Merge pull request #4387 from assimp/kimkulling/fbx_use_ai_epsilon

Refactoring: add usage of ai_epsilon to fbx.
pull/4391/head
Kim Kulling 2022-02-16 22:38:34 +01:00 committed by GitHub
commit 510504a2c6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 46 additions and 47 deletions

View File

@ -357,9 +357,9 @@ void ColladaLoader::BuildLightsForNode(const ColladaParser &pParser, const Node
out->mAngleInnerCone = AI_DEG_TO_RAD(srcLight->mFalloffAngle); out->mAngleInnerCone = AI_DEG_TO_RAD(srcLight->mFalloffAngle);
// ... some extension magic. // ... some extension magic.
if (srcLight->mOuterAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - 1e-6f)) { if (srcLight->mOuterAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - ai_epsilon)) {
// ... some deprecation magic. // ... some deprecation magic.
if (srcLight->mPenumbraAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - 1e-6f)) { if (srcLight->mPenumbraAngle >= ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET * (1 - ai_epsilon)) {
// Need to rely on falloff_exponent. I don't know how to interpret it, so I need to guess .... // Need to rely on falloff_exponent. I don't know how to interpret it, so I need to guess ....
// epsilon chosen to be 0.1 // epsilon chosen to be 0.1
float f = 1.0f; float f = 1.0f;
@ -1065,7 +1065,7 @@ void insertMorphTimeValue(std::vector<MorphTimeValues> &values, float time, floa
return; return;
} }
for (unsigned int i = 0; i < values.size(); i++) { for (unsigned int i = 0; i < values.size(); i++) {
if (std::abs(time - values[i].mTime) < 1e-6f) { if (std::abs(time - values[i].mTime) < ai_epsilon) {
values[i].mKeys.push_back(k); values[i].mKeys.push_back(k);
return; return;
} else if (time > values[i].mTime && time < values[i + 1].mTime) { } else if (time > values[i].mTime && time < values[i + 1].mTime) {

View File

@ -80,8 +80,10 @@ enum TransformInheritance {
TransformInheritance_MAX // end-of-enum sentinel TransformInheritance_MAX // end-of-enum sentinel
}; };
} // namespace FBX } // namespace FBX
} // namespace Assimp } // namespace Assimp
#endif // ASSIMP_BUILD_NO_FBX_EXPORTER #endif // ASSIMP_BUILD_NO_FBX_EXPORTER
#endif // AI_FBXCOMMON_H_INC #endif // AI_FBXCOMMON_H_INC

View File

@ -653,7 +653,7 @@ bool FBXConverter::NeedsComplexTransformationChain(const Model &model) {
const PropertyTable &props = model.Props(); const PropertyTable &props = model.Props();
bool ok; bool ok;
const float zero_epsilon = 1e-6f; const float zero_epsilon = ai_epsilon;
const aiVector3D all_ones(1.0f, 1.0f, 1.0f); const aiVector3D all_ones(1.0f, 1.0f, 1.0f);
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) { for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i); const TransformationComp comp = static_cast<TransformationComp>(i);
@ -3187,7 +3187,8 @@ aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name,
} }
bool ok = false; bool ok = false;
const float zero_epsilon = 1e-6f;
const float zero_epsilon = ai_epsilon;
const aiVector3D& preRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok); const aiVector3D& preRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
if (ok && preRotation.SquareLength() > zero_epsilon) { if (ok && preRotation.SquareLength() > zero_epsilon) {

View File

@ -66,12 +66,12 @@ bool IntersectSegmentPlane(const IfcVector3 &p, const IfcVector3 &n, const IfcVe
// if segment ends on plane, do not report a hit. We stay on that side until a following segment starting at this // if segment ends on plane, do not report a hit. We stay on that side until a following segment starting at this
// point leaves the plane through the other side // point leaves the plane through the other side
if (std::abs(dotOne + dotTwo) < 1e-6) if (std::abs(dotOne + dotTwo) < ai_epsilon)
return false; return false;
// if segment starts on the plane, report a hit only if the end lies on the *other* side // if segment starts on the plane, report a hit only if the end lies on the *other* side
if (std::abs(dotTwo) < 1e-6) { if (std::abs(dotTwo) < ai_epsilon) {
if ((assumeStartOnWhiteSide && dotOne + dotTwo < 1e-6) || (!assumeStartOnWhiteSide && dotOne + dotTwo > -1e-6)) { if ((assumeStartOnWhiteSide && dotOne + dotTwo < ai_epsilon) || (!assumeStartOnWhiteSide && dotOne + dotTwo > -ai_epsilon)) {
out = e0; out = e0;
return true; return true;
} else { } else {
@ -81,7 +81,7 @@ bool IntersectSegmentPlane(const IfcVector3 &p, const IfcVector3 &n, const IfcVe
// ignore if segment is parallel to plane and far away from it on either side // ignore if segment is parallel to plane and far away from it on either side
// Warning: if there's a few thousand of such segments which slowly accumulate beyond the epsilon, no hit would be registered // Warning: if there's a few thousand of such segments which slowly accumulate beyond the epsilon, no hit would be registered
if (std::abs(dotOne) < 1e-6) if (std::abs(dotOne) < ai_epsilon)
return false; return false;
// t must be in [0..1] if the intersection point is within the given segment // t must be in [0..1] if the intersection point is within the given segment
@ -163,7 +163,7 @@ void ProcessBooleanHalfSpaceDifference(const Schema_2x3::IfcHalfSpaceSolid *hs,
for (iit = begin; iit != end; vidx += *iit++) { for (iit = begin; iit != end; vidx += *iit++) {
unsigned int newcount = 0; unsigned int newcount = 0;
bool isAtWhiteSide = (in[vidx] - p) * n > -1e-6; bool isAtWhiteSide = (in[vidx] - p) * n > -ai_epsilon;
for (unsigned int i = 0; i < *iit; ++i) { for (unsigned int i = 0; i < *iit; ++i) {
const IfcVector3 &e0 = in[vidx + i], e1 = in[vidx + (i + 1) % *iit]; const IfcVector3 &e0 = in[vidx + i], e1 = in[vidx + (i + 1) % *iit];
@ -259,7 +259,7 @@ bool IntersectsBoundaryProfile(const IfcVector3 &e0, const IfcVector3 &e1, const
// segment-segment intersection // segment-segment intersection
// solve b0 + b*s = e0 + e*t for (s,t) // solve b0 + b*s = e0 + e*t for (s,t)
const IfcFloat det = (-b.x * e.y + e.x * b.y); const IfcFloat det = (-b.x * e.y + e.x * b.y);
if (std::abs(det) < 1e-6) { if (std::abs(det) < ai_epsilon) {
// no solutions (parallel lines) // no solutions (parallel lines)
continue; continue;
} }
@ -316,7 +316,7 @@ bool IntersectsBoundaryProfile(const IfcVector3 &e0, const IfcVector3 &e1, const
// for a valid intersection, s and t should be in range [0,1]. Including a bit of epsilon on s, potential double // for a valid intersection, s and t should be in range [0,1]. Including a bit of epsilon on s, potential double
// hits on two consecutive boundary segments are filtered // hits on two consecutive boundary segments are filtered
if (s >= -1e-6 * b_sqlen_inv && s <= 1.0 + 1e-6 * b_sqlen_inv && t >= 0.0 && (t <= 1.0 || halfOpen)) { if (s >= -ai_epsilon * b_sqlen_inv && s <= 1.0 + ai_epsilon * b_sqlen_inv && t >= 0.0 && (t <= 1.0 || halfOpen)) {
// only insert the point into the list if it is sufficiently far away from the previous intersection point. // only insert the point into the list if it is sufficiently far away from the previous intersection point.
// This way, we avoid duplicate detection if the intersection is directly on the vertex between two segments. // This way, we avoid duplicate detection if the intersection is directly on the vertex between two segments.
if (!intersect_results.empty() && intersect_results.back().first == i - 1) { if (!intersect_results.empty() && intersect_results.back().first == i - 1) {
@ -431,14 +431,14 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const Schema_2x3::IfcPoly
// if the poly is parallel to the plane, put it completely on the black or white side // if the poly is parallel to the plane, put it completely on the black or white side
if (std::abs(polyNormal * n) > 0.9999) { if (std::abs(polyNormal * n) > 0.9999) {
bool isOnWhiteSide = (srcVertices[0] - p) * n > -1e-6; bool isOnWhiteSide = (srcVertices[0] - p) * n > -ai_epsilon;
std::vector<IfcVector3> &targetSide = isOnWhiteSide ? whiteside : blackside; std::vector<IfcVector3> &targetSide = isOnWhiteSide ? whiteside : blackside;
targetSide.insert(targetSide.end(), srcVertices, srcVertices + srcVtxCount); targetSide.insert(targetSide.end(), srcVertices, srcVertices + srcVtxCount);
} else { } else {
// otherwise start building one polygon for each side. Whenever the current line segment intersects the plane // otherwise start building one polygon for each side. Whenever the current line segment intersects the plane
// we put a point there as an end of the current segment. Then we switch to the other side, put a point there, too, // we put a point there as an end of the current segment. Then we switch to the other side, put a point there, too,
// as a beginning of the current segment, and simply continue accumulating vertices. // as a beginning of the current segment, and simply continue accumulating vertices.
bool isCurrentlyOnWhiteSide = ((srcVertices[0]) - p) * n > -1e-6; bool isCurrentlyOnWhiteSide = ((srcVertices[0]) - p) * n > -ai_epsilon;
for (size_t a = 0; a < srcVtxCount; ++a) { for (size_t a = 0; a < srcVtxCount; ++a) {
IfcVector3 e0 = srcVertices[a]; IfcVector3 e0 = srcVertices[a];
IfcVector3 e1 = srcVertices[(a + 1) % srcVtxCount]; IfcVector3 e1 = srcVertices[(a + 1) % srcVtxCount];

View File

@ -380,21 +380,19 @@ void ProcessSweptDiskSolid(const Schema_2x3::IfcSweptDiskSolid &solid, TempMesh&
bool take_any = false; bool take_any = false;
for (unsigned int j = 0; j < 2; ++j, take_any = true) { for (unsigned int j = 0; j < 2; ++j, take_any = true) {
if ((last_dir == 0 || take_any) && std::abs(d.x) > 1e-6) { if ((last_dir == 0 || take_any) && std::abs(d.x) > ai_epsilon) {
q.y = startvec.y; q.y = startvec.y;
q.z = startvec.z; q.z = startvec.z;
q.x = -(d.y * q.y + d.z * q.z) / d.x; q.x = -(d.y * q.y + d.z * q.z) / d.x;
last_dir = 0; last_dir = 0;
break; break;
} } else if ((last_dir == 1 || take_any) && std::abs(d.y) > ai_epsilon) {
else if ((last_dir == 1 || take_any) && std::abs(d.y) > 1e-6) {
q.x = startvec.x; q.x = startvec.x;
q.z = startvec.z; q.z = startvec.z;
q.y = -(d.x * q.x + d.z * q.z) / d.y; q.y = -(d.x * q.x + d.z * q.z) / d.y;
last_dir = 1; last_dir = 1;
break; break;
} } else if ((last_dir == 2 && std::abs(d.z) > ai_epsilon) || take_any) {
else if ((last_dir == 2 && std::abs(d.z) > 1e-6) || take_any) {
q.y = startvec.y; q.y = startvec.y;
q.x = startvec.x; q.x = startvec.x;
q.z = -(d.y * q.y + d.x * q.x) / d.z; q.z = -(d.y * q.y + d.x * q.x) / d.z;
@ -529,7 +527,7 @@ IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcVect
return m; return m;
} }
const auto closeDistance = 1e-6; const auto closeDistance = ai_epsilon;
bool areClose(Schema_2x3::IfcCartesianPoint pt1,Schema_2x3::IfcCartesianPoint pt2) { bool areClose(Schema_2x3::IfcCartesianPoint pt1,Schema_2x3::IfcCartesianPoint pt2) {
if(pt1.Coordinates.size() != pt2.Coordinates.size()) if(pt1.Coordinates.size() != pt2.Coordinates.size())
@ -561,7 +559,7 @@ void ProcessExtrudedArea(const Schema_2x3::IfcExtrudedAreaSolid& solid, const Te
// Outline: 'curve' is now a list of vertex points forming the underlying profile, extrude along the given axis, // Outline: 'curve' is now a list of vertex points forming the underlying profile, extrude along the given axis,
// forming new triangles. // forming new triangles.
const bool has_area = solid.SweptArea->ProfileType == "AREA" && curve.mVerts.size() > 2; const bool has_area = solid.SweptArea->ProfileType == "AREA" && curve.mVerts.size() > 2;
if( solid.Depth < 1e-6 ) { if (solid.Depth < ai_epsilon) {
if( has_area ) { if( has_area ) {
result.Append(curve); result.Append(curve);
} }

View File

@ -1133,7 +1133,7 @@ IfcMatrix4 ProjectOntoPlane(std::vector<IfcVector2>& out_contour, const TempMesh
} }
for(size_t i = 0; i < out_contour.size(); ++i) { for(size_t i = 0; i < out_contour.size(); ++i) {
ai_assert((out_contour[i]-out_contour2[i]).SquareLength() < 1e-6); ai_assert((out_contour[i] - out_contour2[i]).SquareLength() < ai_epsilon);
} }
#endif #endif
@ -1435,7 +1435,7 @@ std::vector<IfcVector2> GetContourInPlane2D(std::shared_ptr<TempMesh> mesh,IfcMa
const auto outernor = ((mesh->mVerts[2] - mesh->mVerts[0]) ^ (mesh->mVerts[1] - mesh->mVerts[0])).Normalize(); const auto outernor = ((mesh->mVerts[2] - mesh->mVerts[0]) ^ (mesh->mVerts[1] - mesh->mVerts[0])).Normalize();
const IfcFloat dot = planeNor * outernor; const IfcFloat dot = planeNor * outernor;
if(std::fabs(dot) < 1.f - 1e-6f) { if (std::fabs(dot) < 1.f - ai_epsilon) {
std::stringstream msg; std::stringstream msg;
msg << "Skipping: Unaligned opening (" << planeNor.x << ", " << planeNor.y << ", " << planeNor.z << ")"; msg << "Skipping: Unaligned opening (" << planeNor.x << ", " << planeNor.y << ", " << planeNor.z << ")";
msg << " . ( " << outernor.x << ", " << outernor.y << ", " << outernor.z << ") = " << dot; msg << " . ( " << outernor.x << ", " << outernor.y << ", " << outernor.z << ") = " << dot;
@ -1476,7 +1476,7 @@ std::vector<IfcVector2> GetContourInPlane2D(std::shared_ptr<TempMesh> mesh,IfcMa
return contour; return contour;
} }
const float close { 1e-6f }; const float close{ ai_epsilon };
static bool isClose(IfcVector2 first,IfcVector2 second) { static bool isClose(IfcVector2 first,IfcVector2 second) {
auto diff = (second - first); auto diff = (second - first);

View File

@ -228,25 +228,24 @@ void TempMesh::ComputePolygonNormals(std::vector<IfcVector3>& normals,
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Compute the normal of the last polygon in the given mesh // Compute the normal of the last polygon in the given mesh
IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const IfcVector3 TempMesh::ComputeLastPolygonNormal(bool normalize) const {
{
return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize); return ComputePolygonNormal(&mVerts[mVerts.size() - mVertcnt.back()], mVertcnt.back(), normalize);
} }
struct CompareVector struct CompareVector {
{ bool operator () (const IfcVector3& a, const IfcVector3& b) const {
bool operator () (const IfcVector3& a, const IfcVector3& b) const
{
IfcVector3 d = a - b; IfcVector3 d = a - b;
IfcFloat eps = 1e-6; IfcFloat eps = ai_epsilon;
return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps); return d.x < -eps || (std::abs(d.x) < eps && d.y < -eps) || (std::abs(d.x) < eps && std::abs(d.y) < eps && d.z < -eps);
} }
}; };
struct FindVector
{ struct FindVector {
IfcVector3 v; IfcVector3 v;
FindVector(const IfcVector3& p) : v(p) { } FindVector(const IfcVector3& p) : v(p) { }
bool operator () (const IfcVector3& p) { return FuzzyVectorCompare(1e-6)(p, v); } bool operator()(const IfcVector3 &p) {
return FuzzyVectorCompare(ai_epsilon)(p, v);
}
}; };
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
@ -357,8 +356,7 @@ void TempMesh::FixupFaceOrientation()
// to reverse the neighbour // to reverse the neighbour
nb_vidx = (nb_vidx + 1) % nbvc; nb_vidx = (nb_vidx + 1) % nbvc;
size_t oursideidx = (a + 1) % vc; size_t oursideidx = (a + 1) % vc;
if( FuzzyVectorCompare(1e-6)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx]) ) if (FuzzyVectorCompare(ai_epsilon)(mVerts[vsi + oursideidx], mVerts[nbvsi + nb_vidx])) {
{
std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc); std::reverse(mVerts.begin() + nbvsi, mVerts.begin() + nbvsi + nbvc);
std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc); std::reverse(neighbour.begin() + nbvsi, neighbour.begin() + nbvsi + nbvc);
for (size_t aa = 0; aa < nbvc - 1; ++aa) { for (size_t aa = 0; aa < nbvc - 1; ++aa) {
@ -564,7 +562,7 @@ void ConvertDirection(IfcVector3& out, const Schema_2x3::IfcDirection& in)
out[static_cast<unsigned int>(i)] = in.DirectionRatios[i]; out[static_cast<unsigned int>(i)] = in.DirectionRatios[i];
} }
const IfcFloat len = out.Length(); const IfcFloat len = out.Length();
if (len<1e-6) { if (len < ai_epsilon) {
IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero"); IFCImporter::LogWarn("direction vector magnitude too small, normalization would result in a division by zero");
return; return;
} }

View File

@ -221,7 +221,7 @@ bool FindDegeneratesProcess::ExecuteOnMesh( aiMesh* mesh) {
if ( mConfigCheckAreaOfTriangle ) { if ( mConfigCheckAreaOfTriangle ) {
if ( face.mNumIndices == 3 ) { if ( face.mNumIndices == 3 ) {
ai_real area = calculateAreaOfTriangle( face, mesh ); ai_real area = calculateAreaOfTriangle( face, mesh );
if ( area < 1e-6 ) { if (area < ai_epsilon) {
if ( mConfigRemoveDegenerates ) { if ( mConfigRemoveDegenerates ) {
remove_me[ a ] = true; remove_me[ a ] = true;
++deg; ++deg;

View File

@ -283,7 +283,7 @@ typedef unsigned int ai_uint;
#define AI_RAD_TO_DEG(x) ((x) * (ai_real) 57.2957795) #define AI_RAD_TO_DEG(x) ((x) * (ai_real) 57.2957795)
/* Numerical limits */ /* Numerical limits */
static const ai_real ai_epsilon = (ai_real)0.00001; static const ai_real ai_epsilon = (ai_real) 1e-6;
/* Support for big-endian builds */ /* Support for big-endian builds */
#if defined(__BYTE_ORDER__) #if defined(__BYTE_ORDER__)

View File

@ -95,7 +95,7 @@ public:
bool operator== (const aiMatrix3x3t<TReal>& m) const; bool operator== (const aiMatrix3x3t<TReal>& m) const;
bool operator!= (const aiMatrix3x3t<TReal>& m) const; bool operator!= (const aiMatrix3x3t<TReal>& m) const;
bool Equal(const aiMatrix3x3t<TReal>& m, TReal epsilon = 1e-6) const; bool Equal(const aiMatrix3x3t<TReal> &m, TReal epsilon = ai_epsilon) const;
template <typename TOther> template <typename TOther>
operator aiMatrix3x3t<TOther> () const; operator aiMatrix3x3t<TOther> () const;

View File

@ -110,7 +110,7 @@ public:
bool operator== (const aiMatrix4x4t& m) const; bool operator== (const aiMatrix4x4t& m) const;
bool operator!= (const aiMatrix4x4t& m) const; bool operator!= (const aiMatrix4x4t& m) const;
bool Equal(const aiMatrix4x4t& m, TReal epsilon = 1e-6) const; bool Equal(const aiMatrix4x4t &m, TReal epsilon = ai_epsilon) const;
// matrix multiplication. // matrix multiplication.
aiMatrix4x4t& operator *= (const aiMatrix4x4t& m); aiMatrix4x4t& operator *= (const aiMatrix4x4t& m);

View File

@ -92,7 +92,7 @@ public:
// transform vector by matrix // transform vector by matrix
aiQuaterniont& operator *= (const aiMatrix4x4t<TReal>& mat); aiQuaterniont& operator *= (const aiMatrix4x4t<TReal>& mat);
bool Equal(const aiQuaterniont& o, TReal epsilon = 1e-6) const; bool Equal(const aiQuaterniont &o, TReal epsilon = ai_epsilon) const;
public: public:

View File

@ -85,7 +85,7 @@ public:
bool operator== (const aiVector2t& other) const; bool operator== (const aiVector2t& other) const;
bool operator!= (const aiVector2t& other) const; bool operator!= (const aiVector2t& other) const;
bool Equal(const aiVector2t& other, TReal epsilon = 1e-6) const; bool Equal(const aiVector2t &other, TReal epsilon = ai_epsilon) const;
aiVector2t& operator= (TReal f); aiVector2t& operator= (TReal f);
const aiVector2t SymMul(const aiVector2t& o); const aiVector2t SymMul(const aiVector2t& o);

View File

@ -114,7 +114,7 @@ public:
bool operator < (const aiVector3t& other) const; bool operator < (const aiVector3t& other) const;
/// @brief /// @brief
bool Equal(const aiVector3t& other, TReal epsilon = 1e-6) const; bool Equal(const aiVector3t &other, TReal epsilon = ai_epsilon) const;
template <typename TOther> template <typename TOther>
operator aiVector3t<TOther> () const; operator aiVector3t<TOther> () const;

View File

@ -573,7 +573,7 @@ TEST_F(utglTF2ImportExport, export_normalized_normals) {
scene = importer.ReadFile(ASSIMP_TEST_MODELS_DIR "/glTF2/BoxBadNormals-glTF-Binary/BoxBadNormals_out.glb", aiProcess_ValidateDataStructure); scene = importer.ReadFile(ASSIMP_TEST_MODELS_DIR "/glTF2/BoxBadNormals-glTF-Binary/BoxBadNormals_out.glb", aiProcess_ValidateDataStructure);
for ( auto i = 0u; i < scene->mMeshes[0]->mNumVertices; ++i ) { for ( auto i = 0u; i < scene->mMeshes[0]->mNumVertices; ++i ) {
const auto length = scene->mMeshes[0]->mNormals[i].Length(); const auto length = scene->mMeshes[0]->mNormals[i].Length();
EXPECT_TRUE(abs(length) < 1e-6 || abs(length - 1) < 1e-6); EXPECT_TRUE(abs(length) < 1e-6 || abs(length - 1) < ai_epsilon);
} }
} }