- Ifc: [Quadrulation] use generalized matrix multiplication for projections. Add table to map from contours to the openings they originated from and from openings to the points that were generated from it.

git-svn-id: https://assimp.svn.sourceforge.net/svnroot/assimp/trunk@1313 67173fc5-114c-0410-ac8e-9d2fd5bffc1f
pull/6/merge
aramis_acg 2012-10-20 23:18:48 +00:00
parent a3d5b2e0d7
commit 2f5475d50a
2 changed files with 51 additions and 32 deletions

View File

@ -67,7 +67,7 @@ namespace Assimp {
#define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0))) #define one_vec (IfcVector2(static_cast<IfcFloat>(1.0),static_cast<IfcFloat>(1.0)))
bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings, bool TryAddOpenings_Quadrulate(std::vector<TempOpening>& openings,
const std::vector<IfcVector3>& nors, const std::vector<IfcVector3>& nors,
TempMesh& curmesh); TempMesh& curmesh);
@ -1004,10 +1004,7 @@ void QuadrifyPart(const IfcVector2& pmin, const IfcVector2& pmax, XYSortedField&
void InsertWindowContours(const std::vector< BoundingBox >& bbs, void InsertWindowContours(const std::vector< BoundingBox >& bbs,
const std::vector< std::vector<IfcVector2> >& contours, const std::vector< std::vector<IfcVector2> >& contours,
const std::vector<TempOpening>& openings, const std::vector<TempOpening>& openings,
const IfcMatrix3& minv, const IfcMatrix4& minv,
const IfcVector2& scale,
const IfcVector2& offset,
IfcFloat coord,
TempMesh& curmesh) TempMesh& curmesh)
{ {
ai_assert(contours.size() == bbs.size()); ai_assert(contours.size() == bbs.size());
@ -1083,7 +1080,7 @@ void InsertWindowContours(const std::vector< BoundingBox >& bbs,
if ((contour[a] - edge).SquareLength() > diag*diag*0.7) { if ((contour[a] - edge).SquareLength() > diag*diag*0.7) {
continue; continue;
} }
const IfcVector3 v3 = minv * IfcVector3(offset.x + contour[a].x * scale.x, offset.y + contour[a].y * scale.y, coord); const IfcVector3 v3 = minv * IfcVector3(contour[a].x, contour[a].y, 0.0f);
curmesh.verts.push_back(v3); curmesh.verts.push_back(v3);
} }
@ -1105,7 +1102,7 @@ void InsertWindowContours(const std::vector< BoundingBox >& bbs,
corner.y = bb.second.y; corner.y = bb.second.y;
} }
const IfcVector3 v3 = minv * IfcVector3(offset.x + corner.x * scale.x, offset.y + corner.y * scale.y,coord); const IfcVector3 v3 = minv * IfcVector3(corner.x, corner.y, 0.0f);
curmesh.verts.push_back(v3); curmesh.verts.push_back(v3);
} }
else if (cnt == 1) { else if (cnt == 1) {
@ -1213,10 +1210,7 @@ void CleanupWindowContours(std::vector< std::vector<IfcVector2> >& contours)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh, void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh& curmesh,
const IfcMatrix3& minv, const IfcMatrix4& minv,
const IfcVector2& scale,
const IfcVector2& offset,
IfcFloat coord,
const std::vector<IfcVector2>& outflat) const std::vector<IfcVector2>& outflat)
{ {
std::vector<IfcVector3> vold; std::vector<IfcVector3> vold;
@ -1263,9 +1257,9 @@ void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh&
iold.push_back(ex.outer.size()); iold.push_back(ex.outer.size());
BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) { BOOST_FOREACH(const ClipperLib::IntPoint& point, ex.outer) {
vold.push_back( minv * IfcVector3( vold.push_back( minv * IfcVector3(
offset.x + from_int64(point.X) * scale.x, from_int64(point.X),
offset.y + from_int64(point.Y) * scale.y, from_int64(point.Y),
coord)); 0.0f));
} }
} }
@ -1284,7 +1278,7 @@ void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh&
iold.resize(outflat.size()/4,4); iold.resize(outflat.size()/4,4);
BOOST_FOREACH(const IfcVector2& vproj, outflat) { BOOST_FOREACH(const IfcVector2& vproj, outflat) {
const IfcVector3 v3 = minv * IfcVector3(offset.x + vproj.x * scale.x, offset.y + vproj.y * scale.y,coord); const IfcVector3 v3 = minv * IfcVector3(vproj.x, vproj.y, static_cast<IfcFloat>(0.0));
vold.push_back(v3); vold.push_back(v3);
} }
} }
@ -1295,16 +1289,16 @@ void CleanupOuterContour(const std::vector<IfcVector2>& contour_flat, TempMesh&
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings, bool TryAddOpenings_Quadrulate(std::vector<TempOpening>& openings,
const std::vector<IfcVector3>& nors, const std::vector<IfcVector3>& nors,
TempMesh& curmesh) TempMesh& curmesh)
{ {
std::vector<IfcVector3>& out = curmesh.verts; std::vector<IfcVector3>& out = curmesh.verts;
std::vector<std::vector<TempOpening*> > contours_to_openings;
// Try to derive a solid base plane within the current surface for use as // Try to derive a solid base plane within the current surface for use as
// working coordinate system. // working coordinate system.
const IfcMatrix3& m = DerivePlaneCoordinateSpace(curmesh); IfcMatrix4 m = IfcMatrix4(DerivePlaneCoordinateSpace(curmesh));
const IfcMatrix3& minv = IfcMatrix3(m).Inverse();
const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3); const IfcVector3& nor = IfcVector3(m.c1, m.c2, m.c3);
IfcFloat coord = -1; IfcFloat coord = -1;
@ -1334,10 +1328,8 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
contour_flat.push_back(IfcVector2(vv.x,vv.y)); contour_flat.push_back(IfcVector2(vv.x,vv.y));
} }
// With the current code in DerivePlaneCoordinateSpace, // Further improve the projection by mapping the entire working set into
// vmin,vmax should always be the 0...1 rectangle (+- numeric inaccuracies) // [0,1] range
// but here we really need this to be accurate, so normalize again.
vmax -= vmin; vmax -= vmin;
BOOST_FOREACH(IfcVector2& vv, contour_flat) { BOOST_FOREACH(IfcVector2& vv, contour_flat) {
vv.x = (vv.x - vmin.x) / vmax.x; vv.x = (vv.x - vmin.x) / vmax.x;
@ -1348,15 +1340,26 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
vv = std::min(vv,one_vec); vv = std::min(vv,one_vec);
} }
// project all openings into the coordinate system defined by the p+sv*tu plane IfcMatrix4 mult;
// and compute bounding boxes for them mult.a1 = static_cast<IfcFloat>(1.0) / vmax.x;
mult.b2 = static_cast<IfcFloat>(1.0) / vmax.y;
mult.a4 = -vmin.x * mult.a1;
mult.b4 = -vmin.y * mult.b2;
mult.c4 = -coord;
m = mult * m;
// Obtain inverse transform for getting back
const IfcMatrix4& minv = IfcMatrix4(m).Inverse();
// Compute bounding boxes for the projections of all openings
std::vector< BoundingBox > bbs; std::vector< BoundingBox > bbs;
std::vector< std::vector<IfcVector2> > contours; std::vector< std::vector<IfcVector2> > contours;
size_t c = 0; size_t c = 0;
BOOST_FOREACH(const TempOpening& t,openings) { BOOST_FOREACH(TempOpening& opening,openings) {
std::vector<IfcVector3> profile_verts = t.profileMesh->verts; std::vector<IfcVector3> profile_verts = opening.profileMesh->verts;
std::vector<unsigned int> profile_vertcnts = t.profileMesh->vertcnt; std::vector<unsigned int> profile_vertcnts = opening.profileMesh->vertcnt;
if(profile_verts.size() <= 2) { if(profile_verts.size() <= 2) {
continue; continue;
} }
@ -1385,8 +1388,8 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
IfcVector2 vv(v.x, v.y); IfcVector2 vv(v.x, v.y);
// rescale // rescale
vv.x = (vv.x - vmin.x) / vmax.x; //vv.x = (vv.x - vmin.x) / vmax.x;
vv.y = (vv.y - vmin.y) / vmax.y; //vv.y = (vv.y - vmin.y) / vmax.y;
vv = std::max(vv,IfcVector2()); vv = std::max(vv,IfcVector2());
vv = std::min(vv,one_vec); vv = std::min(vv,one_vec);
@ -1403,6 +1406,7 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
} }
BoundingBox bb = BoundingBox(vpmin,vpmax); BoundingBox bb = BoundingBox(vpmin,vpmax);
std::vector<TempOpening*> joined_openings(1, &opening);
// see if this BB intersects any other, in which case we could not use the Quadrify() // see if this BB intersects any other, in which case we could not use the Quadrify()
// algorithm and would revert to Poly2Tri only. // algorithm and would revert to Poly2Tri only.
@ -1445,6 +1449,10 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
bb.first = std::min(bb.first, ibb.first); bb.first = std::min(bb.first, ibb.first);
bb.second = std::max(bb.second, ibb.second); bb.second = std::max(bb.second, ibb.second);
std::vector<TempOpening*>& t = contours_to_openings[std::distance(bbs.begin(),it)];
joined_openings.insert(joined_openings.end(), t.begin(), t.end());
contours_to_openings.erase(contours_to_openings.begin() + std::distance(bbs.begin(),it));
contours.erase(contours.begin() + std::distance(bbs.begin(),it)); contours.erase(contours.begin() + std::distance(bbs.begin(),it));
it = bbs.erase(it); it = bbs.erase(it);
continue; continue;
@ -1454,6 +1462,10 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
} }
if(!contour.empty()) { if(!contour.empty()) {
contours_to_openings.push_back(std::vector<TempOpening*>(
joined_openings.begin(),
joined_openings.end()));
contours.push_back(contour); contours.push_back(contour);
bbs.push_back(bb); bbs.push_back(bb);
} }
@ -1476,10 +1488,10 @@ bool TryAddOpenings_Quadrulate(const std::vector<TempOpening>& openings,
QuadrifyPart(IfcVector2(0.f,0.f),IfcVector2(1.f,1.f),field,bbs,outflat); QuadrifyPart(IfcVector2(0.f,0.f),IfcVector2(1.f,1.f),field,bbs,outflat);
ai_assert(!(outflat.size() % 4)); ai_assert(!(outflat.size() % 4));
CleanupOuterContour(contour_flat, curmesh, minv, vmax, vmin, coord, outflat); CleanupOuterContour(contour_flat, curmesh, minv,outflat);
CleanupWindowContours(contours); CleanupWindowContours(contours);
InsertWindowContours(bbs,contours,openings, minv,vmax, vmin, coord, curmesh); InsertWindowContours(bbs,contours,openings, minv,curmesh);
//CloseWindows(contours, minv,contours_to_openings, curmesh);
return true; return true;
} }

View File

@ -80,6 +80,13 @@ struct TempOpening
IfcVector3 extrusionDir; IfcVector3 extrusionDir;
boost::shared_ptr<TempMesh> profileMesh; boost::shared_ptr<TempMesh> profileMesh;
// list of points generated for this opening. This is used to
// create connections between two opposing holes created
// from a single opening instance (two because walls tend to
// have two sides). If !empty(), the other side of the wall
// has already been processed.
std::vector<IfcVector3> wallPoints;
// ------------------------------------------------------------------------------ // ------------------------------------------------------------------------------
TempOpening() TempOpening()
: solid() : solid()