Merge branch 'master' into cmake_targets_determine_lib_path

pull/3035/head
Kim Kulling 2020-03-31 10:31:31 +02:00 committed by GitHub
commit 51438bff87
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
11 changed files with 1429 additions and 197 deletions

View File

@ -7,8 +7,7 @@ on:
branches: [ master ]
jobs:
build-ubuntu:
linux:
runs-on: ubuntu-latest
steps:
@ -19,4 +18,29 @@ jobs:
run: cmake --build .
- name: test
run: cd bin && ./unit
mac:
runs-on: macos-latest
steps:
- uses: actions/checkout@v1
- name: configure
run: cmake CMakeLists.txt
- name: build
run: cmake --build .
- name: test
run: cd bin && ./unit
windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: configure
run: cmake CMakeLists.txt
- name: build
run: cmake --build . --config Release
- name: test
run: |
cd bin\Release
.\unit

View File

@ -693,3 +693,598 @@ ASSIMP_API C_STRUCT const aiImporterDesc* aiGetImporterDesc( const char *extensi
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiVector2AreEqual(
const C_STRUCT aiVector2D* a,
const C_STRUCT aiVector2D* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return *a == *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiVector2AreEqualEpsilon(
const C_STRUCT aiVector2D* a,
const C_STRUCT aiVector2D* b,
const float epsilon) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return a->Equal(*b, epsilon);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2Add(
C_STRUCT aiVector2D* dst,
const C_STRUCT aiVector2D* src) {
ai_assert(NULL != dst);
ai_assert(NULL != src);
*dst = *dst + *src;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2Subtract(
C_STRUCT aiVector2D* dst,
const C_STRUCT aiVector2D* src) {
ai_assert(NULL != dst);
ai_assert(NULL != src);
*dst = *dst - *src;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2Scale(
C_STRUCT aiVector2D* dst,
const float s) {
ai_assert(NULL != dst);
*dst *= s;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2SymMul(
C_STRUCT aiVector2D* dst,
const C_STRUCT aiVector2D* other) {
ai_assert(NULL != dst);
ai_assert(NULL != other);
*dst = dst->SymMul(*other);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2DivideByScalar(
C_STRUCT aiVector2D* dst,
const float s) {
ai_assert(NULL != dst);
*dst /= s;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2DivideByVector(
C_STRUCT aiVector2D* dst,
C_STRUCT aiVector2D* v) {
ai_assert(NULL != dst);
ai_assert(NULL != v);
*dst = *dst / *v;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiVector2Length(
const C_STRUCT aiVector2D* v) {
ai_assert(NULL != v);
return v->Length();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiVector2SquareLength(
const C_STRUCT aiVector2D* v) {
ai_assert(NULL != v);
return v->SquareLength();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2Negate(
C_STRUCT aiVector2D* dst) {
ai_assert(NULL != dst);
*dst = -(*dst);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiVector2DotProduct(
const C_STRUCT aiVector2D* a,
const C_STRUCT aiVector2D* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return (*a) * (*b);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector2Normalize(
C_STRUCT aiVector2D* v) {
ai_assert(NULL != v);
v->Normalize();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiVector3AreEqual(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return *a == *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiVector3AreEqualEpsilon(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b,
const float epsilon) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return a->Equal(*b, epsilon);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiVector3LessThan(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return *a < *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3Add(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* src) {
ai_assert(NULL != dst);
ai_assert(NULL != src);
*dst = *dst + *src;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3Subtract(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* src) {
ai_assert(NULL != dst);
ai_assert(NULL != src);
*dst = *dst - *src;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3Scale(
C_STRUCT aiVector3D* dst,
const float s) {
ai_assert(NULL != dst);
*dst *= s;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3SymMul(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* other) {
ai_assert(NULL != dst);
ai_assert(NULL != other);
*dst = dst->SymMul(*other);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3DivideByScalar(
C_STRUCT aiVector3D* dst, const float s) {
ai_assert(NULL != dst);
*dst /= s;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3DivideByVector(
C_STRUCT aiVector3D* dst,
C_STRUCT aiVector3D* v) {
ai_assert(NULL != dst);
ai_assert(NULL != v);
*dst = *dst / *v;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiVector3Length(
const C_STRUCT aiVector3D* v) {
ai_assert(NULL != v);
return v->Length();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiVector3SquareLength(
const C_STRUCT aiVector3D* v) {
ai_assert(NULL != v);
return v->SquareLength();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3Negate(
C_STRUCT aiVector3D* dst) {
ai_assert(NULL != dst);
*dst = -(*dst);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiVector3DotProduct(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return (*a) * (*b);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3CrossProduct(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b) {
ai_assert(NULL != dst);
ai_assert(NULL != a);
ai_assert(NULL != b);
*dst = *a ^ *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3Normalize(
C_STRUCT aiVector3D* v) {
ai_assert(NULL != v);
v->Normalize();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3NormalizeSafe(
C_STRUCT aiVector3D* v) {
ai_assert(NULL != v);
v->NormalizeSafe();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiVector3RotateByQuaternion(
C_STRUCT aiVector3D* v,
const C_STRUCT aiQuaternion* q) {
ai_assert(NULL != v);
ai_assert(NULL != q);
*v = q->Rotate(*v);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3FromMatrix4(
C_STRUCT aiMatrix3x3* dst,
const C_STRUCT aiMatrix4x4* mat) {
ai_assert(NULL != dst);
ai_assert(NULL != mat);
*dst = aiMatrix3x3(*mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3FromQuaternion(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiQuaternion* q) {
ai_assert(NULL != mat);
ai_assert(NULL != q);
*mat = q->GetMatrix();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiMatrix3AreEqual(
const C_STRUCT aiMatrix3x3* a,
const C_STRUCT aiMatrix3x3* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return *a == *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiMatrix3AreEqualEpsilon(
const C_STRUCT aiMatrix3x3* a,
const C_STRUCT aiMatrix3x3* b,
const float epsilon) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return a->Equal(*b, epsilon);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3Inverse(C_STRUCT aiMatrix3x3* mat) {
ai_assert(NULL != mat);
mat->Inverse();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiMatrix3Determinant(const C_STRUCT aiMatrix3x3* mat) {
ai_assert(NULL != mat);
return mat->Determinant();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3RotationZ(
C_STRUCT aiMatrix3x3* mat,
const float angle) {
ai_assert(NULL != mat);
aiMatrix3x3::RotationZ(angle, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3FromRotationAroundAxis(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiVector3D* axis,
const float angle) {
ai_assert(NULL != mat);
ai_assert(NULL != axis);
aiMatrix3x3::Rotation(angle, *axis, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3Translation(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiVector2D* translation) {
ai_assert(NULL != mat);
ai_assert(NULL != translation);
aiMatrix3x3::Translation(*translation, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix3FromTo(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiVector3D* from,
const C_STRUCT aiVector3D* to) {
ai_assert(NULL != mat);
ai_assert(NULL != from);
ai_assert(NULL != to);
aiMatrix3x3::FromToMatrix(*from, *to, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4FromMatrix3(
C_STRUCT aiMatrix4x4* dst,
const C_STRUCT aiMatrix3x3* mat) {
ai_assert(NULL != dst);
ai_assert(NULL != mat);
*dst = aiMatrix4x4(*mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4FromScalingQuaternionPosition(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* scaling,
const C_STRUCT aiQuaternion* rotation,
const C_STRUCT aiVector3D* position) {
ai_assert(NULL != mat);
ai_assert(NULL != scaling);
ai_assert(NULL != rotation);
ai_assert(NULL != position);
*mat = aiMatrix4x4(*scaling, *rotation, *position);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4Add(
C_STRUCT aiMatrix4x4* dst,
const C_STRUCT aiMatrix4x4* src) {
ai_assert(NULL != dst);
ai_assert(NULL != src);
*dst = *dst + *src;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiMatrix4AreEqual(
const C_STRUCT aiMatrix4x4* a,
const C_STRUCT aiMatrix4x4* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return *a == *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiMatrix4AreEqualEpsilon(
const C_STRUCT aiMatrix4x4* a,
const C_STRUCT aiMatrix4x4* b,
const float epsilon) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return a->Equal(*b, epsilon);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4Inverse(C_STRUCT aiMatrix4x4* mat) {
ai_assert(NULL != mat);
mat->Inverse();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API float aiMatrix4Determinant(const C_STRUCT aiMatrix4x4* mat) {
ai_assert(NULL != mat);
return mat->Determinant();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiMatrix4IsIdentity(const C_STRUCT aiMatrix4x4* mat) {
ai_assert(NULL != mat);
return mat->IsIdentity();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4DecomposeIntoScalingEulerAnglesPosition(
const C_STRUCT aiMatrix4x4* mat,
C_STRUCT aiVector3D* scaling,
C_STRUCT aiVector3D* rotation,
C_STRUCT aiVector3D* position) {
ai_assert(NULL != mat);
ai_assert(NULL != scaling);
ai_assert(NULL != rotation);
ai_assert(NULL != position);
mat->Decompose(*scaling, *rotation, *position);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4DecomposeIntoScalingAxisAnglePosition(
const C_STRUCT aiMatrix4x4* mat,
C_STRUCT aiVector3D* scaling,
C_STRUCT aiVector3D* axis,
float* angle,
C_STRUCT aiVector3D* position) {
ai_assert(NULL != mat);
ai_assert(NULL != scaling);
ai_assert(NULL != axis);
ai_assert(NULL != angle);
ai_assert(NULL != position);
mat->Decompose(*scaling, *axis, *angle, *position);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4DecomposeNoScaling(
const C_STRUCT aiMatrix4x4* mat,
C_STRUCT aiQuaternion* rotation,
C_STRUCT aiVector3D* position) {
ai_assert(NULL != mat);
ai_assert(NULL != rotation);
ai_assert(NULL != position);
mat->DecomposeNoScaling(*rotation, *position);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4FromEulerAngles(
C_STRUCT aiMatrix4x4* mat,
float x, float y, float z) {
ai_assert(NULL != mat);
mat->FromEulerAnglesXYZ(x, y, z);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4RotationX(
C_STRUCT aiMatrix4x4* mat,
const float angle) {
ai_assert(NULL != mat);
aiMatrix4x4::RotationX(angle, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4RotationY(
C_STRUCT aiMatrix4x4* mat,
const float angle) {
ai_assert(NULL != mat);
aiMatrix4x4::RotationY(angle, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4RotationZ(
C_STRUCT aiMatrix4x4* mat,
const float angle) {
ai_assert(NULL != mat);
aiMatrix4x4::RotationZ(angle, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4FromRotationAroundAxis(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* axis,
const float angle) {
ai_assert(NULL != mat);
ai_assert(NULL != axis);
aiMatrix4x4::Rotation(angle, *axis, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4Translation(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* translation) {
ai_assert(NULL != mat);
ai_assert(NULL != translation);
aiMatrix4x4::Translation(*translation, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4Scaling(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* scaling) {
ai_assert(NULL != mat);
ai_assert(NULL != scaling);
aiMatrix4x4::Scaling(*scaling, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiMatrix4FromTo(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* from,
const C_STRUCT aiVector3D* to) {
ai_assert(NULL != mat);
ai_assert(NULL != from);
ai_assert(NULL != to);
aiMatrix4x4::FromToMatrix(*from, *to, *mat);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionFromEulerAngles(
C_STRUCT aiQuaternion* q,
float x, float y, float z) {
ai_assert(NULL != q);
*q = aiQuaternion(x, y, z);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionFromAxisAngle(
C_STRUCT aiQuaternion* q,
const C_STRUCT aiVector3D* axis,
const float angle) {
ai_assert(NULL != q);
ai_assert(NULL != axis);
*q = aiQuaternion(*axis, angle);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionFromNormalizedQuaternion(
C_STRUCT aiQuaternion* q,
const C_STRUCT aiVector3D* normalized) {
ai_assert(NULL != q);
ai_assert(NULL != normalized);
*q = aiQuaternion(*normalized);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiQuaternionAreEqual(
const C_STRUCT aiQuaternion* a,
const C_STRUCT aiQuaternion* b) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return *a == *b;
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API int aiQuaternionAreEqualEpsilon(
const C_STRUCT aiQuaternion* a,
const C_STRUCT aiQuaternion* b,
const float epsilon) {
ai_assert(NULL != a);
ai_assert(NULL != b);
return a->Equal(*b, epsilon);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionNormalize(
C_STRUCT aiQuaternion* q) {
ai_assert(NULL != q);
q->Normalize();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionConjugate(
C_STRUCT aiQuaternion* q) {
ai_assert(NULL != q);
q->Conjugate();
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionMultiply(
C_STRUCT aiQuaternion* dst,
const C_STRUCT aiQuaternion* q) {
ai_assert(NULL != dst);
ai_assert(NULL != q);
*dst = (*dst) * (*q);
}
// ------------------------------------------------------------------------------------------------
ASSIMP_API void aiQuaternionInterpolate(
C_STRUCT aiQuaternion* dst,
const C_STRUCT aiQuaternion* start,
const C_STRUCT aiQuaternion* end,
const float factor) {
ai_assert(NULL != dst);
ai_assert(NULL != start);
ai_assert(NULL != end);
aiQuaternion::Interpolate(*dst, *start, *end, factor);
}

View File

@ -655,7 +655,8 @@ bool FBXConverter::NeedsComplexTransformationChain(const Model &model) {
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation) {
if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
comp == TransformationComp_PreRotation || comp == TransformationComp_PostRotation) {
continue;
}
@ -2739,15 +2740,12 @@ void FBXConverter::GenerateNodeAnimations(std::vector<aiNodeAnim *> &node_anims,
// be invoked _later_ (animations come first). If this node has only rotation,
// scaling and translation _and_ there are no animated other components either,
// we can use a single node and also a single node animation channel.
if (!has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim *const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
if( !has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
node_property_map.end(),
layer_map,
start, stop,
max_time,
min_time,
true // input is TRS order, assimp is SRT
min_time
);
ai_assert(nd);
@ -3021,133 +3019,121 @@ aiNodeAnim *FBXConverter::GenerateTranslationNodeAnim(const std::string &name,
return na.release();
}
aiNodeAnim *FBXConverter::GenerateSimpleNodeAnim(const std::string &name,
const Model &target,
aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name,
const Model& target,
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
NodeMap::const_iterator iter_end,
const LayerMap &layer_map,
NodeMap::const_iterator iterEnd,
int64_t start, int64_t stop,
double &max_time,
double &min_time,
bool reverse_order)
double& maxTime,
double& minTime)
{
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
na->mNodeName.Set(name);
const PropertyTable &props = target.Props();
// need to convert from TRS order to SRT?
if (reverse_order) {
// collect unique times and keyframe lists
KeyFrameListList keyframeLists[TransformationComp_MAXIMUM];
KeyTimeList keytimes;
aiVector3D def_scale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
aiVector3D def_translate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
aiVector3D def_rot = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
if (chain[i] == iterEnd)
continue;
KeyFrameListList scaling;
KeyFrameListList translation;
KeyFrameListList rotation;
keyframeLists[i] = GetKeyframeList((*chain[i]).second, start, stop);
if (chain[TransformationComp_Scaling] != iter_end) {
scaling = GetKeyframeList((*chain[TransformationComp_Scaling]).second, start, stop);
for (KeyFrameListList::const_iterator it = keyframeLists[i].begin(); it != keyframeLists[i].end(); ++it) {
const KeyTimeList& times = *std::get<0>(*it);
keytimes.insert(keytimes.end(), times.begin(), times.end());
}
if (chain[TransformationComp_Translation] != iter_end) {
translation = GetKeyframeList((*chain[TransformationComp_Translation]).second, start, stop);
}
// remove duplicates
std::sort(keytimes.begin(), keytimes.end());
if (chain[TransformationComp_Rotation] != iter_end) {
rotation = GetKeyframeList((*chain[TransformationComp_Rotation]).second, start, stop);
}
auto last = std::unique(keytimes.begin(), keytimes.end());
keytimes.erase(last, keytimes.end());
}
KeyFrameListList joined;
joined.insert(joined.end(), scaling.begin(), scaling.end());
joined.insert(joined.end(), translation.begin(), translation.end());
joined.insert(joined.end(), rotation.begin(), rotation.end());
const Model::RotOrder rotOrder = target.RotationOrder();
const size_t keyCount = keytimes.size();
const KeyTimeList &times = GetKeyTimeList(joined);
aiVector3D defTranslate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
aiVector3D defRotation = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
aiVector3D defScale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
aiQuaternion defQuat = EulerToQuaternion(defRotation, rotOrder);
aiQuatKey *out_quat = new aiQuatKey[times.size()];
aiVectorKey *out_scale = new aiVectorKey[times.size()];
aiVectorKey *out_translation = new aiVectorKey[times.size()];
aiVectorKey* outTranslations = new aiVectorKey[keyCount];
aiQuatKey* outRotations = new aiQuatKey[keyCount];
aiVectorKey* outScales = new aiVectorKey[keyCount];
if (times.size()) {
ConvertTransformOrder_TRStoSRT(out_quat, out_scale, out_translation,
scaling,
translation,
rotation,
times,
max_time,
min_time,
target.RotationOrder(),
def_scale,
def_translate,
def_rot);
}
// XXX remove duplicates / redundant keys which this operation did
// likely produce if not all three channels were equally dense.
na->mNumScalingKeys = static_cast<unsigned int>(times.size());
na->mNumRotationKeys = na->mNumScalingKeys;
na->mNumPositionKeys = na->mNumScalingKeys;
na->mScalingKeys = out_scale;
na->mRotationKeys = out_quat;
na->mPositionKeys = out_translation;
if (keyframeLists[TransformationComp_Translation].size() > 0) {
InterpolateKeys(outTranslations, keytimes, keyframeLists[TransformationComp_Translation], defTranslate, maxTime, minTime);
} else {
// if a particular transformation is not given, grab it from
// the corresponding node to meet the semantics of aiNodeAnim,
// which requires all of rotation, scaling and translation
// to be set.
if (chain[TransformationComp_Scaling] != iter_end) {
ConvertScaleKeys(na.get(), (*chain[TransformationComp_Scaling]).second,
layer_map,
start, stop,
max_time,
min_time);
} else {
na->mScalingKeys = new aiVectorKey[1];
na->mNumScalingKeys = 1;
na->mScalingKeys[0].mTime = 0.;
na->mScalingKeys[0].mValue = PropertyGet(props, "Lcl Scaling",
aiVector3D(1.f, 1.f, 1.f));
}
if (chain[TransformationComp_Rotation] != iter_end) {
ConvertRotationKeys(na.get(), (*chain[TransformationComp_Rotation]).second,
layer_map,
start, stop,
max_time,
min_time,
target.RotationOrder());
} else {
na->mRotationKeys = new aiQuatKey[1];
na->mNumRotationKeys = 1;
na->mRotationKeys[0].mTime = 0.;
na->mRotationKeys[0].mValue = EulerToQuaternion(
PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f)),
target.RotationOrder());
}
if (chain[TransformationComp_Translation] != iter_end) {
ConvertTranslationKeys(na.get(), (*chain[TransformationComp_Translation]).second,
layer_map,
start, stop,
max_time,
min_time);
} else {
na->mPositionKeys = new aiVectorKey[1];
na->mNumPositionKeys = 1;
na->mPositionKeys[0].mTime = 0.;
na->mPositionKeys[0].mValue = PropertyGet(props, "Lcl Translation",
aiVector3D(0.f, 0.f, 0.f));
for (size_t i = 0; i < keyCount; ++i) {
outTranslations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
outTranslations[i].mValue = defTranslate;
}
}
if (keyframeLists[TransformationComp_Rotation].size() > 0) {
InterpolateKeys(outRotations, keytimes, keyframeLists[TransformationComp_Rotation], defRotation, maxTime, minTime, rotOrder);
} else {
for (size_t i = 0; i < keyCount; ++i) {
outRotations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
outRotations[i].mValue = defQuat;
}
}
if (keyframeLists[TransformationComp_Scaling].size() > 0) {
InterpolateKeys(outScales, keytimes, keyframeLists[TransformationComp_Scaling], defScale, maxTime, minTime);
} else {
for (size_t i = 0; i < keyCount; ++i) {
outScales[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
outScales[i].mValue = defScale;
}
}
bool ok = false;
const float zero_epsilon = 1e-6f;
const aiVector3D& preRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
if (ok && preRotation.SquareLength() > zero_epsilon) {
const aiQuaternion preQuat = EulerToQuaternion(preRotation, Model::RotOrder_EulerXYZ);
for (size_t i = 0; i < keyCount; ++i) {
outRotations[i].mValue = preQuat * outRotations[i].mValue;
}
}
const aiVector3D& postRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
if (ok && postRotation.SquareLength() > zero_epsilon) {
const aiQuaternion postQuat = EulerToQuaternion(postRotation, Model::RotOrder_EulerXYZ);
for (size_t i = 0; i < keyCount; ++i) {
outRotations[i].mValue = outRotations[i].mValue * postQuat;
}
}
// convert TRS to SRT
for (size_t i = 0; i < keyCount; ++i) {
aiQuaternion& r = outRotations[i].mValue;
aiVector3D& s = outScales[i].mValue;
aiVector3D& t = outTranslations[i].mValue;
aiMatrix4x4 mat, temp;
aiMatrix4x4::Translation(t, mat);
mat *= aiMatrix4x4(r.GetMatrix());
mat *= aiMatrix4x4::Scaling(s, temp);
mat.Decompose(s, r, t);
}
na->mNumScalingKeys = static_cast<unsigned int>(keyCount);
na->mNumRotationKeys = na->mNumScalingKeys;
na->mNumPositionKeys = na->mNumScalingKeys;
na->mScalingKeys = outScales;
na->mRotationKeys = outRotations;
na->mPositionKeys = outTranslations;
return na.release();
}
@ -3328,10 +3314,7 @@ void FBXConverter::InterpolateKeys(aiQuatKey *valOut, const KeyTimeList &keys, c
// take shortest path by checking the inner product
// http://www.3dkingdoms.com/weekly/weekly.php?a=36
if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0) {
quat.x = -quat.x;
quat.y = -quat.y;
quat.z = -quat.z;
quat.w = -quat.w;
quat.Conjugate();
}
lastq = quat;
@ -3339,60 +3322,6 @@ void FBXConverter::InterpolateKeys(aiQuatKey *valOut, const KeyTimeList &keys, c
}
}
void FBXConverter::ConvertTransformOrder_TRStoSRT(aiQuatKey *out_quat, aiVectorKey *out_scale,
aiVectorKey *out_translation,
const KeyFrameListList &scaling,
const KeyFrameListList &translation,
const KeyFrameListList &rotation,
const KeyTimeList &times,
double &maxTime,
double &minTime,
Model::RotOrder order,
const aiVector3D &def_scale,
const aiVector3D &def_translate,
const aiVector3D &def_rotation) {
if (rotation.size()) {
InterpolateKeys(out_quat, times, rotation, def_rotation, maxTime, minTime, order);
} else {
for (size_t i = 0; i < times.size(); ++i) {
out_quat[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
out_quat[i].mValue = EulerToQuaternion(def_rotation, order);
}
}
if (scaling.size()) {
InterpolateKeys(out_scale, times, scaling, def_scale, maxTime, minTime);
} else {
for (size_t i = 0; i < times.size(); ++i) {
out_scale[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
out_scale[i].mValue = def_scale;
}
}
if (translation.size()) {
InterpolateKeys(out_translation, times, translation, def_translate, maxTime, minTime);
} else {
for (size_t i = 0; i < times.size(); ++i) {
out_translation[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
out_translation[i].mValue = def_translate;
}
}
const size_t count = times.size();
for (size_t i = 0; i < count; ++i) {
aiQuaternion &r = out_quat[i].mValue;
aiVector3D &s = out_scale[i].mValue;
aiVector3D &t = out_translation[i].mValue;
aiMatrix4x4 mat, temp;
aiMatrix4x4::Translation(t, mat);
mat *= aiMatrix4x4(r.GetMatrix());
mat *= aiMatrix4x4::Scaling(s, temp);
mat.Decompose(s, r, t);
}
}
aiQuaternion FBXConverter::EulerToQuaternion(const aiVector3D &rot, Model::RotOrder order) {
aiMatrix4x4 m;
GetRotationMatrix(order, rot, m);

View File

@ -349,12 +349,10 @@ private:
aiNodeAnim* GenerateSimpleNodeAnim(const std::string& name,
const Model& target,
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
NodeMap::const_iterator iter_end,
const LayerMap& layer_map,
NodeMap::const_iterator iterEnd,
int64_t start, int64_t stop,
double& max_time,
double& min_time,
bool reverse_order = false);
double& maxTime,
double& minTime);
// key (time), value, mapto (component index)
typedef std::tuple<std::shared_ptr<KeyTimeList>, std::shared_ptr<KeyValueList>, unsigned int > KeyFrameList;
@ -379,20 +377,6 @@ private:
double& minTime,
Model::RotOrder order);
// ------------------------------------------------------------------------------------------------
void ConvertTransformOrder_TRStoSRT(aiQuatKey* out_quat, aiVectorKey* out_scale,
aiVectorKey* out_translation,
const KeyFrameListList& scaling,
const KeyFrameListList& translation,
const KeyFrameListList& rotation,
const KeyTimeList& times,
double& maxTime,
double& minTime,
Model::RotOrder order,
const aiVector3D& def_scale,
const aiVector3D& def_translate,
const aiVector3D& def_rotation);
// ------------------------------------------------------------------------------------------------
// euler xyz -> quat
aiQuaternion EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order);

View File

@ -952,8 +952,8 @@ aiNode *ImportNode(aiScene *pScene, glTF2::Asset &r, std::vector<unsigned int> &
void glTF2Importer::ImportNodes(glTF2::Asset &r) {
if (!r.scene) {
return;
}
throw DeadlyImportError("GLTF: No scene");
}
std::vector<Ref<Node>> rootNodes = r.scene->nodes;
@ -970,6 +970,8 @@ void glTF2Importer::ImportNodes(glTF2::Asset &r) {
root->mChildren[root->mNumChildren++] = node;
}
mScene->mRootNode = root;
} else {
mScene->mRootNode = new aiNode("ROOT");
}
}

View File

@ -562,6 +562,675 @@ ASSIMP_API size_t aiGetImportFormatCount(void);
* @return A description of that specific import format. NULL if pIndex is out of range.
*/
ASSIMP_API const C_STRUCT aiImporterDesc* aiGetImportFormatDescription( size_t pIndex);
// --------------------------------------------------------------------------------
/** Check if 2D vectors are equal.
* @param a First vector to compare
* @param b Second vector to compare
* @return 1 if the vectors are equal
* @return 0 if the vectors are not equal
*/
ASSIMP_API int aiVector2AreEqual(
const C_STRUCT aiVector2D* a,
const C_STRUCT aiVector2D* b);
// --------------------------------------------------------------------------------
/** Check if 2D vectors are equal using epsilon.
* @param a First vector to compare
* @param b Second vector to compare
* @param epsilon Epsilon
* @return 1 if the vectors are equal
* @return 0 if the vectors are not equal
*/
ASSIMP_API int aiVector2AreEqualEpsilon(
const C_STRUCT aiVector2D* a,
const C_STRUCT aiVector2D* b,
const float epsilon);
// --------------------------------------------------------------------------------
/** Add 2D vectors.
* @param dst First addend, receives result.
* @param src Vector to be added to 'dst'.
*/
ASSIMP_API void aiVector2Add(
C_STRUCT aiVector2D* dst,
const C_STRUCT aiVector2D* src);
// --------------------------------------------------------------------------------
/** Subtract 2D vectors.
* @param dst Minuend, receives result.
* @param src Vector to be subtracted from 'dst'.
*/
ASSIMP_API void aiVector2Subtract(
C_STRUCT aiVector2D* dst,
const C_STRUCT aiVector2D* src);
// --------------------------------------------------------------------------------
/** Multiply a 2D vector by a scalar.
* @param dst Vector to be scaled by \p s
* @param s Scale factor
*/
ASSIMP_API void aiVector2Scale(
C_STRUCT aiVector2D* dst,
const float s);
// --------------------------------------------------------------------------------
/** Multiply each component of a 2D vector with
* the components of another vector.
* @param dst First vector, receives result
* @param other Second vector
*/
ASSIMP_API void aiVector2SymMul(
C_STRUCT aiVector2D* dst,
const C_STRUCT aiVector2D* other);
// --------------------------------------------------------------------------------
/** Divide a 2D vector by a scalar.
* @param dst Vector to be divided by \p s
* @param s Scalar divisor
*/
ASSIMP_API void aiVector2DivideByScalar(
C_STRUCT aiVector2D* dst,
const float s);
// --------------------------------------------------------------------------------
/** Divide each component of a 2D vector by
* the components of another vector.
* @param dst Vector as the dividend
* @param v Vector as the divisor
*/
ASSIMP_API void aiVector2DivideByVector(
C_STRUCT aiVector2D* dst,
C_STRUCT aiVector2D* v);
// --------------------------------------------------------------------------------
/** Get the length of a 2D vector.
* @return v Vector to evaluate
*/
ASSIMP_API float aiVector2Length(
const C_STRUCT aiVector2D* v);
// --------------------------------------------------------------------------------
/** Get the squared length of a 2D vector.
* @return v Vector to evaluate
*/
ASSIMP_API float aiVector2SquareLength(
const C_STRUCT aiVector2D* v);
// --------------------------------------------------------------------------------
/** Negate a 2D vector.
* @param dst Vector to be negated
*/
ASSIMP_API void aiVector2Negate(
C_STRUCT aiVector2D* dst);
// --------------------------------------------------------------------------------
/** Get the dot product of 2D vectors.
* @param a First vector
* @param b Second vector
* @return The dot product of vectors
*/
ASSIMP_API float aiVector2DotProduct(
const C_STRUCT aiVector2D* a,
const C_STRUCT aiVector2D* b);
// --------------------------------------------------------------------------------
/** Normalize a 2D vector.
* @param v Vector to normalize
*/
ASSIMP_API void aiVector2Normalize(
C_STRUCT aiVector2D* v);
// --------------------------------------------------------------------------------
/** Check if 3D vectors are equal.
* @param a First vector to compare
* @param b Second vector to compare
* @return 1 if the vectors are equal
* @return 0 if the vectors are not equal
*/
ASSIMP_API int aiVector3AreEqual(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b);
// --------------------------------------------------------------------------------
/** Check if 3D vectors are equal using epsilon.
* @param a First vector to compare
* @param b Second vector to compare
* @param epsilon Epsilon
* @return 1 if the vectors are equal
* @return 0 if the vectors are not equal
*/
ASSIMP_API int aiVector3AreEqualEpsilon(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b,
const float epsilon);
// --------------------------------------------------------------------------------
/** Check if vector \p a is less than vector \p b.
* @param a First vector to compare
* @param b Second vector to compare
* @param epsilon Epsilon
* @return 1 if \p a is less than \p b
* @return 0 if \p a is equal or greater than \p b
*/
ASSIMP_API int aiVector3LessThan(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b);
// --------------------------------------------------------------------------------
/** Add 3D vectors.
* @param dst First addend, receives result.
* @param src Vector to be added to 'dst'.
*/
ASSIMP_API void aiVector3Add(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* src);
// --------------------------------------------------------------------------------
/** Subtract 3D vectors.
* @param dst Minuend, receives result.
* @param src Vector to be subtracted from 'dst'.
*/
ASSIMP_API void aiVector3Subtract(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* src);
// --------------------------------------------------------------------------------
/** Multiply a 3D vector by a scalar.
* @param dst Vector to be scaled by \p s
* @param s Scale factor
*/
ASSIMP_API void aiVector3Scale(
C_STRUCT aiVector3D* dst,
const float s);
// --------------------------------------------------------------------------------
/** Multiply each component of a 3D vector with
* the components of another vector.
* @param dst First vector, receives result
* @param other Second vector
*/
ASSIMP_API void aiVector3SymMul(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* other);
// --------------------------------------------------------------------------------
/** Divide a 3D vector by a scalar.
* @param dst Vector to be divided by \p s
* @param s Scalar divisor
*/
ASSIMP_API void aiVector3DivideByScalar(
C_STRUCT aiVector3D* dst,
const float s);
// --------------------------------------------------------------------------------
/** Divide each component of a 3D vector by
* the components of another vector.
* @param dst Vector as the dividend
* @param v Vector as the divisor
*/
ASSIMP_API void aiVector3DivideByVector(
C_STRUCT aiVector3D* dst,
C_STRUCT aiVector3D* v);
// --------------------------------------------------------------------------------
/** Get the length of a 3D vector.
* @return v Vector to evaluate
*/
ASSIMP_API float aiVector3Length(
const C_STRUCT aiVector3D* v);
// --------------------------------------------------------------------------------
/** Get the squared length of a 3D vector.
* @return v Vector to evaluate
*/
ASSIMP_API float aiVector3SquareLength(
const C_STRUCT aiVector3D* v);
// --------------------------------------------------------------------------------
/** Negate a 3D vector.
* @param dst Vector to be negated
*/
ASSIMP_API void aiVector3Negate(
C_STRUCT aiVector3D* dst);
// --------------------------------------------------------------------------------
/** Get the dot product of 3D vectors.
* @param a First vector
* @param b Second vector
* @return The dot product of vectors
*/
ASSIMP_API float aiVector3DotProduct(
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b);
// --------------------------------------------------------------------------------
/** Get cross product of 3D vectors.
* @param dst Vector to receive the result.
* @param a First vector
* @param b Second vector
* @return The dot product of vectors
*/
ASSIMP_API void aiVector3CrossProduct(
C_STRUCT aiVector3D* dst,
const C_STRUCT aiVector3D* a,
const C_STRUCT aiVector3D* b);
// --------------------------------------------------------------------------------
/** Normalize a 3D vector.
* @param v Vector to normalize
*/
ASSIMP_API void aiVector3Normalize(
C_STRUCT aiVector3D* v);
// --------------------------------------------------------------------------------
/** Check for division by zero and normalize a 3D vector.
* @param v Vector to normalize
*/
ASSIMP_API void aiVector3NormalizeSafe(
C_STRUCT aiVector3D* v);
// --------------------------------------------------------------------------------
/** Rotate a 3D vector by a quaternion.
* @param v The vector to rotate by \p q
* @param q Quaternion to use to rotate \p v
*/
ASSIMP_API void aiVector3RotateByQuaternion(
C_STRUCT aiVector3D* v,
const C_STRUCT aiQuaternion* q);
// --------------------------------------------------------------------------------
/** Construct a 3x3 matrix from a 4x4 matrix.
* @param dst Receives the output matrix
* @param mat The 4x4 matrix to use
*/
ASSIMP_API void aiMatrix3FromMatrix4(
C_STRUCT aiMatrix3x3* dst,
const C_STRUCT aiMatrix4x4* mat);
// --------------------------------------------------------------------------------
/** Construct a 3x3 matrix from a quaternion.
* @param mat Receives the output matrix
* @param q The quaternion matrix to use
*/
ASSIMP_API void aiMatrix3FromQuaternion(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiQuaternion* q);
// --------------------------------------------------------------------------------
/** Check if 3x3 matrices are equal.
* @param a First matrix to compare
* @param b Second matrix to compare
* @return 1 if the matrices are equal
* @return 0 if the matrices are not equal
*/
ASSIMP_API int aiMatrix3AreEqual(
const C_STRUCT aiMatrix3x3* a,
const C_STRUCT aiMatrix3x3* b);
// --------------------------------------------------------------------------------
/** Check if 3x3 matrices are equal.
* @param a First matrix to compare
* @param b Second matrix to compare
* @param epsilon Epsilon
* @return 1 if the matrices are equal
* @return 0 if the matrices are not equal
*/
ASSIMP_API int aiMatrix3AreEqualEpsilon(
const C_STRUCT aiMatrix3x3* a,
const C_STRUCT aiMatrix3x3* b,
const float epsilon);
// --------------------------------------------------------------------------------
/** Invert a 3x3 matrix.
* @param mat Matrix to invert
*/
ASSIMP_API void aiMatrix3Inverse(
C_STRUCT aiMatrix3x3* mat);
// --------------------------------------------------------------------------------
/** Get the determinant of a 3x3 matrix.
* @param mat Matrix to get the determinant from
*/
ASSIMP_API float aiMatrix3Determinant(
const C_STRUCT aiMatrix3x3* mat);
// --------------------------------------------------------------------------------
/** Get a 3x3 rotation matrix around the Z axis.
* @param mat Receives the output matrix
* @param angle Rotation angle, in radians
*/
ASSIMP_API void aiMatrix3RotationZ(
C_STRUCT aiMatrix3x3* mat,
const float angle);
// --------------------------------------------------------------------------------
/** Returns a 3x3 rotation matrix for a rotation around an arbitrary axis.
* @param mat Receives the output matrix
* @param axis Rotation axis, should be a normalized vector
* @param angle Rotation angle, in radians
*/
ASSIMP_API void aiMatrix3FromRotationAroundAxis(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiVector3D* axis,
const float angle);
// --------------------------------------------------------------------------------
/** Get a 3x3 translation matrix.
* @param mat Receives the output matrix
* @param translation The translation vector
*/
ASSIMP_API void aiMatrix3Translation(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiVector2D* translation);
// --------------------------------------------------------------------------------
/** Create a 3x3 matrix that rotates one vector to another vector.
* @param mat Receives the output matrix
* @param from Vector to rotate from
* @param to Vector to rotate to
*/
ASSIMP_API void aiMatrix3FromTo(
C_STRUCT aiMatrix3x3* mat,
const C_STRUCT aiVector3D* from,
const C_STRUCT aiVector3D* to);
// --------------------------------------------------------------------------------
/** Construct a 4x4 matrix from a 3x3 matrix.
* @param dst Receives the output matrix
* @param mat The 3x3 matrix to use
*/
ASSIMP_API void aiMatrix4FromMatrix3(
C_STRUCT aiMatrix4x4* dst,
const C_STRUCT aiMatrix3x3* mat);
// --------------------------------------------------------------------------------
/** Construct a 4x4 matrix from scaling, rotation and position.
* @param mat Receives the output matrix.
* @param scaling The scaling for the x,y,z axes
* @param rotation The rotation as a hamilton quaternion
* @param position The position for the x,y,z axes
*/
ASSIMP_API void aiMatrix4FromScalingQuaternionPosition(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* scaling,
const C_STRUCT aiQuaternion* rotation,
const C_STRUCT aiVector3D* position);
// --------------------------------------------------------------------------------
/** Add 4x4 matrices.
* @param dst First addend, receives result.
* @param src Matrix to be added to 'dst'.
*/
ASSIMP_API void aiMatrix4Add(
C_STRUCT aiMatrix4x4* dst,
const C_STRUCT aiMatrix4x4* src);
// --------------------------------------------------------------------------------
/** Check if 4x4 matrices are equal.
* @param a First matrix to compare
* @param b Second matrix to compare
* @return 1 if the matrices are equal
* @return 0 if the matrices are not equal
*/
ASSIMP_API int aiMatrix4AreEqual(
const C_STRUCT aiMatrix4x4* a,
const C_STRUCT aiMatrix4x4* b);
// --------------------------------------------------------------------------------
/** Check if 4x4 matrices are equal.
* @param a First matrix to compare
* @param b Second matrix to compare
* @param epsilon Epsilon
* @return 1 if the matrices are equal
* @return 0 if the matrices are not equal
*/
ASSIMP_API int aiMatrix4AreEqualEpsilon(
const C_STRUCT aiMatrix4x4* a,
const C_STRUCT aiMatrix4x4* b,
const float epsilon);
// --------------------------------------------------------------------------------
/** Invert a 4x4 matrix.
* @param result Matrix to invert
*/
ASSIMP_API void aiMatrix4Inverse(
C_STRUCT aiMatrix4x4* mat);
// --------------------------------------------------------------------------------
/** Get the determinant of a 4x4 matrix.
* @param mat Matrix to get the determinant from
* @return The determinant of the matrix
*/
ASSIMP_API float aiMatrix4Determinant(
const C_STRUCT aiMatrix4x4* mat);
// --------------------------------------------------------------------------------
/** Returns true of the matrix is the identity matrix.
* @param mat Matrix to get the determinant from
* @return 1 if \p mat is an identity matrix.
* @return 0 if \p mat is not an identity matrix.
*/
ASSIMP_API int aiMatrix4IsIdentity(
const C_STRUCT aiMatrix4x4* mat);
// --------------------------------------------------------------------------------
/** Decompose a transformation matrix into its scaling,
* rotational as euler angles, and translational components.
*
* @param mat Matrix to decompose
* @param scaling Receives the output scaling for the x,y,z axes
* @param rotation Receives the output rotation as a Euler angles
* @param position Receives the output position for the x,y,z axes
*/
ASSIMP_API void aiMatrix4DecomposeIntoScalingEulerAnglesPosition(
const C_STRUCT aiMatrix4x4* mat,
C_STRUCT aiVector3D* scaling,
C_STRUCT aiVector3D* rotation,
C_STRUCT aiVector3D* position);
// --------------------------------------------------------------------------------
/** Decompose a transformation matrix into its scaling,
* rotational split into an axis and rotational angle,
* and it's translational components.
*
* @param mat Matrix to decompose
* @param rotation Receives the rotational component
* @param axis Receives the output rotation axis
* @param angle Receives the output rotation angle
* @param position Receives the output position for the x,y,z axes.
*/
ASSIMP_API void aiMatrix4DecomposeIntoScalingAxisAnglePosition(
const C_STRUCT aiMatrix4x4* mat,
C_STRUCT aiVector3D* scaling,
C_STRUCT aiVector3D* axis,
float* angle,
C_STRUCT aiVector3D* position);
// --------------------------------------------------------------------------------
/** Decompose a transformation matrix into its rotational and
* translational components.
*
* @param mat Matrix to decompose
* @param rotation Receives the rotational component
* @param position Receives the translational component.
*/
ASSIMP_API void aiMatrix4DecomposeNoScaling(
const C_STRUCT aiMatrix4x4* mat,
C_STRUCT aiQuaternion* rotation,
C_STRUCT aiVector3D* position);
// --------------------------------------------------------------------------------
/** Creates a 4x4 matrix from a set of euler angles.
* @param mat Receives the output matrix
* @param x Rotation angle for the x-axis, in radians
* @param y Rotation angle for the y-axis, in radians
* @param z Rotation angle for the z-axis, in radians
*/
ASSIMP_API void aiMatrix4FromEulerAngles(
C_STRUCT aiMatrix4x4* mat,
float x, float y, float z);
// --------------------------------------------------------------------------------
/** Get a 4x4 rotation matrix around the X axis.
* @param mat Receives the output matrix
* @param angle Rotation angle, in radians
*/
ASSIMP_API void aiMatrix4RotationX(
C_STRUCT aiMatrix4x4* mat,
const float angle);
// --------------------------------------------------------------------------------
/** Get a 4x4 rotation matrix around the Y axis.
* @param mat Receives the output matrix
* @param angle Rotation angle, in radians
*/
ASSIMP_API void aiMatrix4RotationY(
C_STRUCT aiMatrix4x4* mat,
const float angle);
// --------------------------------------------------------------------------------
/** Get a 4x4 rotation matrix around the Z axis.
* @param mat Receives the output matrix
* @param angle Rotation angle, in radians
*/
ASSIMP_API void aiMatrix4RotationZ(
C_STRUCT aiMatrix4x4* mat,
const float angle);
// --------------------------------------------------------------------------------
/** Returns a 4x4 rotation matrix for a rotation around an arbitrary axis.
* @param mat Receives the output matrix
* @param axis Rotation axis, should be a normalized vector
* @param angle Rotation angle, in radians
*/
ASSIMP_API void aiMatrix4FromRotationAroundAxis(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* axis,
const float angle);
// --------------------------------------------------------------------------------
/** Get a 4x4 translation matrix.
* @param mat Receives the output matrix
* @param translation The translation vector
*/
ASSIMP_API void aiMatrix4Translation(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* translation);
// --------------------------------------------------------------------------------
/** Get a 4x4 scaling matrix.
* @param mat Receives the output matrix
* @param scaling The scaling vector
*/
ASSIMP_API void aiMatrix4Scaling(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* scaling);
// --------------------------------------------------------------------------------
/** Create a 4x4 matrix that rotates one vector to another vector.
* @param mat Receives the output matrix
* @param from Vector to rotate from
* @param to Vector to rotate to
*/
ASSIMP_API void aiMatrix4FromTo(
C_STRUCT aiMatrix4x4* mat,
const C_STRUCT aiVector3D* from,
const C_STRUCT aiVector3D* to);
// --------------------------------------------------------------------------------
/** Create a Quaternion from euler angles.
* @param q Receives the output quaternion
* @param x Rotation angle for the x-axis, in radians
* @param y Rotation angle for the y-axis, in radians
* @param z Rotation angle for the z-axis, in radians
*/
ASSIMP_API void aiQuaternionFromEulerAngles(
C_STRUCT aiQuaternion* q,
float x, float y, float z);
// --------------------------------------------------------------------------------
/** Create a Quaternion from an axis angle pair.
* @param q Receives the output quaternion
* @param axis The orientation axis
* @param angle The rotation angle, in radians
*/
ASSIMP_API void aiQuaternionFromAxisAngle(
C_STRUCT aiQuaternion* q,
const C_STRUCT aiVector3D* axis,
const float angle);
// --------------------------------------------------------------------------------
/** Create a Quaternion from a normalized quaternion stored
* in a 3D vector.
* @param q Receives the output quaternion
* @param normalized The vector that stores the quaternion
*/
ASSIMP_API void aiQuaternionFromNormalizedQuaternion(
C_STRUCT aiQuaternion* q,
const C_STRUCT aiVector3D* normalized);
// --------------------------------------------------------------------------------
/** Check if quaternions are equal.
* @param a First quaternion to compare
* @param b Second quaternion to compare
* @return 1 if the quaternions are equal
* @return 0 if the quaternions are not equal
*/
ASSIMP_API int aiQuaternionAreEqual(
const C_STRUCT aiQuaternion* a,
const C_STRUCT aiQuaternion* b);
// --------------------------------------------------------------------------------
/** Check if quaternions are equal using epsilon.
* @param a First quaternion to compare
* @param b Second quaternion to compare
* @param epsilon Epsilon
* @return 1 if the quaternions are equal
* @return 0 if the quaternions are not equal
*/
ASSIMP_API int aiQuaternionAreEqualEpsilon(
const C_STRUCT aiQuaternion* a,
const C_STRUCT aiQuaternion* b,
const float epsilon);
// --------------------------------------------------------------------------------
/** Normalize a quaternion.
* @param q Quaternion to normalize
*/
ASSIMP_API void aiQuaternionNormalize(
C_STRUCT aiQuaternion* q);
// --------------------------------------------------------------------------------
/** Compute quaternion conjugate.
* @param q Quaternion to compute conjugate,
* receives the output quaternion
*/
ASSIMP_API void aiQuaternionConjugate(
C_STRUCT aiQuaternion* q);
// --------------------------------------------------------------------------------
/** Multiply quaternions.
* @param dst First quaternion, receives the output quaternion
* @param q Second quaternion
*/
ASSIMP_API void aiQuaternionMultiply(
C_STRUCT aiQuaternion* dst,
const C_STRUCT aiQuaternion* q);
// --------------------------------------------------------------------------------
/** Performs a spherical interpolation between two quaternions.
* @param dst Receives the quaternion resulting from the interpolation.
* @param start Quaternion when factor == 0
* @param end Quaternion when factor == 1
* @param factor Interpolation factor between 0 and 1
*/
ASSIMP_API void aiQuaternionInterpolate(
C_STRUCT aiQuaternion* dst,
const C_STRUCT aiQuaternion* start,
const C_STRUCT aiQuaternion* end,
const float factor);
#ifdef __cplusplus
}
#endif

View File

@ -99,7 +99,7 @@ public:
aiQuaterniont& Conjugate ();
/** Rotate a point by this quaternion */
aiVector3t<TReal> Rotate (const aiVector3t<TReal>& in);
aiVector3t<TReal> Rotate (const aiVector3t<TReal>& in) const;
/** Multiply two quaternions */
aiQuaterniont operator* (const aiQuaterniont& two) const;

View File

@ -277,7 +277,7 @@ inline aiQuaterniont<TReal>& aiQuaterniont<TReal>::Conjugate ()
// ---------------------------------------------------------------------------
template<typename TReal>
inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v)
inline aiVector3t<TReal> aiQuaterniont<TReal>::Rotate (const aiVector3t<TReal>& v) const
{
aiQuaterniont q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
qinv.Conjugate();

View File

@ -0,0 +1,6 @@
{
"asset": {
"version": "2.0"
},
"scene": 0
}

View File

@ -0,0 +1,10 @@
{
"asset": {
"version": "2.0"
},
"scene": 0,
"scenes": [
{
}
]
}

View File

@ -490,3 +490,16 @@ TEST_F(utglTF2ImportExport, texcoords) {
EXPECT_EQ(aiGetMaterialInteger(material, AI_MATKEY_GLTF_TEXTURE_TEXCOORD(aiTextureType_UNKNOWN, 0), &uvIndex), aiReturn_SUCCESS);
EXPECT_EQ(uvIndex, 1);
}
TEST_F(utglTF2ImportExport, norootnode_noscene) {
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(ASSIMP_TEST_MODELS_DIR "/glTF2/TestNoRootNode/NoScene.gltf", aiProcess_ValidateDataStructure);
ASSERT_EQ(scene, nullptr);
}
TEST_F(utglTF2ImportExport, norootnode_scenewithoutnodes) {
Assimp::Importer importer;
const aiScene* scene = importer.ReadFile(ASSIMP_TEST_MODELS_DIR "/glTF2/TestNoRootNode/SceneWithoutNodes.gltf", aiProcess_ValidateDataStructure);
ASSERT_NE(scene, nullptr);
ASSERT_NE(scene->mRootNode, nullptr);
}