Apply clangformat

pull/2818/head
RichardTea 2019-12-09 09:56:01 +00:00
parent d8575b2b55
commit 463573c771
1 changed files with 208 additions and 211 deletions

View File

@ -43,13 +43,12 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
* @brief Implementation of the aiProcess_OptimizGraph step * @brief Implementation of the aiProcess_OptimizGraph step
*/ */
#ifndef ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS #ifndef ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS
#include "OptimizeGraph.h" #include "OptimizeGraph.h"
#include "ProcessHelper.h" #include "ProcessHelper.h"
#include <assimp/SceneCombiner.h>
#include <assimp/Exceptional.h> #include <assimp/Exceptional.h>
#include <assimp/SceneCombiner.h>
#include <stdio.h> #include <stdio.h>
using namespace Assimp; using namespace Assimp;
@ -60,292 +59,290 @@ using namespace Assimp;
* The unhashed variant should be faster, except for *very* large data sets * The unhashed variant should be faster, except for *very* large data sets
*/ */
#ifdef AI_OG_USE_HASHING #ifdef AI_OG_USE_HASHING
// Use our standard hashing function to compute the hash // Use our standard hashing function to compute the hash
# define AI_OG_GETKEY(str) SuperFastHash(str.data,str.length) #define AI_OG_GETKEY(str) SuperFastHash(str.data, str.length)
#else #else
// Otherwise hope that std::string will utilize a static buffer // Otherwise hope that std::string will utilize a static buffer
// for shorter node names. This would avoid endless heap copying. // for shorter node names. This would avoid endless heap copying.
# define AI_OG_GETKEY(str) std::string(str.data) #define AI_OG_GETKEY(str) std::string(str.data)
#endif #endif
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer // Constructor to be privately used by Importer
OptimizeGraphProcess::OptimizeGraphProcess() OptimizeGraphProcess::OptimizeGraphProcess() :
: mScene() mScene(),
, nodes_in() nodes_in(),
, nodes_out() nodes_out(),
, count_merged() { count_merged() {
// empty // empty
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Destructor, private as well // Destructor, private as well
OptimizeGraphProcess::~OptimizeGraphProcess() { OptimizeGraphProcess::~OptimizeGraphProcess() {
// empty // empty
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Returns whether the processing step is present in the given flag field. // Returns whether the processing step is present in the given flag field.
bool OptimizeGraphProcess::IsActive( unsigned int pFlags) const { bool OptimizeGraphProcess::IsActive(unsigned int pFlags) const {
return (0 != (pFlags & aiProcess_OptimizeGraph)); return (0 != (pFlags & aiProcess_OptimizeGraph));
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Setup properties for the post-processing step // Setup properties for the post-processing step
void OptimizeGraphProcess::SetupProperties(const Importer* pImp) { void OptimizeGraphProcess::SetupProperties(const Importer *pImp) {
// Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST // Get value of AI_CONFIG_PP_OG_EXCLUDE_LIST
std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST,""); std::string tmp = pImp->GetPropertyString(AI_CONFIG_PP_OG_EXCLUDE_LIST, "");
AddLockedNodeList(tmp); AddLockedNodeList(tmp);
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Collect new children // Collect new children
void OptimizeGraphProcess::CollectNewChildren(aiNode* nd, std::list<aiNode*>& nodes) { void OptimizeGraphProcess::CollectNewChildren(aiNode *nd, std::list<aiNode *> &nodes) {
nodes_in += nd->mNumChildren; nodes_in += nd->mNumChildren;
// Process children // Process children
std::list<aiNode*> child_nodes; std::list<aiNode *> child_nodes;
for (unsigned int i = 0; i < nd->mNumChildren; ++i) { for (unsigned int i = 0; i < nd->mNumChildren; ++i) {
CollectNewChildren(nd->mChildren[i],child_nodes); CollectNewChildren(nd->mChildren[i], child_nodes);
nd->mChildren[i] = nullptr; nd->mChildren[i] = nullptr;
} }
// Check whether we need this node; if not we can replace it by our own children (warn, danger of incest). // Check whether we need this node; if not we can replace it by our own children (warn, danger of incest).
if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end() ) { if (locked.find(AI_OG_GETKEY(nd->mName)) == locked.end()) {
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) { for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) { if (locked.find(AI_OG_GETKEY((*it)->mName)) == locked.end()) {
(*it)->mTransformation = nd->mTransformation * (*it)->mTransformation; (*it)->mTransformation = nd->mTransformation * (*it)->mTransformation;
nodes.push_back(*it); nodes.push_back(*it);
it = child_nodes.erase(it); it = child_nodes.erase(it);
continue; continue;
} }
++it; ++it;
} }
if (nd->mNumMeshes || !child_nodes.empty()) { if (nd->mNumMeshes || !child_nodes.empty()) {
nodes.push_back(nd); nodes.push_back(nd);
} else { } else {
delete nd; /* bye, node */ delete nd; /* bye, node */
return; return;
} }
} else { } else {
// Retain our current position in the hierarchy // Retain our current position in the hierarchy
nodes.push_back(nd); nodes.push_back(nd);
// Now check for possible optimizations in our list of child nodes. join as many as possible // Now check for possible optimizations in our list of child nodes. join as many as possible
aiNode* join_master = NULL; aiNode *join_master = NULL;
aiMatrix4x4 inv; aiMatrix4x4 inv;
const LockedSetType::const_iterator end = locked.end(); const LockedSetType::const_iterator end = locked.end();
std::list<aiNode*> join; std::list<aiNode *> join;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end();) { for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end();) {
aiNode* child = *it; aiNode *child = *it;
if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) { if (child->mNumChildren == 0 && locked.find(AI_OG_GETKEY(child->mName)) == end) {
// There may be no instanced meshes // There may be no instanced meshes
unsigned int n = 0; unsigned int n = 0;
for (; n < child->mNumMeshes;++n) { for (; n < child->mNumMeshes; ++n) {
if (meshes[child->mMeshes[n]] > 1) { if (meshes[child->mMeshes[n]] > 1) {
break; break;
} }
} }
if (n == child->mNumMeshes) { if (n == child->mNumMeshes) {
if (!join_master) { if (!join_master) {
join_master = child; join_master = child;
inv = join_master->mTransformation; inv = join_master->mTransformation;
inv.Inverse(); inv.Inverse();
} else { } else {
child->mTransformation = inv * child->mTransformation ; child->mTransformation = inv * child->mTransformation;
join.push_back(child); join.push_back(child);
it = child_nodes.erase(it); it = child_nodes.erase(it);
continue; continue;
} }
} }
} }
++it; ++it;
} }
if (join_master && !join.empty()) { if (join_master && !join.empty()) {
join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i",count_merged++); join_master->mName.length = ::ai_snprintf(join_master->mName.data, MAXLEN, "$MergedNode_%i", count_merged++);
unsigned int out_meshes = 0; unsigned int out_meshes = 0;
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) { for (std::list<aiNode *>::iterator it = join.begin(); it != join.end(); ++it) {
out_meshes += (*it)->mNumMeshes; out_meshes += (*it)->mNumMeshes;
} }
// copy all mesh references in one array // copy all mesh references in one array
if (out_meshes) { if (out_meshes) {
unsigned int* meshes = new unsigned int[out_meshes+join_master->mNumMeshes], *tmp = meshes; unsigned int *meshes = new unsigned int[out_meshes + join_master->mNumMeshes], *tmp = meshes;
for (unsigned int n = 0; n < join_master->mNumMeshes;++n) { for (unsigned int n = 0; n < join_master->mNumMeshes; ++n) {
*tmp++ = join_master->mMeshes[n]; *tmp++ = join_master->mMeshes[n];
} }
for (std::list<aiNode*>::iterator it = join.begin(); it != join.end(); ++it) { for (std::list<aiNode *>::iterator it = join.begin(); it != join.end(); ++it) {
for (unsigned int n = 0; n < (*it)->mNumMeshes; ++n) { for (unsigned int n = 0; n < (*it)->mNumMeshes; ++n) {
*tmp = (*it)->mMeshes[n]; *tmp = (*it)->mMeshes[n];
aiMesh* mesh = mScene->mMeshes[*tmp++]; aiMesh *mesh = mScene->mMeshes[*tmp++];
// manually move the mesh into the right coordinate system // manually move the mesh into the right coordinate system
const aiMatrix3x3 IT = aiMatrix3x3( (*it)->mTransformation ).Inverse().Transpose(); const aiMatrix3x3 IT = aiMatrix3x3((*it)->mTransformation).Inverse().Transpose();
for (unsigned int a = 0; a < mesh->mNumVertices; ++a) { for (unsigned int a = 0; a < mesh->mNumVertices; ++a) {
mesh->mVertices[a] *= (*it)->mTransformation; mesh->mVertices[a] *= (*it)->mTransformation;
if (mesh->HasNormals()) if (mesh->HasNormals())
mesh->mNormals[a] *= IT; mesh->mNormals[a] *= IT;
if (mesh->HasTangentsAndBitangents()) { if (mesh->HasTangentsAndBitangents()) {
mesh->mTangents[a] *= IT; mesh->mTangents[a] *= IT;
mesh->mBitangents[a] *= IT; mesh->mBitangents[a] *= IT;
} }
} }
} }
delete *it; // bye, node delete *it; // bye, node
} }
delete[] join_master->mMeshes; delete[] join_master->mMeshes;
join_master->mMeshes = meshes; join_master->mMeshes = meshes;
join_master->mNumMeshes += out_meshes; join_master->mNumMeshes += out_meshes;
} }
} }
} }
// reassign children if something changed // reassign children if something changed
if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) { if (child_nodes.empty() || child_nodes.size() > nd->mNumChildren) {
delete[] nd->mChildren; delete[] nd->mChildren;
if (!child_nodes.empty()) { if (!child_nodes.empty()) {
nd->mChildren = new aiNode*[child_nodes.size()]; nd->mChildren = new aiNode *[child_nodes.size()];
} } else
else nd->mChildren = nullptr; nd->mChildren = nullptr;
} }
nd->mNumChildren = static_cast<unsigned int>(child_nodes.size()); nd->mNumChildren = static_cast<unsigned int>(child_nodes.size());
if (nd->mChildren) { if (nd->mChildren) {
aiNode** tmp = nd->mChildren; aiNode **tmp = nd->mChildren;
for (std::list<aiNode*>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) { for (std::list<aiNode *>::iterator it = child_nodes.begin(); it != child_nodes.end(); ++it) {
aiNode* node = *tmp++ = *it; aiNode *node = *tmp++ = *it;
node->mParent = nd; node->mParent = nd;
} }
} }
nodes_out += static_cast<unsigned int>(child_nodes.size()); nodes_out += static_cast<unsigned int>(child_nodes.size());
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Execute the post-processing step on the given scene // Execute the post-processing step on the given scene
void OptimizeGraphProcess::Execute( aiScene* pScene) { void OptimizeGraphProcess::Execute(aiScene *pScene) {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin"); ASSIMP_LOG_DEBUG("OptimizeGraphProcess begin");
nodes_in = nodes_out = count_merged = 0; nodes_in = nodes_out = count_merged = 0;
mScene = pScene; mScene = pScene;
meshes.resize(pScene->mNumMeshes,0); meshes.resize(pScene->mNumMeshes, 0);
FindInstancedMeshes(pScene->mRootNode); FindInstancedMeshes(pScene->mRootNode);
// build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it // build a blacklist of identifiers. If the name of a node matches one of these, we won't touch it
locked.clear(); locked.clear();
for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) { for (std::list<std::string>::const_iterator it = locked_nodes.begin(); it != locked_nodes.end(); ++it) {
#ifdef AI_OG_USE_HASHING #ifdef AI_OG_USE_HASHING
locked.insert(SuperFastHash((*it).c_str())); locked.insert(SuperFastHash((*it).c_str()));
#else #else
locked.insert(*it); locked.insert(*it);
#endif #endif
} }
for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) { for (unsigned int i = 0; i < pScene->mNumAnimations; ++i) {
for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) { for (unsigned int a = 0; a < pScene->mAnimations[i]->mNumChannels; ++a) {
aiNodeAnim* anim = pScene->mAnimations[i]->mChannels[a]; aiNodeAnim *anim = pScene->mAnimations[i]->mChannels[a];
locked.insert(AI_OG_GETKEY(anim->mNodeName)); locked.insert(AI_OG_GETKEY(anim->mNodeName));
} }
} }
for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) { for (unsigned int i = 0; i < pScene->mNumMeshes; ++i) {
for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) { for (unsigned int a = 0; a < pScene->mMeshes[i]->mNumBones; ++a) {
aiBone* bone = pScene->mMeshes[i]->mBones[a]; aiBone *bone = pScene->mMeshes[i]->mBones[a];
locked.insert(AI_OG_GETKEY(bone->mName)); locked.insert(AI_OG_GETKEY(bone->mName));
// HACK: Meshes referencing bones may not be transformed; we need to look them. // HACK: Meshes referencing bones may not be transformed; we need to look them.
// The easiest way to do this is to increase their reference counters ... // The easiest way to do this is to increase their reference counters ...
meshes[i] += 2; meshes[i] += 2;
} }
} }
for (unsigned int i = 0; i < pScene->mNumCameras; ++i) { for (unsigned int i = 0; i < pScene->mNumCameras; ++i) {
aiCamera* cam = pScene->mCameras[i]; aiCamera *cam = pScene->mCameras[i];
locked.insert(AI_OG_GETKEY(cam->mName)); locked.insert(AI_OG_GETKEY(cam->mName));
} }
for (unsigned int i = 0; i < pScene->mNumLights; ++i) { for (unsigned int i = 0; i < pScene->mNumLights; ++i) {
aiLight* lgh = pScene->mLights[i]; aiLight *lgh = pScene->mLights[i];
locked.insert(AI_OG_GETKEY(lgh->mName)); locked.insert(AI_OG_GETKEY(lgh->mName));
} }
// Insert a dummy master node and make it read-only // Insert a dummy master node and make it read-only
aiNode* dummy_root = new aiNode(AI_RESERVED_NODE_NAME); aiNode *dummy_root = new aiNode(AI_RESERVED_NODE_NAME);
locked.insert(AI_OG_GETKEY(dummy_root->mName)); locked.insert(AI_OG_GETKEY(dummy_root->mName));
const aiString prev = pScene->mRootNode->mName; const aiString prev = pScene->mRootNode->mName;
pScene->mRootNode->mParent = dummy_root; pScene->mRootNode->mParent = dummy_root;
dummy_root->mChildren = new aiNode*[dummy_root->mNumChildren = 1]; dummy_root->mChildren = new aiNode *[dummy_root->mNumChildren = 1];
dummy_root->mChildren[0] = pScene->mRootNode; dummy_root->mChildren[0] = pScene->mRootNode;
// Do our recursive processing of scenegraph nodes. For each node collect // Do our recursive processing of scenegraph nodes. For each node collect
// a fully new list of children and allow their children to place themselves // a fully new list of children and allow their children to place themselves
// on the same hierarchy layer as their parents. // on the same hierarchy layer as their parents.
std::list<aiNode*> nodes; std::list<aiNode *> nodes;
CollectNewChildren (dummy_root,nodes); CollectNewChildren(dummy_root, nodes);
ai_assert(nodes.size() == 1); ai_assert(nodes.size() == 1);
if (dummy_root->mNumChildren == 0) { if (dummy_root->mNumChildren == 0) {
pScene->mRootNode = NULL; pScene->mRootNode = NULL;
throw DeadlyImportError("After optimizing the scene graph, no data remains"); throw DeadlyImportError("After optimizing the scene graph, no data remains");
} }
if (dummy_root->mNumChildren > 1) { if (dummy_root->mNumChildren > 1) {
pScene->mRootNode = dummy_root; pScene->mRootNode = dummy_root;
// Keep the dummy node but assign the name of the old root node to it // Keep the dummy node but assign the name of the old root node to it
pScene->mRootNode->mName = prev; pScene->mRootNode->mName = prev;
} } else {
else {
// Remove the dummy root node again. // Remove the dummy root node again.
pScene->mRootNode = dummy_root->mChildren[0]; pScene->mRootNode = dummy_root->mChildren[0];
dummy_root->mChildren[0] = NULL; dummy_root->mChildren[0] = NULL;
delete dummy_root; delete dummy_root;
} }
pScene->mRootNode->mParent = NULL; pScene->mRootNode->mParent = NULL;
if (!DefaultLogger::isNullLogger()) { if (!DefaultLogger::isNullLogger()) {
if ( nodes_in != nodes_out) { if (nodes_in != nodes_out) {
ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out); ASSIMP_LOG_INFO_F("OptimizeGraphProcess finished; Input nodes: ", nodes_in, ", Output nodes: ", nodes_out);
} else { } else {
ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished"); ASSIMP_LOG_DEBUG("OptimizeGraphProcess finished");
} }
} }
meshes.clear(); meshes.clear();
locked.clear(); locked.clear();
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Build a LUT of all instanced meshes // Build a LUT of all instanced meshes
void OptimizeGraphProcess::FindInstancedMeshes (aiNode* pNode) void OptimizeGraphProcess::FindInstancedMeshes(aiNode *pNode) {
{ for (unsigned int i = 0; i < pNode->mNumMeshes; ++i) {
for (unsigned int i = 0; i < pNode->mNumMeshes;++i) { ++meshes[pNode->mMeshes[i]];
++meshes[pNode->mMeshes[i]]; }
}
for (unsigned int i = 0; i < pNode->mNumChildren; ++i) for (unsigned int i = 0; i < pNode->mNumChildren; ++i)
FindInstancedMeshes(pNode->mChildren[i]); FindInstancedMeshes(pNode->mChildren[i]);
} }
#endif // !! ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS #endif // !! ASSIMP_BUILD_NO_OPTIMIZEGRAPH_PROCESS