Apply Assimp clangformat to touched Collada files

pull/3188/head
RichardTea 2020-04-28 17:46:07 +01:00
parent a52b66f10d
commit 2c6ac23a4e
7 changed files with 2103 additions and 2770 deletions

View File

@ -45,24 +45,24 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ColladaExporter.h" #include "ColladaExporter.h"
#include <assimp/Bitmap.h> #include <assimp/Bitmap.h>
#include <assimp/commonMetaData.h> #include <assimp/DefaultIOSystem.h>
#include <assimp/MathFunctions.h> #include <assimp/MathFunctions.h>
#include <assimp/fast_atof.h>
#include <assimp/SceneCombiner.h> #include <assimp/SceneCombiner.h>
#include <assimp/StringUtils.h> #include <assimp/StringUtils.h>
#include <assimp/XMLTools.h> #include <assimp/XMLTools.h>
#include <assimp/DefaultIOSystem.h> #include <assimp/commonMetaData.h>
#include <assimp/IOSystem.hpp> #include <assimp/fast_atof.h>
#include <assimp/Exporter.hpp>
#include <assimp/scene.h> #include <assimp/scene.h>
#include <assimp/Exporter.hpp>
#include <assimp/IOSystem.hpp>
#include <assimp/Exceptional.h> #include <assimp/Exceptional.h>
#include <memory>
#include <ctime> #include <ctime>
#include <iostream>
#include <memory>
#include <set> #include <set>
#include <vector> #include <vector>
#include <iostream>
using namespace Assimp; using namespace Assimp;
@ -125,10 +125,10 @@ static const std::string XMLIDEncode(const std::string& name) {
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructor for a specific scene to export // Constructor for a specific scene to export
ColladaExporter::ColladaExporter( const aiScene* pScene, IOSystem* pIOSystem, const std::string& path, const std::string& file) ColladaExporter::ColladaExporter(const aiScene *pScene, IOSystem *pIOSystem, const std::string &path, const std::string &file) :
: mIOSystem(pIOSystem) mIOSystem(pIOSystem),
, mPath(path) mPath(path),
, mFile(file) { mFile(file) {
// make sure that all formatting happens using the standard, C locale and not the user's current locale // make sure that all formatting happens using the standard, C locale and not the user's current locale
mOutput.imbue(std::locale("C")); mOutput.imbue(std::locale("C"));
mOutput.precision(ASSIMP_AI_REAL_TEXT_PRECISION); mOutput.precision(ASSIMP_AI_REAL_TEXT_PRECISION);
@ -273,13 +273,17 @@ void ColladaExporter::WriteHeader() {
aiString value; aiString value;
if (!meta || !meta->Get("Author", value)) { if (!meta || !meta->Get("Author", value)) {
mOutput << startstr << "<author>" << "Assimp" << "</author>" << endstr; mOutput << startstr << "<author>"
<< "Assimp"
<< "</author>" << endstr;
} else { } else {
mOutput << startstr << "<author>" << XMLEscape(value.C_Str()) << "</author>" << endstr; mOutput << startstr << "<author>" << XMLEscape(value.C_Str()) << "</author>" << endstr;
} }
if (nullptr == meta || !meta->Get(AI_METADATA_SOURCE_GENERATOR, value)) { if (nullptr == meta || !meta->Get(AI_METADATA_SOURCE_GENERATOR, value)) {
mOutput << startstr << "<authoring_tool>" << "Assimp Exporter" << "</authoring_tool>" << endstr; mOutput << startstr << "<authoring_tool>"
<< "Assimp Exporter"
<< "</authoring_tool>" << endstr;
} else { } else {
mOutput << startstr << "<authoring_tool>" << XMLEscape(value.C_Str()) << "</authoring_tool>" << endstr; mOutput << startstr << "<authoring_tool>" << XMLEscape(value.C_Str()) << "</authoring_tool>" << endstr;
} }
@ -380,7 +384,6 @@ void ColladaExporter::WriteCamerasLibrary() {
PopTag(); PopTag();
mOutput << startstr << "</library_cameras>" << endstr; mOutput << startstr << "</library_cameras>" << endstr;
} }
} }
@ -400,8 +403,7 @@ void ColladaExporter::WriteCamera(size_t pIndex){
//always perspective //always perspective
mOutput << startstr << "<perspective>" << endstr; mOutput << startstr << "<perspective>" << endstr;
PushTag(); PushTag();
mOutput << startstr << "<xfov sid=\"xfov\">"<< mOutput << startstr << "<xfov sid=\"xfov\">" << AI_RAD_TO_DEG(cam->mHorizontalFOV)
AI_RAD_TO_DEG(cam->mHorizontalFOV)
<< "</xfov>" << endstr; << "</xfov>" << endstr;
mOutput << startstr << "<aspect_ratio>" mOutput << startstr << "<aspect_ratio>"
<< cam->mAspect << cam->mAspect
@ -420,10 +422,8 @@ void ColladaExporter::WriteCamera(size_t pIndex){
mOutput << startstr << "</optics>" << endstr; mOutput << startstr << "</optics>" << endstr;
PopTag(); PopTag();
mOutput << startstr << "</camera>" << endstr; mOutput << startstr << "</camera>" << endstr;
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Write the embedded textures // Write the embedded textures
void ColladaExporter::WriteLightsLibrary() { void ColladaExporter::WriteLightsLibrary() {
@ -437,7 +437,6 @@ void ColladaExporter::WriteLightsLibrary() {
PopTag(); PopTag();
mOutput << startstr << "</library_lights>" << endstr; mOutput << startstr << "</library_lights>" << endstr;
} }
} }
@ -475,7 +474,6 @@ void ColladaExporter::WriteLight(size_t pIndex){
PopTag(); PopTag();
mOutput << startstr << "</light>" << endstr; mOutput << startstr << "</light>" << endstr;
} }
void ColladaExporter::WritePointLight(const aiLight *const light) { void ColladaExporter::WritePointLight(const aiLight *const light) {
@ -497,7 +495,6 @@ void ColladaExporter::WritePointLight(const aiLight *const light){
PopTag(); PopTag();
mOutput << startstr << "</point>" << endstr; mOutput << startstr << "</point>" << endstr;
} }
void ColladaExporter::WriteDirectionalLight(const aiLight *const light) { void ColladaExporter::WriteDirectionalLight(const aiLight *const light) {
@ -510,7 +507,6 @@ void ColladaExporter::WriteDirectionalLight(const aiLight *const light){
PopTag(); PopTag();
mOutput << startstr << "</directional>" << endstr; mOutput << startstr << "</directional>" << endstr;
} }
void ColladaExporter::WriteSpotLight(const aiLight *const light) { void ColladaExporter::WriteSpotLight(const aiLight *const light) {
@ -548,10 +544,8 @@ void ColladaExporter::WriteSpotLight(const aiLight *const light){
<< temp << temp
<< "</falloff_exponent>" << endstr; << "</falloff_exponent>" << endstr;
PopTag(); PopTag();
mOutput << startstr << "</spot>" << endstr; mOutput << startstr << "</spot>" << endstr;
} }
void ColladaExporter::WriteAmbienttLight(const aiLight *const light) { void ColladaExporter::WriteAmbienttLight(const aiLight *const light) {
@ -617,16 +611,14 @@ static bool isalnum_C(char c) {
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes an image entry for the given surface // Writes an image entry for the given surface
void ColladaExporter::WriteImageEntry(const Surface &pSurface, const std::string &pNameAdd) { void ColladaExporter::WriteImageEntry(const Surface &pSurface, const std::string &pNameAdd) {
if( !pSurface.texture.empty() ) if (!pSurface.texture.empty()) {
{
mOutput << startstr << "<image id=\"" << XMLIDEncode(pNameAdd) << "\">" << endstr; mOutput << startstr << "<image id=\"" << XMLIDEncode(pNameAdd) << "\">" << endstr;
PushTag(); PushTag();
mOutput << startstr << "<init_from>"; mOutput << startstr << "<init_from>";
// URL encode image file name first, then XML encode on top // URL encode image file name first, then XML encode on top
std::stringstream imageUrlEncoded; std::stringstream imageUrlEncoded;
for( std::string::const_iterator it = pSurface.texture.begin(); it != pSurface.texture.end(); ++it ) for (std::string::const_iterator it = pSurface.texture.begin(); it != pSurface.texture.end(); ++it) {
{
if (isalnum_C((unsigned char)*it) || *it == ':' || *it == '_' || *it == '-' || *it == '.' || *it == '/' || *it == '\\') if (isalnum_C((unsigned char)*it) || *it == ':' || *it == '_' || *it == '-' || *it == '.' || *it == '/' || *it == '\\')
imageUrlEncoded << *it; imageUrlEncoded << *it;
else else
@ -641,17 +633,13 @@ void ColladaExporter::WriteImageEntry( const Surface& pSurface, const std::strin
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes a color-or-texture entry into an effect definition // Writes a color-or-texture entry into an effect definition
void ColladaExporter::WriteTextureColorEntry( const Surface& pSurface, const std::string& pTypeName, const std::string& pImageName) void ColladaExporter::WriteTextureColorEntry(const Surface &pSurface, const std::string &pTypeName, const std::string &pImageName) {
{
if (pSurface.exist) { if (pSurface.exist) {
mOutput << startstr << "<" << pTypeName << ">" << endstr; mOutput << startstr << "<" << pTypeName << ">" << endstr;
PushTag(); PushTag();
if( pSurface.texture.empty() ) if (pSurface.texture.empty()) {
{
mOutput << startstr << "<color sid=\"" << pTypeName << "\">" << pSurface.color.r << " " << pSurface.color.g << " " << pSurface.color.b << " " << pSurface.color.a << "</color>" << endstr; mOutput << startstr << "<color sid=\"" << pTypeName << "\">" << pSurface.color.r << " " << pSurface.color.g << " " << pSurface.color.b << " " << pSurface.color.a << "</color>" << endstr;
} } else {
else
{
mOutput << startstr << "<texture texture=\"" << XMLIDEncode(pImageName) << "\" texcoord=\"CHANNEL" << pSurface.channel << "\" />" << endstr; mOutput << startstr << "<texture texture=\"" << XMLIDEncode(pImageName) << "\" texcoord=\"CHANNEL" << pSurface.channel << "\" />" << endstr;
} }
PopTag(); PopTag();
@ -661,11 +649,9 @@ void ColladaExporter::WriteTextureColorEntry( const Surface& pSurface, const std
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes the two parameters necessary for referencing a texture in an effect entry // Writes the two parameters necessary for referencing a texture in an effect entry
void ColladaExporter::WriteTextureParamEntry( const Surface& pSurface, const std::string& pTypeName, const std::string& pMatName) void ColladaExporter::WriteTextureParamEntry(const Surface &pSurface, const std::string &pTypeName, const std::string &pMatName) {
{
// if surface is a texture, write out the sampler and the surface parameters necessary to reference the texture // if surface is a texture, write out the sampler and the surface parameters necessary to reference the texture
if( !pSurface.texture.empty() ) if (!pSurface.texture.empty()) {
{
mOutput << startstr << "<newparam sid=\"" << XMLIDEncode(pMatName) << "-" << pTypeName << "-surface\">" << endstr; mOutput << startstr << "<newparam sid=\"" << XMLIDEncode(pMatName) << "-" << pTypeName << "-surface\">" << endstr;
PushTag(); PushTag();
mOutput << startstr << "<surface type=\"2D\">" << endstr; mOutput << startstr << "<surface type=\"2D\">" << endstr;
@ -690,8 +676,7 @@ void ColladaExporter::WriteTextureParamEntry( const Surface& pSurface, const std
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes a scalar property // Writes a scalar property
void ColladaExporter::WriteFloatEntry( const Property& pProperty, const std::string& pTypeName) void ColladaExporter::WriteFloatEntry(const Property &pProperty, const std::string &pTypeName) {
{
if (pProperty.exist) { if (pProperty.exist) {
mOutput << startstr << "<" << pTypeName << ">" << endstr; mOutput << startstr << "<" << pTypeName << ">" << endstr;
PushTag(); PushTag();
@ -703,14 +688,12 @@ void ColladaExporter::WriteFloatEntry( const Property& pProperty, const std::str
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes the material setup // Writes the material setup
void ColladaExporter::WriteMaterials() void ColladaExporter::WriteMaterials() {
{
materials.resize(mScene->mNumMaterials); materials.resize(mScene->mNumMaterials);
/// collect all materials from the scene /// collect all materials from the scene
size_t numTextures = 0; size_t numTextures = 0;
for( size_t a = 0; a < mScene->mNumMaterials; ++a ) for (size_t a = 0; a < mScene->mNumMaterials; ++a) {
{
const aiMaterial *mat = mScene->mMaterials[a]; const aiMaterial *mat = mScene->mMaterials[a];
aiString name; aiString name;
@ -768,12 +751,10 @@ void ColladaExporter::WriteMaterials()
} }
// output textures if present // output textures if present
if( numTextures > 0 ) if (numTextures > 0) {
{
mOutput << startstr << "<library_images>" << endstr; mOutput << startstr << "<library_images>" << endstr;
PushTag(); PushTag();
for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it ) for (std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it) {
{
const Material &mat = *it; const Material &mat = *it;
WriteImageEntry(mat.ambient, mat.name + "-ambient-image"); WriteImageEntry(mat.ambient, mat.name + "-ambient-image");
WriteImageEntry(mat.diffuse, mat.name + "-diffuse-image"); WriteImageEntry(mat.diffuse, mat.name + "-diffuse-image");
@ -788,12 +769,10 @@ void ColladaExporter::WriteMaterials()
} }
// output effects - those are the actual carriers of information // output effects - those are the actual carriers of information
if( !materials.empty() ) if (!materials.empty()) {
{
mOutput << startstr << "<library_effects>" << endstr; mOutput << startstr << "<library_effects>" << endstr;
PushTag(); PushTag();
for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it ) for (std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it) {
{
const Material &mat = *it; const Material &mat = *it;
// this is so ridiculous it must be right // this is so ridiculous it must be right
mOutput << startstr << "<effect id=\"" << XMLIDEncode(mat.name) << "-fx\" name=\"" << XMLEscape(mat.name) << "\">" << endstr; mOutput << startstr << "<effect id=\"" << XMLIDEncode(mat.name) << "-fx\" name=\"" << XMLEscape(mat.name) << "\">" << endstr;
@ -844,8 +823,7 @@ void ColladaExporter::WriteMaterials()
// write materials - they're just effect references // write materials - they're just effect references
mOutput << startstr << "<library_materials>" << endstr; mOutput << startstr << "<library_materials>" << endstr;
PushTag(); PushTag();
for( std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it ) for (std::vector<Material>::const_iterator it = materials.begin(); it != materials.end(); ++it) {
{
const Material &mat = *it; const Material &mat = *it;
mOutput << startstr << "<material id=\"" << XMLIDEncode(mat.name) << "\" name=\"" << XMLEscape(mat.name) << "\">" << endstr; mOutput << startstr << "<material id=\"" << XMLIDEncode(mat.name) << "\" name=\"" << XMLEscape(mat.name) << "\">" << endstr;
PushTag(); PushTag();
@ -860,8 +838,7 @@ void ColladaExporter::WriteMaterials()
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes the controller library // Writes the controller library
void ColladaExporter::WriteControllerLibrary() void ColladaExporter::WriteControllerLibrary() {
{
mOutput << startstr << "<library_controllers>" << endstr; mOutput << startstr << "<library_controllers>" << endstr;
PushTag(); PushTag();
@ -875,8 +852,7 @@ void ColladaExporter::WriteControllerLibrary()
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes a skin controller of the given mesh // Writes a skin controller of the given mesh
void ColladaExporter::WriteController( size_t pIndex) void ColladaExporter::WriteController(size_t pIndex) {
{
const aiMesh *mesh = mScene->mMeshes[pIndex]; const aiMesh *mesh = mScene->mMeshes[pIndex];
const std::string idstr = mesh->mName.length == 0 ? GetMeshId(pIndex) : mesh->mName.C_Str(); const std::string idstr = mesh->mName.length == 0 ? GetMeshId(pIndex) : mesh->mName.C_Str();
const std::string idstrEscaped = XMLIDEncode(idstr); const std::string idstrEscaped = XMLIDEncode(idstr);
@ -987,8 +963,7 @@ void ColladaExporter::WriteController( size_t pIndex)
ai_uint joint_weight_indices_length = 0; ai_uint joint_weight_indices_length = 0;
std::vector<ai_uint> accum_influences; std::vector<ai_uint> accum_influences;
accum_influences.reserve(num_influences.size()); accum_influences.reserve(num_influences.size());
for( size_t i = 0; i < num_influences.size(); ++i) for (size_t i = 0; i < num_influences.size(); ++i) {
{
accum_influences.push_back(joint_weight_indices_length); accum_influences.push_back(joint_weight_indices_length);
joint_weight_indices_length += num_influences[i]; joint_weight_indices_length += num_influences[i];
} }
@ -996,13 +971,10 @@ void ColladaExporter::WriteController( size_t pIndex)
ai_uint weight_index = 0; ai_uint weight_index = 0;
std::vector<ai_int> joint_weight_indices(2 * joint_weight_indices_length, (ai_int)-1); std::vector<ai_int> joint_weight_indices(2 * joint_weight_indices_length, (ai_int)-1);
for (unsigned int i = 0; i < mesh->mNumBones; ++i) for (unsigned int i = 0; i < mesh->mNumBones; ++i)
for( unsigned j = 0; j < mesh->mBones[i]->mNumWeights; ++j) for (unsigned j = 0; j < mesh->mBones[i]->mNumWeights; ++j) {
{
unsigned int vId = mesh->mBones[i]->mWeights[j].mVertexId; unsigned int vId = mesh->mBones[i]->mWeights[j].mVertexId;
for( ai_uint k = 0; k < num_influences[vId]; ++k) for (ai_uint k = 0; k < num_influences[vId]; ++k) {
{ if (joint_weight_indices[2 * (accum_influences[vId] + k)] == -1) {
if (joint_weight_indices[2 * (accum_influences[vId] + k)] == -1)
{
joint_weight_indices[2 * (accum_influences[vId] + k)] = i; joint_weight_indices[2 * (accum_influences[vId] + k)] = i;
joint_weight_indices[2 * (accum_influences[vId] + k) + 1] = weight_index; joint_weight_indices[2 * (accum_influences[vId] + k) + 1] = weight_index;
break; break;
@ -1032,8 +1004,7 @@ void ColladaExporter::WriteController( size_t pIndex)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes the geometry library // Writes the geometry library
void ColladaExporter::WriteGeometryLibrary() void ColladaExporter::WriteGeometryLibrary() {
{
mOutput << startstr << "<library_geometries>" << endstr; mOutput << startstr << "<library_geometries>" << endstr;
PushTag(); PushTag();
@ -1046,8 +1017,7 @@ void ColladaExporter::WriteGeometryLibrary()
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes the given mesh // Writes the given mesh
void ColladaExporter::WriteGeometry( size_t pIndex) void ColladaExporter::WriteGeometry(size_t pIndex) {
{
const aiMesh *mesh = mScene->mMeshes[pIndex]; const aiMesh *mesh = mScene->mMeshes[pIndex];
const std::string idstr = mesh->mName.length == 0 ? GetMeshId(pIndex) : mesh->mName.C_Str(); const std::string idstr = mesh->mName.length == 0 ? GetMeshId(pIndex) : mesh->mName.C_Str();
const std::string geometryName = XMLEscape(idstr); const std::string geometryName = XMLEscape(idstr);
@ -1070,25 +1040,23 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
WriteFloatArray(idstr + "-normals", FloatType_Vector, (ai_real *)mesh->mNormals, mesh->mNumVertices); WriteFloatArray(idstr + "-normals", FloatType_Vector, (ai_real *)mesh->mNormals, mesh->mNumVertices);
// texture coords // texture coords
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
{ if (mesh->HasTextureCoords(static_cast<unsigned int>(a))) {
if( mesh->HasTextureCoords(static_cast<unsigned int>(a)) )
{
WriteFloatArray(idstr + "-tex" + to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2, WriteFloatArray(idstr + "-tex" + to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2,
(ai_real *)mesh->mTextureCoords[a], mesh->mNumVertices); (ai_real *)mesh->mTextureCoords[a], mesh->mNumVertices);
} }
} }
// vertex colors // vertex colors
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
{
if (mesh->HasVertexColors(static_cast<unsigned int>(a))) if (mesh->HasVertexColors(static_cast<unsigned int>(a)))
WriteFloatArray(idstr + "-color" + to_string(a), FloatType_Color, (ai_real *)mesh->mColors[a], mesh->mNumVertices); WriteFloatArray(idstr + "-color" + to_string(a), FloatType_Color, (ai_real *)mesh->mColors[a], mesh->mNumVertices);
} }
// assemble vertex structure // assemble vertex structure
// Only write input for POSITION since we will write other as shared inputs in polygon definition // Only write input for POSITION since we will write other as shared inputs in polygon definition
mOutput << startstr << "<vertices id=\"" << geometryId << "-vertices" << "\">" << endstr; mOutput << startstr << "<vertices id=\"" << geometryId << "-vertices"
<< "\">" << endstr;
PushTag(); PushTag();
mOutput << startstr << "<input semantic=\"POSITION\" source=\"#" << geometryId << "-positions\" />" << endstr; mOutput << startstr << "<input semantic=\"POSITION\" source=\"#" << geometryId << "-positions\" />" << endstr;
PopTag(); PopTag();
@ -1097,34 +1065,35 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
// count the number of lines, triangles and polygon meshes // count the number of lines, triangles and polygon meshes
int countLines = 0; int countLines = 0;
int countPoly = 0; int countPoly = 0;
for( size_t a = 0; a < mesh->mNumFaces; ++a ) for (size_t a = 0; a < mesh->mNumFaces; ++a) {
{ if (mesh->mFaces[a].mNumIndices == 2)
if (mesh->mFaces[a].mNumIndices == 2) countLines++; countLines++;
else if (mesh->mFaces[a].mNumIndices >= 3) countPoly++; else if (mesh->mFaces[a].mNumIndices >= 3)
countPoly++;
} }
// lines // lines
if (countLines) if (countLines) {
{
mOutput << startstr << "<lines count=\"" << countLines << "\" material=\"defaultMaterial\">" << endstr; mOutput << startstr << "<lines count=\"" << countLines << "\" material=\"defaultMaterial\">" << endstr;
PushTag(); PushTag();
mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << geometryId << "-vertices\" />" << endstr; mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << geometryId << "-vertices\" />" << endstr;
if (mesh->HasNormals()) if (mesh->HasNormals())
mOutput << startstr << "<input semantic=\"NORMAL\" source=\"#" << geometryId << "-normals\" />" << endstr; mOutput << startstr << "<input semantic=\"NORMAL\" source=\"#" << geometryId << "-normals\" />" << endstr;
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a ) for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
{
if (mesh->HasTextureCoords(static_cast<unsigned int>(a))) if (mesh->HasTextureCoords(static_cast<unsigned int>(a)))
mOutput << startstr << "<input semantic=\"TEXCOORD\" source=\"#" << geometryId << "-tex" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; mOutput << startstr << "<input semantic=\"TEXCOORD\" source=\"#" << geometryId << "-tex" << a << "\" "
<< "set=\"" << a << "\""
<< " />" << endstr;
} }
for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a ) for (size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
{
if (mesh->HasVertexColors(static_cast<unsigned int>(a))) if (mesh->HasVertexColors(static_cast<unsigned int>(a)))
mOutput << startstr << "<input semantic=\"COLOR\" source=\"#" << geometryId << "-color" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; mOutput << startstr << "<input semantic=\"COLOR\" source=\"#" << geometryId << "-color" << a << "\" "
<< "set=\"" << a << "\""
<< " />" << endstr;
} }
mOutput << startstr << "<p>"; mOutput << startstr << "<p>";
for( size_t a = 0; a < mesh->mNumFaces; ++a ) for (size_t a = 0; a < mesh->mNumFaces; ++a) {
{
const aiFace &face = mesh->mFaces[a]; const aiFace &face = mesh->mFaces[a];
if (face.mNumIndices != 2) continue; if (face.mNumIndices != 2) continue;
for (size_t b = 0; b < face.mNumIndices; ++b) for (size_t b = 0; b < face.mNumIndices; ++b)
@ -1138,35 +1107,34 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
// triangle - don't use it, because compatibility problems // triangle - don't use it, because compatibility problems
// polygons // polygons
if (countPoly) if (countPoly) {
{
mOutput << startstr << "<polylist count=\"" << countPoly << "\" material=\"defaultMaterial\">" << endstr; mOutput << startstr << "<polylist count=\"" << countPoly << "\" material=\"defaultMaterial\">" << endstr;
PushTag(); PushTag();
mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << geometryId << "-vertices\" />" << endstr; mOutput << startstr << "<input offset=\"0\" semantic=\"VERTEX\" source=\"#" << geometryId << "-vertices\" />" << endstr;
if (mesh->HasNormals()) if (mesh->HasNormals())
mOutput << startstr << "<input offset=\"0\" semantic=\"NORMAL\" source=\"#" << geometryId << "-normals\" />" << endstr; mOutput << startstr << "<input offset=\"0\" semantic=\"NORMAL\" source=\"#" << geometryId << "-normals\" />" << endstr;
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a ) for (size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) {
{
if (mesh->HasTextureCoords(static_cast<unsigned int>(a))) if (mesh->HasTextureCoords(static_cast<unsigned int>(a)))
mOutput << startstr << "<input offset=\"0\" semantic=\"TEXCOORD\" source=\"#" << geometryId << "-tex" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; mOutput << startstr << "<input offset=\"0\" semantic=\"TEXCOORD\" source=\"#" << geometryId << "-tex" << a << "\" "
<< "set=\"" << a << "\""
<< " />" << endstr;
} }
for( size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a ) for (size_t a = 0; a < AI_MAX_NUMBER_OF_COLOR_SETS; ++a) {
{
if (mesh->HasVertexColors(static_cast<unsigned int>(a))) if (mesh->HasVertexColors(static_cast<unsigned int>(a)))
mOutput << startstr << "<input offset=\"0\" semantic=\"COLOR\" source=\"#" << geometryId << "-color" << a << "\" " << "set=\"" << a << "\"" << " />" << endstr; mOutput << startstr << "<input offset=\"0\" semantic=\"COLOR\" source=\"#" << geometryId << "-color" << a << "\" "
<< "set=\"" << a << "\""
<< " />" << endstr;
} }
mOutput << startstr << "<vcount>"; mOutput << startstr << "<vcount>";
for( size_t a = 0; a < mesh->mNumFaces; ++a ) for (size_t a = 0; a < mesh->mNumFaces; ++a) {
{
if (mesh->mFaces[a].mNumIndices < 3) continue; if (mesh->mFaces[a].mNumIndices < 3) continue;
mOutput << mesh->mFaces[a].mNumIndices << " "; mOutput << mesh->mFaces[a].mNumIndices << " ";
} }
mOutput << "</vcount>" << endstr; mOutput << "</vcount>" << endstr;
mOutput << startstr << "<p>"; mOutput << startstr << "<p>";
for( size_t a = 0; a < mesh->mNumFaces; ++a ) for (size_t a = 0; a < mesh->mNumFaces; ++a) {
{
const aiFace &face = mesh->mFaces[a]; const aiFace &face = mesh->mFaces[a];
if (face.mNumIndices < 3) continue; if (face.mNumIndices < 3) continue;
for (size_t b = 0; b < face.mNumIndices; ++b) for (size_t b = 0; b < face.mNumIndices; ++b)
@ -1186,11 +1154,9 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes a float array of the given type // Writes a float array of the given type
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount) void ColladaExporter::WriteFloatArray(const std::string &pIdString, FloatDataType pType, const ai_real *pData, size_t pElementCount) {
{
size_t floatsPerElement = 0; size_t floatsPerElement = 0;
switch( pType ) switch (pType) {
{
case FloatType_Vector: floatsPerElement = 3; break; case FloatType_Vector: floatsPerElement = 3; break;
case FloatType_TexCoord2: floatsPerElement = 2; break; case FloatType_TexCoord2: floatsPerElement = 2; break;
case FloatType_TexCoord3: floatsPerElement = 3; break; case FloatType_TexCoord3: floatsPerElement = 3; break;
@ -1211,25 +1177,18 @@ void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataTy
mOutput << startstr << "<float_array id=\"" << arrayId << "\" count=\"" << pElementCount * floatsPerElement << "\"> "; mOutput << startstr << "<float_array id=\"" << arrayId << "\" count=\"" << pElementCount * floatsPerElement << "\"> ";
PushTag(); PushTag();
if( pType == FloatType_TexCoord2 ) if (pType == FloatType_TexCoord2) {
{ for (size_t a = 0; a < pElementCount; ++a) {
for( size_t a = 0; a < pElementCount; ++a )
{
mOutput << pData[a * 3 + 0] << " "; mOutput << pData[a * 3 + 0] << " ";
mOutput << pData[a * 3 + 1] << " "; mOutput << pData[a * 3 + 1] << " ";
} }
} } else if (pType == FloatType_Color) {
else if( pType == FloatType_Color ) for (size_t a = 0; a < pElementCount; ++a) {
{
for( size_t a = 0; a < pElementCount; ++a )
{
mOutput << pData[a * 4 + 0] << " "; mOutput << pData[a * 4 + 0] << " ";
mOutput << pData[a * 4 + 1] << " "; mOutput << pData[a * 4 + 1] << " ";
mOutput << pData[a * 4 + 2] << " "; mOutput << pData[a * 4 + 2] << " ";
} }
} } else {
else
{
for (size_t a = 0; a < pElementCount * floatsPerElement; ++a) for (size_t a = 0; a < pElementCount * floatsPerElement; ++a)
mOutput << pData[a] << " "; mOutput << pData[a] << " ";
} }
@ -1242,8 +1201,7 @@ void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataTy
mOutput << startstr << "<accessor count=\"" << pElementCount << "\" offset=\"0\" source=\"#" << arrayId << "\" stride=\"" << floatsPerElement << "\">" << endstr; mOutput << startstr << "<accessor count=\"" << pElementCount << "\" offset=\"0\" source=\"#" << arrayId << "\" stride=\"" << floatsPerElement << "\">" << endstr;
PushTag(); PushTag();
switch( pType ) switch (pType) {
{
case FloatType_Vector: case FloatType_Vector:
mOutput << startstr << "<param name=\"X\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"X\" type=\"float\" />" << endstr;
mOutput << startstr << "<param name=\"Y\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"Y\" type=\"float\" />" << endstr;
@ -1279,7 +1237,6 @@ void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataTy
case FloatType_Time: case FloatType_Time:
mOutput << startstr << "<param name=\"TIME\" type=\"float\" />" << endstr; mOutput << startstr << "<param name=\"TIME\" type=\"float\" />" << endstr;
break; break;
} }
PopTag(); PopTag();
@ -1292,8 +1249,7 @@ void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataTy
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes the scene library // Writes the scene library
void ColladaExporter::WriteSceneLibrary() void ColladaExporter::WriteSceneLibrary() {
{
const std::string sceneName = XMLEscape(mScene->mRootNode->mName.C_Str()); const std::string sceneName = XMLEscape(mScene->mRootNode->mName.C_Str());
const std::string sceneId = XMLIDEncode(mScene->mRootNode->mName.C_Str()); const std::string sceneId = XMLIDEncode(mScene->mRootNode->mName.C_Str());
@ -1312,8 +1268,7 @@ void ColladaExporter::WriteSceneLibrary()
mOutput << startstr << "</library_visual_scenes>" << endstr; mOutput << startstr << "</library_visual_scenes>" << endstr;
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
void ColladaExporter::WriteAnimationLibrary(size_t pIndex) void ColladaExporter::WriteAnimationLibrary(size_t pIndex) {
{
const aiAnimation *anim = mScene->mAnimations[pIndex]; const aiAnimation *anim = mScene->mAnimations[pIndex];
if (anim->mNumChannels == 0 && anim->mNumMeshChannels == 0 && anim->mNumMorphMeshChannels == 0) if (anim->mNumChannels == 0 && anim->mNumMeshChannels == 0 && anim->mNumMorphMeshChannels == 0)
@ -1369,7 +1324,9 @@ void ColladaExporter::WriteAnimationLibrary(size_t pIndex)
for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) {
aiVector3D Scaling = nodeAnim->mScalingKeys[i].mValue; aiVector3D Scaling = nodeAnim->mScalingKeys[i].mValue;
aiMatrix4x4 ScalingM; // identity aiMatrix4x4 ScalingM; // identity
ScalingM[0][0] = Scaling.x; ScalingM[1][1] = Scaling.y; ScalingM[2][2] = Scaling.z; ScalingM[0][0] = Scaling.x;
ScalingM[1][1] = Scaling.y;
ScalingM[2][2] = Scaling.z;
aiQuaternion RotationQ = nodeAnim->mRotationKeys[i].mValue; aiQuaternion RotationQ = nodeAnim->mRotationKeys[i].mValue;
aiMatrix4x4 s = aiMatrix4x4(RotationQ.GetMatrix()); aiMatrix4x4 s = aiMatrix4x4(RotationQ.GetMatrix());
@ -1377,7 +1334,9 @@ void ColladaExporter::WriteAnimationLibrary(size_t pIndex)
aiVector3D Translation = nodeAnim->mPositionKeys[i].mValue; aiVector3D Translation = nodeAnim->mPositionKeys[i].mValue;
aiMatrix4x4 TranslationM; // identity aiMatrix4x4 TranslationM; // identity
TranslationM[0][3] = Translation.x; TranslationM[1][3] = Translation.y; TranslationM[2][3] = Translation.z; TranslationM[0][3] = Translation.x;
TranslationM[1][3] = Translation.y;
TranslationM[2][3] = Translation.z;
// Combine the above transformations // Combine the above transformations
aiMatrix4x4 mat = TranslationM * RotationM * ScalingM; aiMatrix4x4 mat = TranslationM * RotationM * ScalingM;
@ -1393,10 +1352,7 @@ void ColladaExporter::WriteAnimationLibrary(size_t pIndex)
{ {
std::vector<std::string> names; std::vector<std::string> names;
for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) { for (size_t i = 0; i < nodeAnim->mNumPositionKeys; ++i) {
if ( nodeAnim->mPreState == aiAnimBehaviour_DEFAULT if (nodeAnim->mPreState == aiAnimBehaviour_DEFAULT || nodeAnim->mPreState == aiAnimBehaviour_LINEAR || nodeAnim->mPreState == aiAnimBehaviour_REPEAT) {
|| nodeAnim->mPreState == aiAnimBehaviour_LINEAR
|| nodeAnim->mPreState == aiAnimBehaviour_REPEAT
) {
names.push_back("LINEAR"); names.push_back("LINEAR");
} else if (nodeAnim->mPostState == aiAnimBehaviour_CONSTANT) { } else if (nodeAnim->mPostState == aiAnimBehaviour_CONSTANT) {
names.push_back("STEP"); names.push_back("STEP");
@ -1464,11 +1420,9 @@ void ColladaExporter::WriteAnimationLibrary(size_t pIndex)
PopTag(); PopTag();
mOutput << startstr << "</animation>" << endstr; mOutput << startstr << "</animation>" << endstr;
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
void ColladaExporter::WriteAnimationsLibrary() void ColladaExporter::WriteAnimationsLibrary() {
{
if (mScene->mNumAnimations > 0) { if (mScene->mNumAnimations > 0) {
mOutput << startstr << "<library_animations>" << endstr; mOutput << startstr << "<library_animations>" << endstr;
PushTag(); PushTag();
@ -1497,8 +1451,7 @@ aiBone* findBone( const aiScene* scene, const char * name) {
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
const aiNode * findBoneNode( const aiNode* aNode, const aiBone* bone) const aiNode *findBoneNode(const aiNode *aNode, const aiBone *bone) {
{
if (aNode && bone && aNode->mName == bone->mName) { if (aNode && bone && aNode->mName == bone->mName) {
return aNode; return aNode;
} }
@ -1517,8 +1470,7 @@ const aiNode * findBoneNode( const aiNode* aNode, const aiBone* bone)
return NULL; return NULL;
} }
const aiNode * findSkeletonRootNode( const aiScene* scene, const aiMesh * mesh) const aiNode *findSkeletonRootNode(const aiScene *scene, const aiMesh *mesh) {
{
std::set<const aiNode *> topParentBoneNodes; std::set<const aiNode *> topParentBoneNodes;
if (mesh && mesh->mNumBones > 0) { if (mesh && mesh->mNumBones > 0) {
for (unsigned int i = 0; i < mesh->mNumBones; ++i) { for (unsigned int i = 0; i < mesh->mNumBones; ++i) {
@ -1551,11 +1503,9 @@ const aiNode * findSkeletonRootNode( const aiScene* scene, const aiMesh * mesh)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Recursively writes the given node // Recursively writes the given node
void ColladaExporter::WriteNode( const aiScene* pScene, aiNode* pNode) void ColladaExporter::WriteNode(const aiScene *pScene, aiNode *pNode) {
{
// the node must have a name // the node must have a name
if (pNode->mName.length == 0) if (pNode->mName.length == 0) {
{
std::stringstream ss; std::stringstream ss;
ss << "Node_" << pNode; ss << "Node_" << pNode;
pNode->mName.Set(ss.str()); pNode->mName.Set(ss.str());
@ -1639,8 +1589,7 @@ void ColladaExporter::WriteNode( const aiScene* pScene, aiNode* pNode)
} else } else
// instance every geometry // instance every geometry
for( size_t a = 0; a < pNode->mNumMeshes; ++a ) for (size_t a = 0; a < pNode->mNumMeshes; ++a) {
{
const aiMesh *mesh = mScene->mMeshes[pNode->mMeshes[a]]; const aiMesh *mesh = mScene->mMeshes[pNode->mMeshes[a]];
// do not instantiate mesh if empty. I wonder how this could happen // do not instantiate mesh if empty. I wonder how this could happen
if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0) if (mesh->mNumFaces == 0 || mesh->mNumVertices == 0)
@ -1648,13 +1597,10 @@ void ColladaExporter::WriteNode( const aiScene* pScene, aiNode* pNode)
const std::string meshName = mesh->mName.length == 0 ? GetMeshId(pNode->mMeshes[a]) : mesh->mName.C_Str(); const std::string meshName = mesh->mName.length == 0 ? GetMeshId(pNode->mMeshes[a]) : mesh->mName.C_Str();
if( mesh->mNumBones == 0 ) if (mesh->mNumBones == 0) {
{
mOutput << startstr << "<instance_geometry url=\"#" << XMLIDEncode(meshName) << "\">" << endstr; mOutput << startstr << "<instance_geometry url=\"#" << XMLIDEncode(meshName) << "\">" << endstr;
PushTag(); PushTag();
} } else {
else
{
mOutput << startstr mOutput << startstr
<< "<instance_controller url=\"#" << XMLIDEncode(meshName) << "-skin\">" << "<instance_controller url=\"#" << XMLIDEncode(meshName) << "-skin\">"
<< endstr; << endstr;
@ -1674,8 +1620,7 @@ void ColladaExporter::WriteNode( const aiScene* pScene, aiNode* pNode)
PushTag(); PushTag();
mOutput << startstr << "<instance_material symbol=\"defaultMaterial\" target=\"#" << XMLIDEncode(materials[mesh->mMaterialIndex].name) << "\">" << endstr; mOutput << startstr << "<instance_material symbol=\"defaultMaterial\" target=\"#" << XMLIDEncode(materials[mesh->mMaterialIndex].name) << "\">" << endstr;
PushTag(); PushTag();
for( size_t aa = 0; aa < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++aa ) for (size_t aa = 0; aa < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++aa) {
{
if (mesh->HasTextureCoords(static_cast<unsigned int>(aa))) if (mesh->HasTextureCoords(static_cast<unsigned int>(aa)))
// semantic as in <texture texcoord=...> // semantic as in <texture texcoord=...>
// input_semantic as in <input semantic=...> // input_semantic as in <input semantic=...>

View File

@ -47,26 +47,24 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_COLLADAEXPORTER_H_INC #define AI_COLLADAEXPORTER_H_INC
#include <assimp/ai_assert.h> #include <assimp/ai_assert.h>
#include <assimp/light.h>
#include <assimp/material.h> #include <assimp/material.h>
#include <assimp/mesh.h> #include <assimp/mesh.h>
#include <assimp/light.h>
#include <assimp/Exporter.hpp> #include <assimp/Exporter.hpp>
#include <map>
#include <sstream> #include <sstream>
#include <vector> #include <vector>
#include <map>
#include <assimp/StringUtils.h> #include <assimp/StringUtils.h>
struct aiScene; struct aiScene;
struct aiNode; struct aiNode;
namespace Assimp namespace Assimp {
{
/// Helper class to export a given scene to a Collada file. Just for my personal /// Helper class to export a given scene to a Collada file. Just for my personal
/// comfort when implementing it. /// comfort when implementing it.
class ColladaExporter class ColladaExporter {
{
public: public:
/// Constructor for a specific scene to export /// Constructor for a specific scene to export
ColladaExporter(const aiScene *pScene, IOSystem *pIOSystem, const std::string &path, const std::string &file); ColladaExporter(const aiScene *pScene, IOSystem *pIOSystem, const std::string &path, const std::string &file);
@ -117,7 +115,13 @@ protected:
//enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color, FloatType_Mat4x4, FloatType_Weight }; //enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color, FloatType_Mat4x4, FloatType_Weight };
// customized to add animation related type // customized to add animation related type
enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color, FloatType_Mat4x4, FloatType_Weight, FloatType_Time }; enum FloatDataType { FloatType_Vector,
FloatType_TexCoord2,
FloatType_TexCoord3,
FloatType_Color,
FloatType_Mat4x4,
FloatType_Weight,
FloatType_Time };
/// Writes a float array of the given type /// Writes a float array of the given type
void WriteFloatArray(const std::string &pIdString, FloatDataType pType, const ai_real *pData, size_t pElementCount); void WriteFloatArray(const std::string &pIdString, FloatDataType pType, const ai_real *pData, size_t pElementCount);
@ -169,28 +173,27 @@ public:
std::string endstr; std::string endstr;
// pair of color and texture - texture precedences color // pair of color and texture - texture precedences color
struct Surface struct Surface {
{
bool exist; bool exist;
aiColor4D color; aiColor4D color;
std::string texture; std::string texture;
size_t channel; size_t channel;
Surface() { exist = false; channel = 0; } Surface() {
exist = false;
channel = 0;
}
}; };
struct Property struct Property {
{
bool exist; bool exist;
ai_real value; ai_real value;
Property() Property() :
: exist(false) exist(false),
, value(0.0) value(0.0) {}
{}
}; };
// summarize a material in an convenient way. // summarize a material in an convenient way.
struct Material struct Material {
{
std::string name; std::string name;
std::string shading_model; std::string shading_model;
Surface ambient, diffuse, specular, emissive, reflective, transparent, normal; Surface ambient, diffuse, specular, emissive, reflective, transparent, normal;
@ -217,6 +220,6 @@ public:
void WriteFloatEntry(const Property &pProperty, const std::string &pTypeName); void WriteFloatEntry(const Property &pProperty, const std::string &pTypeName);
}; };
} } // namespace Assimp
#endif // !! AI_COLLADAEXPORTER_H_INC #endif // !! AI_COLLADAEXPORTER_H_INC

View File

@ -43,8 +43,8 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ColladaHelper.h" #include "ColladaHelper.h"
#include <assimp/commonMetaData.h>
#include <assimp/ParsingUtils.h> #include <assimp/ParsingUtils.h>
#include <assimp/commonMetaData.h>
namespace Assimp { namespace Assimp {
namespace Collada { namespace Collada {
@ -63,39 +63,32 @@ const MetaKeyPairVector &GetColladaAssimpMetaKeys() {
const MetaKeyPairVector MakeColladaAssimpMetaKeysCamelCase() { const MetaKeyPairVector MakeColladaAssimpMetaKeysCamelCase() {
MetaKeyPairVector result = MakeColladaAssimpMetaKeys(); MetaKeyPairVector result = MakeColladaAssimpMetaKeys();
for (auto &val : result) for (auto &val : result) {
{
ToCamelCase(val.first); ToCamelCase(val.first);
} }
return result; return result;
}; };
const MetaKeyPairVector &GetColladaAssimpMetaKeysCamelCase() const MetaKeyPairVector &GetColladaAssimpMetaKeysCamelCase() {
{
static const MetaKeyPairVector result = MakeColladaAssimpMetaKeysCamelCase(); static const MetaKeyPairVector result = MakeColladaAssimpMetaKeysCamelCase();
return result; return result;
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Convert underscore_separated to CamelCase: "authoring_tool" becomes "AuthoringTool" // Convert underscore_separated to CamelCase: "authoring_tool" becomes "AuthoringTool"
void ToCamelCase(std::string &text) void ToCamelCase(std::string &text) {
{
if (text.empty()) if (text.empty())
return; return;
// Capitalise first character // Capitalise first character
auto it = text.begin(); auto it = text.begin();
(*it) = ToUpper(*it); (*it) = ToUpper(*it);
++it; ++it;
for (/*started above*/ ; it != text.end(); /*iterated below*/) for (/*started above*/; it != text.end(); /*iterated below*/) {
{ if ((*it) == '_') {
if ((*it) == '_')
{
it = text.erase(it); it = text.erase(it);
if (it != text.end()) if (it != text.end())
(*it) = ToUpper(*it); (*it) = ToUpper(*it);
} } else {
else
{
// Make lower case // Make lower case
(*it) = ToLower(*it); (*it) = ToLower(*it);
++it; ++it;

View File

@ -45,13 +45,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef AI_COLLADAHELPER_H_INC #ifndef AI_COLLADAHELPER_H_INC
#define AI_COLLADAHELPER_H_INC #define AI_COLLADAHELPER_H_INC
#include <map>
#include <vector>
#include <set>
#include <stdint.h>
#include <assimp/light.h> #include <assimp/light.h>
#include <assimp/mesh.h>
#include <assimp/material.h> #include <assimp/material.h>
#include <assimp/mesh.h>
#include <stdint.h>
#include <map>
#include <set>
#include <vector>
struct aiMaterial; struct aiMaterial;
@ -59,17 +59,14 @@ namespace Assimp {
namespace Collada { namespace Collada {
/** Collada file versions which evolved during the years ... */ /** Collada file versions which evolved during the years ... */
enum FormatVersion enum FormatVersion {
{
FV_1_5_n, FV_1_5_n,
FV_1_4_n, FV_1_4_n,
FV_1_3_n FV_1_3_n
}; };
/** Transformation types that can be applied to a node */ /** Transformation types that can be applied to a node */
enum TransformType enum TransformType {
{
TF_LOOKAT, TF_LOOKAT,
TF_ROTATE, TF_ROTATE,
TF_TRANSLATE, TF_TRANSLATE,
@ -79,8 +76,7 @@ enum TransformType
}; };
/** Different types of input data to a vertex or face */ /** Different types of input data to a vertex or face */
enum InputType enum InputType {
{
IT_Invalid, IT_Invalid,
IT_Vertex, // special type for per-index data referring to the <vertices> element carrying the per-vertex data. IT_Vertex, // special type for per-index data referring to the <vertices> element carrying the per-vertex data.
IT_Position, IT_Position,
@ -92,15 +88,13 @@ enum InputType
}; };
/** Supported controller types */ /** Supported controller types */
enum ControllerType enum ControllerType {
{
Skin, Skin,
Morph Morph
}; };
/** Supported morph methods */ /** Supported morph methods */
enum MorphMethod enum MorphMethod {
{
Normalized, Normalized,
Relative Relative
}; };
@ -118,24 +112,21 @@ const MetaKeyPairVector &GetColladaAssimpMetaKeysCamelCase();
void ToCamelCase(std::string &text); void ToCamelCase(std::string &text);
/** Contains all data for one of the different transformation types */ /** Contains all data for one of the different transformation types */
struct Transform struct Transform {
{
std::string mID; ///< SID of the transform step, by which anim channels address their target node std::string mID; ///< SID of the transform step, by which anim channels address their target node
TransformType mType; TransformType mType;
ai_real f[16]; ///< Interpretation of data depends on the type of the transformation ai_real f[16]; ///< Interpretation of data depends on the type of the transformation
}; };
/** A collada camera. */ /** A collada camera. */
struct Camera struct Camera {
{ Camera() :
Camera() mOrtho(false),
: mOrtho (false) mHorFov(10e10f),
, mHorFov (10e10f) mVerFov(10e10f),
, mVerFov (10e10f) mAspect(10e10f),
, mAspect (10e10f) mZNear(0.1f),
, mZNear (0.1f) mZFar(1000.f) {}
, mZFar (1000.f)
{}
// Name of camera // Name of camera
std::string mName; std::string mName;
@ -159,19 +150,17 @@ struct Camera
#define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f #define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f
/** A collada light source. */ /** A collada light source. */
struct Light struct Light {
{ Light() :
Light() mType(aiLightSource_UNDEFINED),
: mType (aiLightSource_UNDEFINED) mAttConstant(1.f),
, mAttConstant (1.f) mAttLinear(0.f),
, mAttLinear (0.f) mAttQuadratic(0.f),
, mAttQuadratic (0.f) mFalloffAngle(180.f),
, mFalloffAngle (180.f) mFalloffExponent(0.f),
, mFalloffExponent (0.f) mPenumbraAngle(ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET),
, mPenumbraAngle (ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET) mOuterAngle(ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET),
, mOuterAngle (ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET) mIntensity(1.f) {}
, mIntensity (1.f)
{}
//! Type of the light source aiLightSourceType + ambient //! Type of the light source aiLightSourceType + ambient
unsigned int mType; unsigned int mType;
@ -198,12 +187,10 @@ struct Light
}; };
/** Short vertex index description */ /** Short vertex index description */
struct InputSemanticMapEntry struct InputSemanticMapEntry {
{ InputSemanticMapEntry() :
InputSemanticMapEntry() mSet(0),
: mSet(0) mType(IT_Invalid) {}
, mType(IT_Invalid)
{}
//! Index of set, optional //! Index of set, optional
unsigned int mSet; unsigned int mSet;
@ -213,8 +200,7 @@ struct InputSemanticMapEntry
}; };
/** Table to map from effect to vertex input semantics */ /** Table to map from effect to vertex input semantics */
struct SemanticMappingTable struct SemanticMappingTable {
{
//! Name of material //! Name of material
std::string mMatName; std::string mMatName;
@ -230,8 +216,7 @@ struct SemanticMappingTable
/** A reference to a mesh inside a node, including materials assigned to the various subgroups. /** A reference to a mesh inside a node, including materials assigned to the various subgroups.
* The ID refers to either a mesh or a controller which specifies the mesh * The ID refers to either a mesh or a controller which specifies the mesh
*/ */
struct MeshInstance struct MeshInstance {
{
///< ID of the mesh or controller to be instanced ///< ID of the mesh or controller to be instanced
std::string mMeshOrController; std::string mMeshOrController;
@ -240,29 +225,25 @@ struct MeshInstance
}; };
/** A reference to a camera inside a node*/ /** A reference to a camera inside a node*/
struct CameraInstance struct CameraInstance {
{
///< ID of the camera ///< ID of the camera
std::string mCamera; std::string mCamera;
}; };
/** A reference to a light inside a node*/ /** A reference to a light inside a node*/
struct LightInstance struct LightInstance {
{
///< ID of the camera ///< ID of the camera
std::string mLight; std::string mLight;
}; };
/** A reference to a node inside a node*/ /** A reference to a node inside a node*/
struct NodeInstance struct NodeInstance {
{
///< ID of the node ///< ID of the node
std::string mNode; std::string mNode;
}; };
/** A node in a scene hierarchy */ /** A node in a scene hierarchy */
struct Node struct Node {
{
std::string mName; std::string mName;
std::string mID; std::string mID;
std::string mSID; std::string mSID;
@ -288,8 +269,8 @@ struct Node
std::string mPrimaryCamera; std::string mPrimaryCamera;
//! Constructor. Begin with a zero parent //! Constructor. Begin with a zero parent
Node() Node() :
: mParent( nullptr ){ mParent(nullptr) {
// empty // empty
} }
@ -301,16 +282,14 @@ struct Node
}; };
/** Data source array: either floats or strings */ /** Data source array: either floats or strings */
struct Data struct Data {
{
bool mIsStringArray; bool mIsStringArray;
std::vector<ai_real> mValues; std::vector<ai_real> mValues;
std::vector<std::string> mStrings; std::vector<std::string> mStrings;
}; };
/** Accessor to a data array */ /** Accessor to a data array */
struct Accessor struct Accessor {
{
size_t mCount; // in number of objects size_t mCount; // in number of objects
size_t mSize; // size of an object, in elements (floats or strings, mostly 1) size_t mSize; // size of an object, in elements (floats or strings, mostly 1)
size_t mOffset; // in number of values size_t mOffset; // in number of values
@ -321,43 +300,46 @@ struct Accessor
std::string mSource; // URL of the source array std::string mSource; // URL of the source array
mutable const Data *mData; // Pointer to the source array, if resolved. NULL else mutable const Data *mData; // Pointer to the source array, if resolved. NULL else
Accessor() Accessor() {
{ mCount = 0;
mCount = 0; mSize = 0; mOffset = 0; mStride = 0; mData = NULL; mSize = 0;
mOffset = 0;
mStride = 0;
mData = NULL;
mSubOffset[0] = mSubOffset[1] = mSubOffset[2] = mSubOffset[3] = 0; mSubOffset[0] = mSubOffset[1] = mSubOffset[2] = mSubOffset[3] = 0;
} }
}; };
/** A single face in a mesh */ /** A single face in a mesh */
struct Face struct Face {
{
std::vector<size_t> mIndices; std::vector<size_t> mIndices;
}; };
/** An input channel for mesh data, referring to a single accessor */ /** An input channel for mesh data, referring to a single accessor */
struct InputChannel struct InputChannel {
{
InputType mType; // Type of the data InputType mType; // Type of the data
size_t mIndex; // Optional index, if multiple sets of the same data type are given size_t mIndex; // Optional index, if multiple sets of the same data type are given
size_t mOffset; // Index offset in the indices array of per-face indices. Don't ask, can't explain that any better. size_t mOffset; // Index offset in the indices array of per-face indices. Don't ask, can't explain that any better.
std::string mAccessor; // ID of the accessor where to read the actual values from. std::string mAccessor; // ID of the accessor where to read the actual values from.
mutable const Accessor *mResolved; // Pointer to the accessor, if resolved. NULL else mutable const Accessor *mResolved; // Pointer to the accessor, if resolved. NULL else
InputChannel() { mType = IT_Invalid; mIndex = 0; mOffset = 0; mResolved = NULL; } InputChannel() {
mType = IT_Invalid;
mIndex = 0;
mOffset = 0;
mResolved = NULL;
}
}; };
/** Subset of a mesh with a certain material */ /** Subset of a mesh with a certain material */
struct SubMesh struct SubMesh {
{
std::string mMaterial; ///< subgroup identifier std::string mMaterial; ///< subgroup identifier
size_t mNumFaces; ///< number of faces in this submesh size_t mNumFaces; ///< number of faces in this submesh
}; };
/** Contains data for a single mesh */ /** Contains data for a single mesh */
struct Mesh struct Mesh {
{ Mesh() {
Mesh()
{
for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i) for (unsigned int i = 0; i < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++i)
mNumUVComponents[i] = 2; mNumUVComponents[i] = 2;
} }
@ -394,8 +376,7 @@ struct Mesh
}; };
/** Which type of primitives the ReadPrimitives() function is going to read */ /** Which type of primitives the ReadPrimitives() function is going to read */
enum PrimitiveType enum PrimitiveType {
{
Prim_Invalid, Prim_Invalid,
Prim_Lines, Prim_Lines,
Prim_LineStrip, Prim_LineStrip,
@ -407,8 +388,7 @@ enum PrimitiveType
}; };
/** A skeleton controller to deform a mesh with the use of joints */ /** A skeleton controller to deform a mesh with the use of joints */
struct Controller struct Controller {
{
// controller type // controller type
ControllerType mType; ControllerType mType;
@ -443,29 +423,25 @@ struct Controller
}; };
/** A collada material. Pretty much the only member is a reference to an effect. */ /** A collada material. Pretty much the only member is a reference to an effect. */
struct Material struct Material {
{
std::string mName; std::string mName;
std::string mEffect; std::string mEffect;
}; };
/** Type of the effect param */ /** Type of the effect param */
enum ParamType enum ParamType {
{
Param_Sampler, Param_Sampler,
Param_Surface Param_Surface
}; };
/** A param for an effect. Might be of several types, but they all just refer to each other, so I summarize them */ /** A param for an effect. Might be of several types, but they all just refer to each other, so I summarize them */
struct EffectParam struct EffectParam {
{
ParamType mType; ParamType mType;
std::string mReference; // to which other thing the param is referring to. std::string mReference; // to which other thing the param is referring to.
}; };
/** Shading type supported by the standard effect spec of Collada */ /** Shading type supported by the standard effect spec of Collada */
enum ShadeType enum ShadeType {
{
Shade_Invalid, Shade_Invalid,
Shade_Constant, Shade_Constant,
Shade_Lambert, Shade_Lambert,
@ -474,18 +450,16 @@ enum ShadeType
}; };
/** Represents a texture sampler in collada */ /** Represents a texture sampler in collada */
struct Sampler struct Sampler {
{ Sampler() :
Sampler() mWrapU(true),
: mWrapU (true) mWrapV(true),
, mWrapV (true) mMirrorU(),
, mMirrorU () mMirrorV(),
, mMirrorV () mOp(aiTextureOp_Multiply),
, mOp (aiTextureOp_Multiply) mUVId(UINT_MAX),
, mUVId (UINT_MAX) mWeighting(1.f),
, mWeighting (1.f) mMixWithPrevious(1.f) {}
, mMixWithPrevious (1.f)
{}
/** Name of image reference /** Name of image reference
*/ */
@ -537,8 +511,7 @@ struct Sampler
/** A collada effect. Can contain about anything according to the Collada spec, /** A collada effect. Can contain about anything according to the Collada spec,
but we limit our version to a reasonable subset. */ but we limit our version to a reasonable subset. */
struct Effect struct Effect {
{
// Shading mode // Shading mode
ShadeType mShadeType; ShadeType mShadeType;
@ -566,30 +539,28 @@ struct Effect
// Double-sided? // Double-sided?
bool mDoubleSided, mWireframe, mFaceted; bool mDoubleSided, mWireframe, mFaceted;
Effect() Effect() :
: mShadeType (Shade_Phong) mShadeType(Shade_Phong),
, mEmissive ( 0, 0, 0, 1) mEmissive(0, 0, 0, 1),
, mAmbient ( 0.1f, 0.1f, 0.1f, 1) mAmbient(0.1f, 0.1f, 0.1f, 1),
, mDiffuse ( 0.6f, 0.6f, 0.6f, 1) mDiffuse(0.6f, 0.6f, 0.6f, 1),
, mSpecular ( 0.4f, 0.4f, 0.4f, 1) mSpecular(0.4f, 0.4f, 0.4f, 1),
, mTransparent ( 0, 0, 0, 1) mTransparent(0, 0, 0, 1),
, mShininess (10.0f) mShininess(10.0f),
, mRefractIndex (1.f) mRefractIndex(1.f),
, mReflectivity (0.f) mReflectivity(0.f),
, mTransparency (1.f) mTransparency(1.f),
, mHasTransparency (false) mHasTransparency(false),
, mRGBTransparency(false) mRGBTransparency(false),
, mInvertTransparency(false) mInvertTransparency(false),
, mDoubleSided (false) mDoubleSided(false),
, mWireframe (false) mWireframe(false),
, mFaceted (false) mFaceted(false) {
{
} }
}; };
/** An image, meaning texture */ /** An image, meaning texture */
struct Image struct Image {
{
std::string mFileName; std::string mFileName;
/** Embedded image data */ /** Embedded image data */
@ -600,8 +571,7 @@ struct Image
}; };
/** An animation channel. */ /** An animation channel. */
struct AnimationChannel struct AnimationChannel {
{
/** URL of the data to animate. Could be about anything, but we support only the /** URL of the data to animate. Could be about anything, but we support only the
* "NodeID/TransformID.SubElement" notation * "NodeID/TransformID.SubElement" notation
*/ */
@ -620,8 +590,7 @@ struct AnimationChannel
}; };
/** An animation. Container for 0-x animation channels or 0-x animations */ /** An animation. Container for 0-x animation channels or 0-x animations */
struct Animation struct Animation {
{
/** Anim name */ /** Anim name */
std::string mName; std::string mName;
@ -632,19 +601,16 @@ struct Animation
std::vector<Animation *> mSubAnims; std::vector<Animation *> mSubAnims;
/** Destructor */ /** Destructor */
~Animation() ~Animation() {
{
for (std::vector<Animation *>::iterator it = mSubAnims.begin(); it != mSubAnims.end(); ++it) for (std::vector<Animation *>::iterator it = mSubAnims.begin(); it != mSubAnims.end(); ++it)
delete *it; delete *it;
} }
/** Collect all channels in the animation hierarchy into a single channel list. */ /** Collect all channels in the animation hierarchy into a single channel list. */
void CollectChannelsRecursively(std::vector<AnimationChannel> &channels) void CollectChannelsRecursively(std::vector<AnimationChannel> &channels) {
{
channels.insert(channels.end(), mChannels.begin(), mChannels.end()); channels.insert(channels.end(), mChannels.begin(), mChannels.end());
for (std::vector<Animation*>::iterator it = mSubAnims.begin(); it != mSubAnims.end(); ++it) for (std::vector<Animation *>::iterator it = mSubAnims.begin(); it != mSubAnims.end(); ++it) {
{
Animation *pAnim = (*it); Animation *pAnim = (*it);
pAnim->CollectChannelsRecursively(channels); pAnim->CollectChannelsRecursively(channels);
@ -652,18 +618,15 @@ struct Animation
} }
/** Combine all single-channel animations' channel into the same (parent) animation channel list. */ /** Combine all single-channel animations' channel into the same (parent) animation channel list. */
void CombineSingleChannelAnimations() void CombineSingleChannelAnimations() {
{
CombineSingleChannelAnimationsRecursively(this); CombineSingleChannelAnimationsRecursively(this);
} }
void CombineSingleChannelAnimationsRecursively(Animation *pParent) void CombineSingleChannelAnimationsRecursively(Animation *pParent) {
{
std::set<std::string> childrenTargets; std::set<std::string> childrenTargets;
bool childrenAnimationsHaveDifferentChannels = true; bool childrenAnimationsHaveDifferentChannels = true;
for (std::vector<Animation*>::iterator it = pParent->mSubAnims.begin(); it != pParent->mSubAnims.end();) for (std::vector<Animation *>::iterator it = pParent->mSubAnims.begin(); it != pParent->mSubAnims.end();) {
{
Animation *anim = *it; Animation *anim = *it;
CombineSingleChannelAnimationsRecursively(anim); CombineSingleChannelAnimationsRecursively(anim);
@ -678,10 +641,8 @@ struct Animation
} }
// We only want to combine animations if they have different channels // We only want to combine animations if they have different channels
if (childrenAnimationsHaveDifferentChannels) if (childrenAnimationsHaveDifferentChannels) {
{ for (std::vector<Animation *>::iterator it = pParent->mSubAnims.begin(); it != pParent->mSubAnims.end();) {
for (std::vector<Animation*>::iterator it = pParent->mSubAnims.begin(); it != pParent->mSubAnims.end();)
{
Animation *anim = *it; Animation *anim = *it;
pParent->mChannels.push_back(anim->mChannels[0]); pParent->mChannels.push_back(anim->mChannels[0]);
@ -696,8 +657,7 @@ struct Animation
}; };
/** Description of a collada animation channel which has been determined to affect the current node */ /** Description of a collada animation channel which has been determined to affect the current node */
struct ChannelEntry struct ChannelEntry {
{
const Collada::AnimationChannel *mChannel; ///> the source channel const Collada::AnimationChannel *mChannel; ///> the source channel
std::string mTargetId; std::string mTargetId;
std::string mTransformId; // the ID of the transformation step of the node which is influenced std::string mTransformId; // the ID of the transformation step of the node which is influenced
@ -710,15 +670,14 @@ struct ChannelEntry
const Collada::Accessor *mValueAccessor; ///> Collada accessor to the key value values const Collada::Accessor *mValueAccessor; ///> Collada accessor to the key value values
const Collada::Data *mValueData; ///> Source datat array for the key value values const Collada::Data *mValueData; ///> Source datat array for the key value values
ChannelEntry() ChannelEntry() :
: mChannel() mChannel(),
, mTransformIndex() mTransformIndex(),
, mSubElement() mSubElement(),
, mTimeAccessor() mTimeAccessor(),
, mTimeData() mTimeData(),
, mValueAccessor() mValueAccessor(),
, mValueData() mValueData() {}
{}
}; };
} // end of namespace Collada } // end of namespace Collada

View File

@ -46,24 +46,24 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ColladaLoader.h" #include "ColladaLoader.h"
#include "ColladaParser.h" #include "ColladaParser.h"
#include <assimp/Defines.h>
#include <assimp/anim.h> #include <assimp/anim.h>
#include <assimp/importerdesc.h>
#include <assimp/scene.h> #include <assimp/scene.h>
#include <assimp/DefaultLogger.hpp> #include <assimp/DefaultLogger.hpp>
#include <assimp/Importer.hpp> #include <assimp/Importer.hpp>
#include <assimp/importerdesc.h>
#include <assimp/Defines.h>
#include <assimp/fast_atof.h> #include <assimp/CreateAnimMesh.h>
#include <assimp/ParsingUtils.h> #include <assimp/ParsingUtils.h>
#include <assimp/SkeletonMeshBuilder.h> #include <assimp/SkeletonMeshBuilder.h>
#include <assimp/CreateAnimMesh.h>
#include <assimp/ZipArchiveIOSystem.h> #include <assimp/ZipArchiveIOSystem.h>
#include <assimp/fast_atof.h>
#include "time.h"
#include "math.h" #include "math.h"
#include "time.h"
#include <algorithm> #include <algorithm>
#include <numeric>
#include <memory> #include <memory>
#include <numeric>
namespace Assimp { namespace Assimp {
@ -84,20 +84,20 @@ static const aiImporterDesc desc = {
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructor to be privately used by Importer // Constructor to be privately used by Importer
ColladaLoader::ColladaLoader() ColladaLoader::ColladaLoader() :
: mFileName() mFileName(),
, mMeshIndexByID() mMeshIndexByID(),
, mMaterialIndexByName() mMaterialIndexByName(),
, mMeshes() mMeshes(),
, newMats() newMats(),
, mCameras() mCameras(),
, mLights() mLights(),
, mTextures() mTextures(),
, mAnims() mAnims(),
, noSkeletonMesh(false) noSkeletonMesh(false),
, ignoreUpDirection(false) ignoreUpDirection(false),
, useColladaName(false) useColladaName(false),
, mNodeNameCounter(0) { mNodeNameCounter(0) {
// empty // empty
} }
@ -176,7 +176,6 @@ void ColladaLoader::InternReadFile(const std::string& pFile, aiScene* pScene, IO
// parse the input file // parse the input file
ColladaParser parser(pIOHandler, pFile); ColladaParser parser(pIOHandler, pFile);
if (!parser.mRootNode) { if (!parser.mRootNode) {
throw DeadlyImportError("Collada: File came out empty. Something is wrong here."); throw DeadlyImportError("Collada: File came out empty. Something is wrong here.");
} }
@ -372,8 +371,7 @@ void ColladaLoader::BuildLightsForNode(const ColladaParser& pParser, const Colla
if (out->mType == aiLightSource_AMBIENT) { if (out->mType == aiLightSource_AMBIENT) {
out->mColorDiffuse = out->mColorSpecular = aiColor3D(0, 0, 0); out->mColorDiffuse = out->mColorSpecular = aiColor3D(0, 0, 0);
out->mColorAmbient = srcLight->mColor * srcLight->mIntensity; out->mColorAmbient = srcLight->mColor * srcLight->mIntensity;
} } else {
else {
// collada doesn't differentiate between these color types // collada doesn't differentiate between these color types
out->mColorDiffuse = out->mColorSpecular = srcLight->mColor * srcLight->mIntensity; out->mColorDiffuse = out->mColorSpecular = srcLight->mColor * srcLight->mIntensity;
out->mColorAmbient = aiColor3D(0, 0, 0); out->mColorAmbient = aiColor3D(0, 0, 0);
@ -391,14 +389,12 @@ void ColladaLoader::BuildLightsForNode(const ColladaParser& pParser, const Colla
// epsilon chosen to be 0.1 // epsilon chosen to be 0.1
out->mAngleOuterCone = std::acos(std::pow(0.1f, 1.f / srcLight->mFalloffExponent)) + out->mAngleOuterCone = std::acos(std::pow(0.1f, 1.f / srcLight->mFalloffExponent)) +
out->mAngleInnerCone; out->mAngleInnerCone;
} } else {
else {
out->mAngleOuterCone = out->mAngleInnerCone + AI_DEG_TO_RAD(srcLight->mPenumbraAngle); out->mAngleOuterCone = out->mAngleInnerCone + AI_DEG_TO_RAD(srcLight->mPenumbraAngle);
if (out->mAngleOuterCone < out->mAngleInnerCone) if (out->mAngleOuterCone < out->mAngleInnerCone)
std::swap(out->mAngleInnerCone, out->mAngleOuterCone); std::swap(out->mAngleInnerCone, out->mAngleOuterCone);
} }
} } else {
else {
out->mAngleOuterCone = AI_DEG_TO_RAD(srcLight->mOuterAngle); out->mAngleOuterCone = AI_DEG_TO_RAD(srcLight->mOuterAngle);
} }
} }
@ -488,13 +484,11 @@ void ColladaLoader::BuildMeshesForNode(const ColladaParser& pParser, const Colla
} }
} }
if (nullptr == srcMesh) { if (nullptr == srcMesh) {
ASSIMP_LOG_WARN_F("Collada: Unable to find geometry for ID \"", mid.mMeshOrController, "\". Skipping."); ASSIMP_LOG_WARN_F("Collada: Unable to find geometry for ID \"", mid.mMeshOrController, "\". Skipping.");
continue; continue;
} }
} } else {
else {
// ID found in the mesh library -> direct reference to an unskinned mesh // ID found in the mesh library -> direct reference to an unskinned mesh
srcMesh = srcMeshIt->second; srcMesh = srcMeshIt->second;
} }
@ -515,8 +509,7 @@ void ColladaLoader::BuildMeshesForNode(const ColladaParser& pParser, const Colla
if (meshMatIt != mid.mMaterials.end()) { if (meshMatIt != mid.mMaterials.end()) {
table = &meshMatIt->second; table = &meshMatIt->second;
meshMaterial = table->mMatName; meshMaterial = table->mMatName;
} } else {
else {
ASSIMP_LOG_WARN_F("Collada: No material specified for subgroup <", submesh.mMaterial, "> in geometry <", ASSIMP_LOG_WARN_F("Collada: No material specified for subgroup <", submesh.mMaterial, "> in geometry <",
mid.mMeshOrController, ">."); mid.mMeshOrController, ">.");
if (!mid.mMaterials.empty()) { if (!mid.mMaterials.empty()) {
@ -552,8 +545,7 @@ void ColladaLoader::BuildMeshesForNode(const ColladaParser& pParser, const Colla
std::map<ColladaMeshIndex, size_t>::const_iterator dstMeshIt = mMeshIndexByID.find(index); std::map<ColladaMeshIndex, size_t>::const_iterator dstMeshIt = mMeshIndexByID.find(index);
if (dstMeshIt != mMeshIndexByID.end()) { if (dstMeshIt != mMeshIndexByID.end()) {
newMeshRefs.push_back(dstMeshIt->second); newMeshRefs.push_back(dstMeshIt->second);
} } else {
else {
// else we have to add the mesh to the collection and store its newly assigned index at the node // else we have to add the mesh to the collection and store its newly assigned index at the node
aiMesh *dstMesh = CreateMesh(pParser, srcMesh, submesh, srcController, vertexStart, faceStart); aiMesh *dstMesh = CreateMesh(pParser, srcMesh, submesh, srcController, vertexStart, faceStart);
@ -561,7 +553,8 @@ void ColladaLoader::BuildMeshesForNode(const ColladaParser& pParser, const Colla
newMeshRefs.push_back(mMeshes.size()); newMeshRefs.push_back(mMeshes.size());
mMeshIndexByID[index] = mMeshes.size(); mMeshIndexByID[index] = mMeshes.size();
mMeshes.push_back(dstMesh); mMeshes.push_back(dstMesh);
vertexStart += dstMesh->mNumVertices; faceStart += submesh.mNumFaces; vertexStart += dstMesh->mNumVertices;
faceStart += submesh.mNumFaces;
// assign the material index // assign the material index
dstMesh->mMaterialIndex = matIdx; dstMesh->mMaterialIndex = matIdx;
@ -619,30 +612,26 @@ aiMesh* ColladaLoader::CreateMesh(const ColladaParser& pParser, const Collada::M
// copy positions // copy positions
dstMesh->mNumVertices = static_cast<unsigned int>(numVertices); dstMesh->mNumVertices = static_cast<unsigned int>(numVertices);
dstMesh->mVertices = new aiVector3D[numVertices]; dstMesh->mVertices = new aiVector3D[numVertices];
std::copy(pSrcMesh->mPositions.begin() + pStartVertex, pSrcMesh->mPositions.begin() + std::copy(pSrcMesh->mPositions.begin() + pStartVertex, pSrcMesh->mPositions.begin() + pStartVertex + numVertices, dstMesh->mVertices);
pStartVertex + numVertices, dstMesh->mVertices);
// normals, if given. HACK: (thom) Due to the glorious Collada spec we never // normals, if given. HACK: (thom) Due to the glorious Collada spec we never
// know if we have the same number of normals as there are positions. So we // know if we have the same number of normals as there are positions. So we
// also ignore any vertex attribute if it has a different count // also ignore any vertex attribute if it has a different count
if (pSrcMesh->mNormals.size() >= pStartVertex + numVertices) { if (pSrcMesh->mNormals.size() >= pStartVertex + numVertices) {
dstMesh->mNormals = new aiVector3D[numVertices]; dstMesh->mNormals = new aiVector3D[numVertices];
std::copy(pSrcMesh->mNormals.begin() + pStartVertex, pSrcMesh->mNormals.begin() + std::copy(pSrcMesh->mNormals.begin() + pStartVertex, pSrcMesh->mNormals.begin() + pStartVertex + numVertices, dstMesh->mNormals);
pStartVertex + numVertices, dstMesh->mNormals);
} }
// tangents, if given. // tangents, if given.
if (pSrcMesh->mTangents.size() >= pStartVertex + numVertices) { if (pSrcMesh->mTangents.size() >= pStartVertex + numVertices) {
dstMesh->mTangents = new aiVector3D[numVertices]; dstMesh->mTangents = new aiVector3D[numVertices];
std::copy(pSrcMesh->mTangents.begin() + pStartVertex, pSrcMesh->mTangents.begin() + std::copy(pSrcMesh->mTangents.begin() + pStartVertex, pSrcMesh->mTangents.begin() + pStartVertex + numVertices, dstMesh->mTangents);
pStartVertex + numVertices, dstMesh->mTangents);
} }
// bitangents, if given. // bitangents, if given.
if (pSrcMesh->mBitangents.size() >= pStartVertex + numVertices) { if (pSrcMesh->mBitangents.size() >= pStartVertex + numVertices) {
dstMesh->mBitangents = new aiVector3D[numVertices]; dstMesh->mBitangents = new aiVector3D[numVertices];
std::copy(pSrcMesh->mBitangents.begin() + pStartVertex, pSrcMesh->mBitangents.begin() + std::copy(pSrcMesh->mBitangents.begin() + pStartVertex, pSrcMesh->mBitangents.begin() + pStartVertex + numVertices, dstMesh->mBitangents);
pStartVertex + numVertices, dstMesh->mBitangents);
} }
// same for texturecoords, as many as we have // same for texturecoords, as many as we have
@ -736,9 +725,7 @@ aiMesh* ColladaLoader::CreateMesh(const ColladaParser& pParser, const Collada::M
animMesh->mName = targetMesh->mName; animMesh->mName = targetMesh->mName;
animMeshes.push_back(animMesh); animMeshes.push_back(animMesh);
} }
dstMesh->mMethod = (method == Collada::Relative) dstMesh->mMethod = (method == Collada::Relative) ? aiMorphingMethod_MORPH_RELATIVE : aiMorphingMethod_MORPH_NORMALIZED;
? aiMorphingMethod_MORPH_RELATIVE
: aiMorphingMethod_MORPH_NORMALIZED;
dstMesh->mAnimMeshes = new aiAnimMesh *[animMeshes.size()]; dstMesh->mAnimMeshes = new aiAnimMesh *[animMeshes.size()];
dstMesh->mNumAnimMeshes = static_cast<unsigned int>(animMeshes.size()); dstMesh->mNumAnimMeshes = static_cast<unsigned int>(animMeshes.size());
for (unsigned int i = 0; i < animMeshes.size(); ++i) { for (unsigned int i = 0; i < animMeshes.size(); ++i) {
@ -792,7 +779,6 @@ aiMesh* ColladaLoader::CreateMesh(const ColladaParser& pParser, const Collada::M
IndexPairVector::const_iterator iit = weightStartPerVertex[orgIndex]; IndexPairVector::const_iterator iit = weightStartPerVertex[orgIndex];
size_t pairCount = pSrcController->mWeightCounts[orgIndex]; size_t pairCount = pSrcController->mWeightCounts[orgIndex];
for (size_t b = 0; b < pairCount; ++b, ++iit) { for (size_t b = 0; b < pairCount; ++b, ++iit) {
const size_t jointIndex = iit->first; const size_t jointIndex = iit->first;
const size_t vertexIndex = iit->second; const size_t vertexIndex = iit->second;
@ -802,8 +788,7 @@ aiMesh* ColladaLoader::CreateMesh(const ColladaParser& pParser, const Collada::M
} }
// one day I gonna kill that XSI Collada exporter // one day I gonna kill that XSI Collada exporter
if (weight > 0.0f) if (weight > 0.0f) {
{
aiVertexWeight w; aiVertexWeight w;
w.mVertexId = static_cast<unsigned int>(a - pStartVertex); w.mVertexId = static_cast<unsigned int>(a - pStartVertex);
w.mWeight = weight; w.mWeight = weight;
@ -980,8 +965,7 @@ void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pPars
std::set<std::string> animTargets; std::set<std::string> animTargets;
animTargets.insert(templateAnim->mChannels[0]->mNodeName.C_Str()); animTargets.insert(templateAnim->mChannels[0]->mNodeName.C_Str());
bool collectedAnimationsHaveDifferentChannels = true; bool collectedAnimationsHaveDifferentChannels = true;
for (size_t b = 0; b < collectedAnimIndices.size(); ++b) for (size_t b = 0; b < collectedAnimIndices.size(); ++b) {
{
aiAnimation *srcAnimation = mAnims[collectedAnimIndices[b]]; aiAnimation *srcAnimation = mAnims[collectedAnimIndices[b]];
std::string channelName = std::string(srcAnimation->mChannels[0]->mNodeName.C_Str()); std::string channelName = std::string(srcAnimation->mChannels[0]->mNodeName.C_Str());
if (animTargets.find(channelName) == animTargets.end()) { if (animTargets.find(channelName) == animTargets.end()) {
@ -996,8 +980,7 @@ void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pPars
continue; continue;
// if there are other animations which fit the template anim, combine all channels into a single anim // if there are other animations which fit the template anim, combine all channels into a single anim
if (!collectedAnimIndices.empty()) if (!collectedAnimIndices.empty()) {
{
aiAnimation *combinedAnim = new aiAnimation(); aiAnimation *combinedAnim = new aiAnimation();
combinedAnim->mName = aiString(std::string("combinedAnim_") + char('0' + a)); combinedAnim->mName = aiString(std::string("combinedAnim_") + char('0' + a));
combinedAnim->mDuration = templateAnim->mDuration; combinedAnim->mDuration = templateAnim->mDuration;
@ -1012,8 +995,7 @@ void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pPars
mAnims[a] = combinedAnim; mAnims[a] = combinedAnim;
// move the memory of all other anims to the combined anim and erase them from the source anims // move the memory of all other anims to the combined anim and erase them from the source anims
for (size_t b = 0; b < collectedAnimIndices.size(); ++b) for (size_t b = 0; b < collectedAnimIndices.size(); ++b) {
{
aiAnimation *srcAnimation = mAnims[collectedAnimIndices[b]]; aiAnimation *srcAnimation = mAnims[collectedAnimIndices[b]];
combinedAnim->mChannels[1 + b] = srcAnimation->mChannels[0]; combinedAnim->mChannels[1 + b] = srcAnimation->mChannels[0];
srcAnimation->mChannels[0] = NULL; srcAnimation->mChannels[0] = NULL;
@ -1022,8 +1004,7 @@ void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pPars
// in a second go, delete all the single-channel-anims that we've stripped from their channels // in a second go, delete all the single-channel-anims that we've stripped from their channels
// back to front to preserve indices - you know, removing an element from a vector moves all elements behind the removed one // back to front to preserve indices - you know, removing an element from a vector moves all elements behind the removed one
while (!collectedAnimIndices.empty()) while (!collectedAnimIndices.empty()) {
{
mAnims.erase(mAnims.begin() + collectedAnimIndices.back()); mAnims.erase(mAnims.begin() + collectedAnimIndices.back());
collectedAnimIndices.pop_back(); collectedAnimIndices.pop_back();
} }
@ -1032,8 +1013,7 @@ void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pPars
} }
// now store all anims in the scene // now store all anims in the scene
if (!mAnims.empty()) if (!mAnims.empty()) {
{
pScene->mNumAnimations = static_cast<unsigned int>(mAnims.size()); pScene->mNumAnimations = static_cast<unsigned int>(mAnims.size());
pScene->mAnimations = new aiAnimation *[mAnims.size()]; pScene->mAnimations = new aiAnimation *[mAnims.size()];
std::copy(mAnims.begin(), mAnims.end(), pScene->mAnimations); std::copy(mAnims.begin(), mAnims.end(), pScene->mAnimations);
@ -1044,8 +1024,7 @@ void ColladaLoader::StoreAnimations( aiScene* pScene, const ColladaParser& pPars
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructs the animations for the given source anim // Constructs the animations for the given source anim
void ColladaLoader::StoreAnimations(aiScene* pScene, const ColladaParser& pParser, const Collada::Animation* pSrcAnim, const std::string &pPrefix) void ColladaLoader::StoreAnimations(aiScene *pScene, const ColladaParser &pParser, const Collada::Animation *pSrcAnim, const std::string &pPrefix) {
{
std::string animName = pPrefix.empty() ? pSrcAnim->mName : pPrefix + "_" + pSrcAnim->mName; std::string animName = pPrefix.empty() ? pSrcAnim->mName : pPrefix + "_" + pSrcAnim->mName;
// create nested animations, if given // create nested animations, if given
@ -1057,47 +1036,38 @@ void ColladaLoader::StoreAnimations(aiScene* pScene, const ColladaParser& pParse
CreateAnimation(pScene, pParser, pSrcAnim, animName); CreateAnimation(pScene, pParser, pSrcAnim, animName);
} }
struct MorphTimeValues struct MorphTimeValues {
{
float mTime; float mTime;
struct key struct key {
{
float mWeight; float mWeight;
unsigned int mValue; unsigned int mValue;
}; };
std::vector<key> mKeys; std::vector<key> mKeys;
}; };
void insertMorphTimeValue(std::vector<MorphTimeValues> &values, float time, float weight, unsigned int value) void insertMorphTimeValue(std::vector<MorphTimeValues> &values, float time, float weight, unsigned int value) {
{
MorphTimeValues::key k; MorphTimeValues::key k;
k.mValue = value; k.mValue = value;
k.mWeight = weight; k.mWeight = weight;
if (values.size() == 0 || time < values[0].mTime) if (values.size() == 0 || time < values[0].mTime) {
{
MorphTimeValues val; MorphTimeValues val;
val.mTime = time; val.mTime = time;
val.mKeys.push_back(k); val.mKeys.push_back(k);
values.insert(values.begin(), val); values.insert(values.begin(), val);
return; return;
} }
if (time > values.back().mTime) if (time > values.back().mTime) {
{
MorphTimeValues val; MorphTimeValues val;
val.mTime = time; val.mTime = time;
val.mKeys.push_back(k); val.mKeys.push_back(k);
values.insert(values.end(), val); values.insert(values.end(), val);
return; return;
} }
for (unsigned int i = 0; i < values.size(); i++) for (unsigned int i = 0; i < values.size(); i++) {
{ if (std::abs(time - values[i].mTime) < 1e-6f) {
if (std::abs(time - values[i].mTime) < 1e-6f)
{
values[i].mKeys.push_back(k); values[i].mKeys.push_back(k);
return; return;
} } else if (time > values[i].mTime && time < values[i + 1].mTime) {
else if (time > values[i].mTime && time < values[i + 1].mTime)
{
MorphTimeValues val; MorphTimeValues val;
val.mTime = time; val.mTime = time;
val.mKeys.push_back(k); val.mKeys.push_back(k);
@ -1108,10 +1078,8 @@ void insertMorphTimeValue(std::vector<MorphTimeValues> &values, float time, floa
// should not get here // should not get here
} }
float getWeightAtKey(const std::vector<MorphTimeValues> &values, int key, unsigned int value) float getWeightAtKey(const std::vector<MorphTimeValues> &values, int key, unsigned int value) {
{ for (unsigned int i = 0; i < values[key].mKeys.size(); i++) {
for (unsigned int i = 0; i < values[key].mKeys.size(); i++)
{
if (values[key].mKeys[i].mValue == value) if (values[key].mKeys[i].mValue == value)
return values[key].mKeys[i].mWeight; return values[key].mKeys[i].mWeight;
} }
@ -1122,8 +1090,7 @@ float getWeightAtKey(const std::vector<MorphTimeValues> &values, int key, unsign
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructs the animation for the given source anim // Constructs the animation for the given source anim
void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParser, const Collada::Animation* pSrcAnim, const std::string& pName) void ColladaLoader::CreateAnimation(aiScene *pScene, const ColladaParser &pParser, const Collada::Animation *pSrcAnim, const std::string &pName) {
{
// collect a list of animatable nodes // collect a list of animatable nodes
std::vector<const aiNode *> nodes; std::vector<const aiNode *> nodes;
CollectNodes(pScene->mRootNode, nodes); CollectNodes(pScene->mRootNode, nodes);
@ -1131,8 +1098,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
std::vector<aiNodeAnim *> anims; std::vector<aiNodeAnim *> anims;
std::vector<aiMeshMorphAnim *> morphAnims; std::vector<aiMeshMorphAnim *> morphAnims;
for (std::vector<const aiNode*>::const_iterator nit = nodes.begin(); nit != nodes.end(); ++nit) for (std::vector<const aiNode *>::const_iterator nit = nodes.begin(); nit != nodes.end(); ++nit) {
{
// find all the collada anim channels which refer to the current node // find all the collada anim channels which refer to the current node
std::vector<Collada::ChannelEntry> entries; std::vector<Collada::ChannelEntry> entries;
std::string nodeName = (*nit)->mName.data; std::string nodeName = (*nit)->mName.data;
@ -1146,16 +1112,14 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
// now check all channels if they affect the current node // now check all channels if they affect the current node
std::string targetID, subElement; std::string targetID, subElement;
for (std::vector<Collada::AnimationChannel>::const_iterator cit = pSrcAnim->mChannels.begin(); for (std::vector<Collada::AnimationChannel>::const_iterator cit = pSrcAnim->mChannels.begin();
cit != pSrcAnim->mChannels.end(); ++cit) cit != pSrcAnim->mChannels.end(); ++cit) {
{
const Collada::AnimationChannel &srcChannel = *cit; const Collada::AnimationChannel &srcChannel = *cit;
Collada::ChannelEntry entry; Collada::ChannelEntry entry;
// we expect the animation target to be of type "nodeName/transformID.subElement". Ignore all others // we expect the animation target to be of type "nodeName/transformID.subElement". Ignore all others
// find the slash that separates the node name - there should be only one // find the slash that separates the node name - there should be only one
std::string::size_type slashPos = srcChannel.mTarget.find('/'); std::string::size_type slashPos = srcChannel.mTarget.find('/');
if (slashPos == std::string::npos) if (slashPos == std::string::npos) {
{
std::string::size_type targetPos = srcChannel.mTarget.find(srcNode->mID); std::string::size_type targetPos = srcChannel.mTarget.find(srcNode->mID);
if (targetPos == std::string::npos) if (targetPos == std::string::npos)
continue; continue;
@ -1179,8 +1143,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
// find the dot that separates the transformID - there should be only one or zero // find the dot that separates the transformID - there should be only one or zero
std::string::size_type dotPos = srcChannel.mTarget.find('.'); std::string::size_type dotPos = srcChannel.mTarget.find('.');
if (dotPos != std::string::npos) if (dotPos != std::string::npos) {
{
if (srcChannel.mTarget.find('.', dotPos + 1) != std::string::npos) if (srcChannel.mTarget.find('.', dotPos + 1) != std::string::npos)
continue; continue;
@ -1198,15 +1161,13 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
entry.mSubElement = 2; entry.mSubElement = 2;
else else
ASSIMP_LOG_WARN_F("Unknown anim subelement <", subElement, ">. Ignoring"); ASSIMP_LOG_WARN_F("Unknown anim subelement <", subElement, ">. Ignoring");
} } else {
else {
// no subelement following, transformId is remaining string // no subelement following, transformId is remaining string
entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1); entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1);
} }
std::string::size_type bracketPos = srcChannel.mTarget.find('('); std::string::size_type bracketPos = srcChannel.mTarget.find('(');
if (bracketPos != std::string::npos) if (bracketPos != std::string::npos) {
{
entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, bracketPos - slashPos - 1); entry.mTransformId = srcChannel.mTarget.substr(slashPos + 1, bracketPos - slashPos - 1);
subElement.clear(); subElement.clear();
subElement = srcChannel.mTarget.substr(bracketPos); subElement = srcChannel.mTarget.substr(bracketPos);
@ -1251,14 +1212,11 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
if (srcNode->mTransforms[a].mID == entry.mTransformId) if (srcNode->mTransforms[a].mID == entry.mTransformId)
entry.mTransformIndex = a; entry.mTransformIndex = a;
if (entry.mTransformIndex == SIZE_MAX) if (entry.mTransformIndex == SIZE_MAX) {
{ if (entry.mTransformId.find("morph-weights") != std::string::npos) {
if (entry.mTransformId.find("morph-weights") != std::string::npos)
{
entry.mTargetId = entry.mTransformId; entry.mTargetId = entry.mTransformId;
entry.mTransformId = ""; entry.mTransformId = "";
} } else
else
continue; continue;
} }
@ -1272,8 +1230,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
// resolve the data pointers for all anim channels. Find the minimum time while we're at it // resolve the data pointers for all anim channels. Find the minimum time while we're at it
ai_real startTime = ai_real(1e20), endTime = ai_real(-1e20); ai_real startTime = ai_real(1e20), endTime = ai_real(-1e20);
for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) {
{
Collada::ChannelEntry &e = *it; Collada::ChannelEntry &e = *it;
e.mTimeAccessor = &pParser.ResolveLibraryReference(pParser.mAccessorLibrary, e.mChannel->mSourceTimes); e.mTimeAccessor = &pParser.ResolveLibraryReference(pParser.mAccessorLibrary, e.mChannel->mSourceTimes);
e.mTimeData = &pParser.ResolveLibraryReference(pParser.mDataLibrary, e.mTimeAccessor->mSource); e.mTimeData = &pParser.ResolveLibraryReference(pParser.mDataLibrary, e.mTimeAccessor->mSource);
@ -1284,8 +1241,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
if (e.mTimeAccessor->mCount != e.mValueAccessor->mCount) if (e.mTimeAccessor->mCount != e.mValueAccessor->mCount)
throw DeadlyImportError(format() << "Time count / value count mismatch in animation channel \"" << e.mChannel->mTarget << "\"."); throw DeadlyImportError(format() << "Time count / value count mismatch in animation channel \"" << e.mChannel->mTarget << "\".");
if (e.mTimeAccessor->mCount > 0) if (e.mTimeAccessor->mCount > 0) {
{
// find bounding times // find bounding times
startTime = std::min(startTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, 0, 0)); startTime = std::min(startTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, 0, 0));
endTime = std::max(endTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, e.mTimeAccessor->mCount - 1, 0)); endTime = std::max(endTime, ReadFloat(*e.mTimeAccessor, *e.mTimeData, e.mTimeAccessor->mCount - 1, 0));
@ -1293,25 +1249,21 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
} }
std::vector<aiMatrix4x4> resultTrafos; std::vector<aiMatrix4x4> resultTrafos;
if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) {
{
// create a local transformation chain of the node's transforms // create a local transformation chain of the node's transforms
std::vector<Collada::Transform> transforms = srcNode->mTransforms; std::vector<Collada::Transform> transforms = srcNode->mTransforms;
// now for every unique point in time, find or interpolate the key values for that time // now for every unique point in time, find or interpolate the key values for that time
// and apply them to the transform chain. Then the node's present transformation can be calculated. // and apply them to the transform chain. Then the node's present transformation can be calculated.
ai_real time = startTime; ai_real time = startTime;
while (1) while (1) {
{ for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) {
for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{
Collada::ChannelEntry &e = *it; Collada::ChannelEntry &e = *it;
// find the keyframe behind the current point in time // find the keyframe behind the current point in time
size_t pos = 0; size_t pos = 0;
ai_real postTime = 0.0; ai_real postTime = 0.0;
while (1) while (1) {
{
if (pos >= e.mTimeAccessor->mCount) if (pos >= e.mTimeAccessor->mCount)
break; break;
postTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos, 0); postTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos, 0);
@ -1328,13 +1280,11 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
temp[c] = ReadFloat(*e.mValueAccessor, *e.mValueData, pos, c); temp[c] = ReadFloat(*e.mValueAccessor, *e.mValueData, pos, c);
// if not exactly at the key time, interpolate with previous value set // if not exactly at the key time, interpolate with previous value set
if (postTime > time && pos > 0) if (postTime > time && pos > 0) {
{
ai_real preTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos - 1, 0); ai_real preTime = ReadFloat(*e.mTimeAccessor, *e.mTimeData, pos - 1, 0);
ai_real factor = (time - postTime) / (preTime - postTime); ai_real factor = (time - postTime) / (preTime - postTime);
for (size_t c = 0; c < e.mValueAccessor->mSize; ++c) for (size_t c = 0; c < e.mValueAccessor->mSize; ++c) {
{
ai_real v = ReadFloat(*e.mValueAccessor, *e.mValueData, pos - 1, c); ai_real v = ReadFloat(*e.mValueAccessor, *e.mValueData, pos - 1, c);
temp[c] += (v - temp[c]) * factor; temp[c] += (v - temp[c]) * factor;
} }
@ -1353,17 +1303,14 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
// find next point in time to evaluate. That's the closest frame larger than the current in any channel // find next point in time to evaluate. That's the closest frame larger than the current in any channel
ai_real nextTime = ai_real(1e20); ai_real nextTime = ai_real(1e20);
for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) {
{
Collada::ChannelEntry &channelElement = *it; Collada::ChannelEntry &channelElement = *it;
// find the next time value larger than the current // find the next time value larger than the current
size_t pos = 0; size_t pos = 0;
while (pos < channelElement.mTimeAccessor->mCount) while (pos < channelElement.mTimeAccessor->mCount) {
{
const ai_real t = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0); const ai_real t = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
if (t > time) if (t > time) {
{
nextTime = std::min(nextTime, t); nextTime = std::min(nextTime, t);
break; break;
} }
@ -1403,8 +1350,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
// ai_assert( resultTrafos.size() > 0); // ai_assert( resultTrafos.size() > 0);
// build an animation channel for the given node out of these trafo keys // build an animation channel for the given node out of these trafo keys
if (!resultTrafos.empty()) if (!resultTrafos.empty()) {
{
aiNodeAnim *dstAnim = new aiNodeAnim; aiNodeAnim *dstAnim = new aiNodeAnim;
dstAnim->mNodeName = nodeName; dstAnim->mNodeName = nodeName;
dstAnim->mNumPositionKeys = static_cast<unsigned int>(resultTrafos.size()); dstAnim->mNumPositionKeys = static_cast<unsigned int>(resultTrafos.size());
@ -1414,8 +1360,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
dstAnim->mRotationKeys = new aiQuatKey[resultTrafos.size()]; dstAnim->mRotationKeys = new aiQuatKey[resultTrafos.size()];
dstAnim->mScalingKeys = new aiVectorKey[resultTrafos.size()]; dstAnim->mScalingKeys = new aiVectorKey[resultTrafos.size()];
for (size_t a = 0; a < resultTrafos.size(); ++a) for (size_t a = 0; a < resultTrafos.size(); ++a) {
{
aiMatrix4x4 mat = resultTrafos[a]; aiMatrix4x4 mat = resultTrafos[a];
double time = double(mat.d4); // remember? time is stored in mat.d4 double time = double(mat.d4); // remember? time is stored in mat.d4
mat.d4 = 1.0f; mat.d4 = 1.0f;
@ -1427,17 +1372,13 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
} }
anims.push_back(dstAnim); anims.push_back(dstAnim);
} } else {
else
{
ASSIMP_LOG_WARN("Collada loader: found empty animation channel, ignored. Please check your exporter."); ASSIMP_LOG_WARN("Collada loader: found empty animation channel, ignored. Please check your exporter.");
} }
if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) if (!entries.empty() && entries.front().mTimeAccessor->mCount > 0) {
{
std::vector<Collada::ChannelEntry> morphChannels; std::vector<Collada::ChannelEntry> morphChannels;
for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) for (std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) {
{
Collada::ChannelEntry &e = *it; Collada::ChannelEntry &e = *it;
// skip non-transform types // skip non-transform types
@ -1447,8 +1388,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
if (e.mTargetId.find("morph-weights") != std::string::npos) if (e.mTargetId.find("morph-weights") != std::string::npos)
morphChannels.push_back(e); morphChannels.push_back(e);
} }
if (morphChannels.size() > 0) if (morphChannels.size() > 0) {
{
// either 1) morph weight animation count should contain morph target count channels // either 1) morph weight animation count should contain morph target count channels
// or 2) one channel with morph target count arrays // or 2) one channel with morph target count arrays
// assume first // assume first
@ -1459,8 +1399,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
std::vector<MorphTimeValues> morphTimeValues; std::vector<MorphTimeValues> morphTimeValues;
int morphAnimChannelIndex = 0; int morphAnimChannelIndex = 0;
for (std::vector<Collada::ChannelEntry>::iterator it = morphChannels.begin(); it != morphChannels.end(); ++it) for (std::vector<Collada::ChannelEntry>::iterator it = morphChannels.begin(); it != morphChannels.end(); ++it) {
{
Collada::ChannelEntry &e = *it; Collada::ChannelEntry &e = *it;
std::string::size_type apos = e.mTargetId.find('('); std::string::size_type apos = e.mTargetId.find('(');
std::string::size_type bpos = e.mTargetId.find(')'); std::string::size_type bpos = e.mTargetId.find(')');
@ -1478,15 +1417,13 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
morphAnim->mNumKeys = static_cast<unsigned int>(morphTimeValues.size()); morphAnim->mNumKeys = static_cast<unsigned int>(morphTimeValues.size());
morphAnim->mKeys = new aiMeshMorphKey[morphAnim->mNumKeys]; morphAnim->mKeys = new aiMeshMorphKey[morphAnim->mNumKeys];
for (unsigned int key = 0; key < morphAnim->mNumKeys; key++) for (unsigned int key = 0; key < morphAnim->mNumKeys; key++) {
{
morphAnim->mKeys[key].mNumValuesAndWeights = static_cast<unsigned int>(morphChannels.size()); morphAnim->mKeys[key].mNumValuesAndWeights = static_cast<unsigned int>(morphChannels.size());
morphAnim->mKeys[key].mValues = new unsigned int[morphChannels.size()]; morphAnim->mKeys[key].mValues = new unsigned int[morphChannels.size()];
morphAnim->mKeys[key].mWeights = new double[morphChannels.size()]; morphAnim->mKeys[key].mWeights = new double[morphChannels.size()];
morphAnim->mKeys[key].mTime = morphTimeValues[key].mTime; morphAnim->mKeys[key].mTime = morphTimeValues[key].mTime;
for (unsigned int valueIndex = 0; valueIndex < morphChannels.size(); valueIndex++) for (unsigned int valueIndex = 0; valueIndex < morphChannels.size(); valueIndex++) {
{
morphAnim->mKeys[key].mValues[valueIndex] = valueIndex; morphAnim->mKeys[key].mValues[valueIndex] = valueIndex;
morphAnim->mKeys[key].mWeights[valueIndex] = getWeightAtKey(morphTimeValues, key, valueIndex); morphAnim->mKeys[key].mWeights[valueIndex] = getWeightAtKey(morphTimeValues, key, valueIndex);
} }
@ -1497,31 +1434,26 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
} }
} }
if (!anims.empty() || !morphAnims.empty()) if (!anims.empty() || !morphAnims.empty()) {
{
aiAnimation *anim = new aiAnimation; aiAnimation *anim = new aiAnimation;
anim->mName.Set(pName); anim->mName.Set(pName);
anim->mNumChannels = static_cast<unsigned int>(anims.size()); anim->mNumChannels = static_cast<unsigned int>(anims.size());
if (anim->mNumChannels > 0) if (anim->mNumChannels > 0) {
{
anim->mChannels = new aiNodeAnim *[anims.size()]; anim->mChannels = new aiNodeAnim *[anims.size()];
std::copy(anims.begin(), anims.end(), anim->mChannels); std::copy(anims.begin(), anims.end(), anim->mChannels);
} }
anim->mNumMorphMeshChannels = static_cast<unsigned int>(morphAnims.size()); anim->mNumMorphMeshChannels = static_cast<unsigned int>(morphAnims.size());
if (anim->mNumMorphMeshChannels > 0) if (anim->mNumMorphMeshChannels > 0) {
{
anim->mMorphMeshChannels = new aiMeshMorphAnim *[anim->mNumMorphMeshChannels]; anim->mMorphMeshChannels = new aiMeshMorphAnim *[anim->mNumMorphMeshChannels];
std::copy(morphAnims.begin(), morphAnims.end(), anim->mMorphMeshChannels); std::copy(morphAnims.begin(), morphAnims.end(), anim->mMorphMeshChannels);
} }
anim->mDuration = 0.0f; anim->mDuration = 0.0f;
for (size_t a = 0; a < anims.size(); ++a) for (size_t a = 0; a < anims.size(); ++a) {
{
anim->mDuration = std::max(anim->mDuration, anims[a]->mPositionKeys[anims[a]->mNumPositionKeys - 1].mTime); anim->mDuration = std::max(anim->mDuration, anims[a]->mPositionKeys[anims[a]->mNumPositionKeys - 1].mTime);
anim->mDuration = std::max(anim->mDuration, anims[a]->mRotationKeys[anims[a]->mNumRotationKeys - 1].mTime); anim->mDuration = std::max(anim->mDuration, anims[a]->mRotationKeys[anims[a]->mNumRotationKeys - 1].mTime);
anim->mDuration = std::max(anim->mDuration, anims[a]->mScalingKeys[anims[a]->mNumScalingKeys - 1].mTime); anim->mDuration = std::max(anim->mDuration, anims[a]->mScalingKeys[anims[a]->mNumScalingKeys - 1].mTime);
} }
for (size_t a = 0; a < morphAnims.size(); ++a) for (size_t a = 0; a < morphAnims.size(); ++a) {
{
anim->mDuration = std::max(anim->mDuration, morphAnims[a]->mKeys[morphAnims[a]->mNumKeys - 1].mTime); anim->mDuration = std::max(anim->mDuration, morphAnims[a]->mKeys[morphAnims[a]->mNumKeys - 1].mTime);
} }
anim->mTicksPerSecond = 1; anim->mTicksPerSecond = 1;
@ -1534,8 +1466,7 @@ void ColladaLoader::CreateAnimation(aiScene* pScene, const ColladaParser& pParse
void ColladaLoader::AddTexture(aiMaterial &mat, const ColladaParser &pParser, void ColladaLoader::AddTexture(aiMaterial &mat, const ColladaParser &pParser,
const Collada::Effect &effect, const Collada::Effect &effect,
const Collada::Sampler &sampler, const Collada::Sampler &sampler,
aiTextureType type, unsigned int idx) aiTextureType type, unsigned int idx) {
{
// first of all, basic file name // first of all, basic file name
const aiString name = FindFilenameForEffectTexture(pParser, effect, sampler.mName); const aiString name = FindFilenameForEffectTexture(pParser, effect, sampler.mName);
mat.AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, type, idx); mat.AddProperty(&name, _AI_MATKEY_TEXTURE_BASE, type, idx);
@ -1594,10 +1525,8 @@ void ColladaLoader::AddTexture(aiMaterial& mat, const ColladaParser& pParser,
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Fills materials from the collada material definitions // Fills materials from the collada material definitions
void ColladaLoader::FillMaterials(const ColladaParser& pParser, aiScene* /*pScene*/) void ColladaLoader::FillMaterials(const ColladaParser &pParser, aiScene * /*pScene*/) {
{ for (auto &elem : newMats) {
for (auto &elem : newMats)
{
aiMaterial &mat = (aiMaterial &)*elem.second; aiMaterial &mat = (aiMaterial &)*elem.second;
Collada::Effect &effect = *elem.first; Collada::Effect &effect = *elem.first;
@ -1606,8 +1535,7 @@ void ColladaLoader::FillMaterials(const ColladaParser& pParser, aiScene* /*pScen
if (effect.mFaceted) /* fixme */ if (effect.mFaceted) /* fixme */
shadeMode = aiShadingMode_Flat; shadeMode = aiShadingMode_Flat;
else { else {
switch (effect.mShadeType) switch (effect.mShadeType) {
{
case Collada::Shade_Constant: case Collada::Shade_Constant:
shadeMode = aiShadingMode_NoShading; shadeMode = aiShadingMode_NoShading;
break; break;
@ -1657,17 +1585,14 @@ void ColladaLoader::FillMaterials(const ColladaParser& pParser, aiScene* /*pScen
// handle RGB transparency completely, cf Collada specs 1.5.0 pages 249 and 304 // handle RGB transparency completely, cf Collada specs 1.5.0 pages 249 and 304
if (effect.mRGBTransparency) { if (effect.mRGBTransparency) {
// use luminance as defined by ISO/CIE color standards (see ITU-R Recommendation BT.709-4) // use luminance as defined by ISO/CIE color standards (see ITU-R Recommendation BT.709-4)
effect.mTransparency *= ( effect.mTransparency *= (0.212671f * effect.mTransparent.r +
0.212671f * effect.mTransparent.r +
0.715160f * effect.mTransparent.g + 0.715160f * effect.mTransparent.g +
0.072169f * effect.mTransparent.b 0.072169f * effect.mTransparent.b);
);
effect.mTransparent.a = 1.f; effect.mTransparent.a = 1.f;
mat.AddProperty(&effect.mTransparent, 1, AI_MATKEY_COLOR_TRANSPARENT); mat.AddProperty(&effect.mTransparent, 1, AI_MATKEY_COLOR_TRANSPARENT);
} } else {
else {
effect.mTransparency *= effect.mTransparent.a; effect.mTransparency *= effect.mTransparent.a;
} }
@ -1709,8 +1634,7 @@ void ColladaLoader::FillMaterials(const ColladaParser& pParser, aiScene* /*pScen
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Constructs materials from the collada material definitions // Constructs materials from the collada material definitions
void ColladaLoader::BuildMaterials(ColladaParser& pParser, aiScene* /*pScene*/) void ColladaLoader::BuildMaterials(ColladaParser &pParser, aiScene * /*pScene*/) {
{
newMats.reserve(pParser.mMaterialLibrary.size()); newMats.reserve(pParser.mMaterialLibrary.size());
for (ColladaParser::MaterialLibrary::const_iterator matIt = pParser.mMaterialLibrary.begin(); for (ColladaParser::MaterialLibrary::const_iterator matIt = pParser.mMaterialLibrary.begin();
@ -1757,14 +1681,12 @@ void ColladaLoader::BuildMaterials(ColladaParser& pParser, aiScene* /*pScene*/)
// Resolves the texture name for the given effect texture entry // Resolves the texture name for the given effect texture entry
// and loads the texture data // and loads the texture data
aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser &pParser, aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser &pParser,
const Collada::Effect& pEffect, const std::string& pName) const Collada::Effect &pEffect, const std::string &pName) {
{
aiString result; aiString result;
// recurse through the param references until we end up at an image // recurse through the param references until we end up at an image
std::string name = pName; std::string name = pName;
while (1) while (1) {
{
// the given string is a param entry. Find it // the given string is a param entry. Find it
Collada::Effect::ParamLibrary::const_iterator it = pEffect.mParams.find(name); Collada::Effect::ParamLibrary::const_iterator it = pEffect.mParams.find(name);
// if not found, we're at the end of the recursion. The resulting string should be the image ID // if not found, we're at the end of the recursion. The resulting string should be the image ID
@ -1777,8 +1699,7 @@ aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser& pParse
// find the image referred by this name in the image library of the scene // find the image referred by this name in the image library of the scene
ColladaParser::ImageLibrary::const_iterator imIt = pParser.mImageLibrary.find(name); ColladaParser::ImageLibrary::const_iterator imIt = pParser.mImageLibrary.find(name);
if (imIt == pParser.mImageLibrary.end()) if (imIt == pParser.mImageLibrary.end()) {
{
ASSIMP_LOG_WARN_F("Collada: Unable to resolve effect texture entry \"", pName, "\", ended up at ID \"", name, "\"."); ASSIMP_LOG_WARN_F("Collada: Unable to resolve effect texture entry \"", pName, "\", ended up at ID \"", name, "\".");
//set default texture file name //set default texture file name
@ -1788,8 +1709,7 @@ aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser& pParse
} }
// if this is an embedded texture image setup an aiTexture for it // if this is an embedded texture image setup an aiTexture for it
if (!imIt->second.mImageData.empty()) if (!imIt->second.mImageData.empty()) {
{
aiTexture *tex = new aiTexture(); aiTexture *tex = new aiTexture();
// Store embedded texture name reference // Store embedded texture name reference
@ -1800,7 +1720,6 @@ aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser& pParse
// result.data[0] = '*'; // result.data[0] = '*';
// result.length = 1 + ASSIMP_itoa10(result.data + 1, static_cast<unsigned int>(MAXLEN - 1), static_cast<int32_t>(mTextures.size())); // result.length = 1 + ASSIMP_itoa10(result.data + 1, static_cast<unsigned int>(MAXLEN - 1), static_cast<int32_t>(mTextures.size()));
// setup format hint // setup format hint
if (imIt->second.mEmbeddedFormat.length() >= HINTMAXTEXTURELEN) { if (imIt->second.mEmbeddedFormat.length() >= HINTMAXTEXTURELEN) {
ASSIMP_LOG_WARN("Collada: texture format hint is too long, truncating to 3 characters"); ASSIMP_LOG_WARN("Collada: texture format hint is too long, truncating to 3 characters");
@ -1815,9 +1734,7 @@ aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser& pParse
// and add this texture to the list // and add this texture to the list
mTextures.push_back(tex); mTextures.push_back(tex);
} } else {
else
{
if (imIt->second.mFileName.empty()) { if (imIt->second.mFileName.empty()) {
throw DeadlyImportError("Collada: Invalid texture, no data or file reference given"); throw DeadlyImportError("Collada: Invalid texture, no data or file reference given");
} }
@ -1829,8 +1746,7 @@ aiString ColladaLoader::FindFilenameForEffectTexture(const ColladaParser& pParse
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Reads a float value from an accessor and its data array. // Reads a float value from an accessor and its data array.
ai_real ColladaLoader::ReadFloat(const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const ai_real ColladaLoader::ReadFloat(const Collada::Accessor &pAccessor, const Collada::Data &pData, size_t pIndex, size_t pOffset) const {
{
// FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller // FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller
size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset; size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset;
ai_assert(pos < pData.mValues.size()); ai_assert(pos < pData.mValues.size());
@ -1839,8 +1755,7 @@ ai_real ColladaLoader::ReadFloat(const Collada::Accessor& pAccessor, const Colla
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Reads a string value from an accessor and its data array. // Reads a string value from an accessor and its data array.
const std::string& ColladaLoader::ReadString(const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex) const const std::string &ColladaLoader::ReadString(const Collada::Accessor &pAccessor, const Collada::Data &pData, size_t pIndex) const {
{
size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset; size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset;
ai_assert(pos < pData.mStrings.size()); ai_assert(pos < pData.mStrings.size());
return pData.mStrings[pos]; return pData.mStrings[pos];
@ -1848,8 +1763,7 @@ const std::string& ColladaLoader::ReadString(const Collada::Accessor& pAccessor,
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Collects all nodes into the given array // Collects all nodes into the given array
void ColladaLoader::CollectNodes(const aiNode* pNode, std::vector<const aiNode*>& poNodes) const void ColladaLoader::CollectNodes(const aiNode *pNode, std::vector<const aiNode *> &poNodes) const {
{
poNodes.push_back(pNode); poNodes.push_back(pNode);
for (size_t a = 0; a < pNode->mNumChildren; ++a) { for (size_t a = 0; a < pNode->mNumChildren; ++a) {
CollectNodes(pNode->mChildren[a], poNodes); CollectNodes(pNode->mChildren[a], poNodes);
@ -1858,13 +1772,11 @@ void ColladaLoader::CollectNodes(const aiNode* pNode, std::vector<const aiNode*>
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Finds a node in the collada scene by the given name // Finds a node in the collada scene by the given name
const Collada::Node* ColladaLoader::FindNode(const Collada::Node* pNode, const std::string& pName) const const Collada::Node *ColladaLoader::FindNode(const Collada::Node *pNode, const std::string &pName) const {
{
if (pNode->mName == pName || pNode->mID == pName) if (pNode->mName == pName || pNode->mID == pName)
return pNode; return pNode;
for (size_t a = 0; a < pNode->mChildren.size(); ++a) for (size_t a = 0; a < pNode->mChildren.size(); ++a) {
{
const Collada::Node *node = FindNode(pNode->mChildren[a], pName); const Collada::Node *node = FindNode(pNode->mChildren[a], pName);
if (node) if (node)
return node; return node;
@ -1897,28 +1809,22 @@ const Collada::Node* ColladaLoader::FindNodeBySID( const Collada::Node* pNode, c
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Finds a proper unique name for a node derived from the collada-node's properties. // Finds a proper unique name for a node derived from the collada-node's properties.
// The name must be unique for proper node-bone association. // The name must be unique for proper node-bone association.
std::string ColladaLoader::FindNameForNode(const Collada::Node* pNode) std::string ColladaLoader::FindNameForNode(const Collada::Node *pNode) {
{
// If explicitly requested, just use the collada name. // If explicitly requested, just use the collada name.
if (useColladaName) if (useColladaName) {
{
if (!pNode->mName.empty()) { if (!pNode->mName.empty()) {
return pNode->mName; return pNode->mName;
} } else {
else {
return format() << "$ColladaAutoName$_" << mNodeNameCounter++; return format() << "$ColladaAutoName$_" << mNodeNameCounter++;
} }
} } else {
else
{
// Now setup the name of the assimp node. The collada name might not be // Now setup the name of the assimp node. The collada name might not be
// unique, so we use the collada ID. // unique, so we use the collada ID.
if (!pNode->mID.empty()) if (!pNode->mID.empty())
return pNode->mID; return pNode->mID;
else if (!pNode->mSID.empty()) else if (!pNode->mSID.empty())
return pNode->mSID; return pNode->mSID;
else else {
{
// No need to worry. Unnamed nodes are no problem at all, except // No need to worry. Unnamed nodes are no problem at all, except
// if cameras or lights need to be assigned to them. // if cameras or lights need to be assigned to them.
return format() << "$ColladaAutoName$_" << mNodeNameCounter++; return format() << "$ColladaAutoName$_" << mNodeNameCounter++;

File diff suppressed because it is too large Load Diff

View File

@ -47,13 +47,12 @@
#ifndef AI_COLLADAPARSER_H_INC #ifndef AI_COLLADAPARSER_H_INC
#define AI_COLLADAPARSER_H_INC #define AI_COLLADAPARSER_H_INC
#include <assimp/irrXMLWrapper.h>
#include "ColladaHelper.h" #include "ColladaHelper.h"
#include <assimp/ai_assert.h>
#include <assimp/TinyFormatter.h> #include <assimp/TinyFormatter.h>
#include <assimp/ai_assert.h>
#include <assimp/irrXMLWrapper.h>
namespace Assimp namespace Assimp {
{
class ZipArchiveIOSystem; class ZipArchiveIOSystem;
// ------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------
@ -62,8 +61,7 @@ namespace Assimp
* Does all the XML reading and builds internal data structures from it, * Does all the XML reading and builds internal data structures from it,
* but leaves the resolving of all the references to the loader. * but leaves the resolving of all the references to the loader.
*/ */
class ColladaParser class ColladaParser {
{
friend class ColladaLoader; friend class ColladaLoader;
/** Converts a path read from a collada file to the usual representation */ /** Converts a path read from a collada file to the usual representation */
@ -291,7 +289,8 @@ namespace Assimp
Collada::InputType GetTypeForSemantic(const std::string &pSemantic); Collada::InputType GetTypeForSemantic(const std::string &pSemantic);
/** Finds the item in the given library by its reference, throws if not found */ /** Finds the item in the given library by its reference, throws if not found */
template <typename Type> const Type& ResolveLibraryReference( const std::map<std::string, Type>& pLibrary, const std::string& pURL) const; template <typename Type>
const Type &ResolveLibraryReference(const std::map<std::string, Type> &pLibrary, const std::string &pURL) const;
protected: protected:
/** Filename, for a verbose error message */ /** Filename, for a verbose error message */
@ -360,7 +359,9 @@ namespace Assimp
ai_real mUnitSize; ai_real mUnitSize;
/** Which is the up vector */ /** Which is the up vector */
enum { UP_X, UP_Y, UP_Z } mUpDirection; enum { UP_X,
UP_Y,
UP_Z } mUpDirection;
/** Asset metadata (global for scene) */ /** Asset metadata (global for scene) */
StringMetaData mAssetMetaData; StringMetaData mAssetMetaData;
@ -371,8 +372,7 @@ namespace Assimp
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Check for element match // Check for element match
inline bool ColladaParser::IsElement( const char* pName) const inline bool ColladaParser::IsElement(const char *pName) const {
{
ai_assert(mReader->getNodeType() == irr::io::EXN_ELEMENT); ai_assert(mReader->getNodeType() == irr::io::EXN_ELEMENT);
return ::strcmp(mReader->getNodeName(), pName) == 0; return ::strcmp(mReader->getNodeName(), pName) == 0;
} }
@ -380,8 +380,7 @@ namespace Assimp
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Finds the item in the given library by its reference, throws if not found // Finds the item in the given library by its reference, throws if not found
template <typename Type> template <typename Type>
const Type& ColladaParser::ResolveLibraryReference( const std::map<std::string, Type>& pLibrary, const std::string& pURL) const const Type &ColladaParser::ResolveLibraryReference(const std::map<std::string, Type> &pLibrary, const std::string &pURL) const {
{
typename std::map<std::string, Type>::const_iterator it = pLibrary.find(pURL); typename std::map<std::string, Type>::const_iterator it = pLibrary.find(pURL);
if (it == pLibrary.end()) if (it == pLibrary.end())
ThrowException(Formatter::format() << "Unable to resolve library reference \"" << pURL << "\"."); ThrowException(Formatter::format() << "Unable to resolve library reference \"" << pURL << "\".");