output_nodes, std::vector<aiNode*>& post_output_nodes);
// ------------------------------------------------------------------------------------------------
void SetupNodeMetadata(const Model& model, aiNode& nd);

View File

@ -47,9 +47,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "Main.h"
const char* AICMD_MSG_INFO_HELP_E =
"assimp info <file> [-r]\n"
"assimp info <file> [-r] [-v]\n"
"\tPrint basic structure of a 3D model\n"
"\t-r,--raw: No postprocessing, do a raw import\n";
"\t-r,--raw: No postprocessing, do a raw import\n"
"\t-v,--verbose: Print verbose info such as node transform data\n";
// -----------------------------------------------------------------------------------
@ -184,7 +185,7 @@ std::string FindPTypes(const aiScene* scene)
// -----------------------------------------------------------------------------------
void PrintHierarchy(const aiNode* root, unsigned int maxnest, unsigned int maxline,
unsigned int cline, unsigned int cnest=0)
unsigned int cline, bool verbose, unsigned int cnest=0)
{
if (cline++ >= maxline || cnest >= maxnest) {
return;
@ -194,8 +195,29 @@ void PrintHierarchy(const aiNode* root, unsigned int maxnest, unsigned int maxli
printf("-- ");
}
printf("\'%s\', meshes: %u\n",root->mName.data,root->mNumMeshes);
if (verbose) {
// print the actual transform
//printf(",");
aiVector3D s, r, t;
root->mTransformation.Decompose(s, r, t);
if (s.x != 1.0 || s.y != 1.0 || s.z != 1.0) {
for(unsigned int i = 0; i < cnest; ++i) { printf(" "); }
printf(" S:[%f %f %f]\n", s.x, s.y, s.z);
}
if (r.x || r.y || r.z) {
for(unsigned int i = 0; i < cnest; ++i) { printf(" "); }
printf(" R:[%f %f %f]\n", r.x, r.y, r.z);
}
if (t.x || t.y || t.z) {
for(unsigned int i = 0; i < cnest; ++i) { printf(" "); }
printf(" T:[%f %f %f]\n", t.x, t.y, t.z);
}
}
//printf("\n");
for (unsigned int i = 0; i < root->mNumChildren; ++i ) {
PrintHierarchy(root->mChildren[i],maxnest,maxline,cline,cnest+1);
PrintHierarchy(root->mChildren[i],maxnest,maxline,cline,verbose,cnest+1);
if(i == root->mNumChildren-1) {
for(unsigned int i = 0; i < cnest; ++i) {
printf(" ");
@ -230,10 +252,23 @@ int Assimp_Info (const char* const* params, unsigned int num)
const std::string in = std::string(params[0]);
// get -r and -v arguments
bool raw = false;
bool verbose = false;
for(unsigned int i = 1; i < num; ++i) {
if (!strcmp(params[i],"--raw")||!strcmp(params[i],"-r")) {
raw = true;
}
if (!strcmp(params[i],"--verbose")||!strcmp(params[i],"-v")) {
verbose = true;
}
}
// do maximum post-processing unless -r was specified
ImportData import;
import.ppFlags = num>1&&(!strcmp(params[1],"--raw")||!strcmp(params[1],"-r")) ? 0
: aiProcessPreset_TargetRealtime_MaxQuality;
if (!raw) {
import.ppFlags = aiProcessPreset_TargetRealtime_MaxQuality;
}
// import the main model
const aiScene* scene = ImportModel(import,in);
@ -346,7 +381,7 @@ int Assimp_Info (const char* const* params, unsigned int num)
printf("\nNode hierarchy:\n");
unsigned int cline=0;
PrintHierarchy(scene->mRootNode,20,1000,cline);
PrintHierarchy(scene->mRootNode,20,1000,cline,verbose);
printf("\n");
return 0;