Fix Matrix4x4t Decompose to rotation vector.
The calculation of the rotation matrix was for left-handed coordinates with row-vectors, but assimp uses right-handed coordinates and column-vectors.pull/1759/head
parent
e22f5161f5
commit
35f2d8c907
|
@ -424,12 +424,18 @@ inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector
|
||||||
{
|
{
|
||||||
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
|
ASSIMP_MATRIX4_4_DECOMPOSE_PART;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
| CE -CF D 0 |
|
assuming a right-handed coordinate system
|
||||||
M = | BDE+AF -BDF+AE -BC 0 |
|
and post-multiplication of column vectors,
|
||||||
| -ADE+BF -ADF+BE AC 0 |
|
the rotation matrix for an euler XYZ rotation is M = Rz * Ry * Rx.
|
||||||
| 0 0 0 1 |
|
combining gives:
|
||||||
|
|
||||||
|
| CE BDE-AF ADE+BF 0 |
|
||||||
|
M = | CF BDF+AE ADF-BE 0 |
|
||||||
|
| -D CB AC 0 |
|
||||||
|
| 0 0 0 1 |
|
||||||
|
|
||||||
|
where
|
||||||
A = cos(angle_x), B = sin(angle_x);
|
A = cos(angle_x), B = sin(angle_x);
|
||||||
C = cos(angle_y), D = sin(angle_y);
|
C = cos(angle_y), D = sin(angle_y);
|
||||||
E = cos(angle_z), F = sin(angle_z);
|
E = cos(angle_z), F = sin(angle_z);
|
||||||
|
@ -438,20 +444,20 @@ inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector
|
||||||
// Use a small epsilon to solve floating-point inaccuracies
|
// Use a small epsilon to solve floating-point inaccuracies
|
||||||
const TReal epsilon = 10e-3f;
|
const TReal epsilon = 10e-3f;
|
||||||
|
|
||||||
pRotation.y = std::asin(vCols[2].x);// D. Angle around oY.
|
pRotation.y = std::asin(-vCols[0].z);// D. Angle around oY.
|
||||||
|
|
||||||
TReal C = std::cos(pRotation.y);
|
TReal C = std::cos(pRotation.y);
|
||||||
|
|
||||||
if(std::fabs(C) > epsilon)
|
if(std::fabs(C) > epsilon)
|
||||||
{
|
{
|
||||||
// Finding angle around oX.
|
// Finding angle around oX.
|
||||||
TReal tan_x = vCols[2].z / C;// A
|
TReal tan_x = vCols[2].z / C;// A
|
||||||
TReal tan_y = -vCols[2].y / C;// B
|
TReal tan_y = vCols[1].z / C;// B
|
||||||
|
|
||||||
pRotation.x = std::atan2(tan_y, tan_x);
|
pRotation.x = std::atan2(tan_y, tan_x);
|
||||||
// Finding angle around oZ.
|
// Finding angle around oZ.
|
||||||
tan_x = vCols[0].x / C;// E
|
tan_x = vCols[0].x / C;// E
|
||||||
tan_y = -vCols[1].x / C;// F
|
tan_y = vCols[0].y / C;// F
|
||||||
pRotation.z = std::atan2(tan_y, tan_x);
|
pRotation.z = std::atan2(tan_y, tan_x);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
|
@ -459,8 +465,8 @@ inline void aiMatrix4x4t<TReal>::Decompose(aiVector3t<TReal>& pScaling, aiVector
|
||||||
pRotation.x = 0;// Set angle around oX to 0. => A == 1, B == 0, C == 0, D == 1.
|
pRotation.x = 0;// Set angle around oX to 0. => A == 1, B == 0, C == 0, D == 1.
|
||||||
|
|
||||||
// And finding angle around oZ.
|
// And finding angle around oZ.
|
||||||
TReal tan_x = vCols[1].y;// -BDF+AE => E
|
TReal tan_x = vCols[1].y;// BDF+AE => E
|
||||||
TReal tan_y = vCols[0].y;// BDE+AF => F
|
TReal tan_y = -vCols[1].x;// BDE-AF => F
|
||||||
|
|
||||||
pRotation.z = std::atan2(tan_y, tan_x);
|
pRotation.z = std::atan2(tan_y, tan_x);
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue