Fix for blendshapes import when using the JoinIdenticalVertices optimization flag
parent
3d589d8fc8
commit
1f9d6f1ec4
|
@ -114,6 +114,125 @@ void JoinVerticesProcess::Execute( aiScene* pScene)
|
|||
pScene->mFlags |= AI_SCENE_FLAGS_NON_VERBOSE_FORMAT;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
bool areVerticesEqual(const Vertex &lhs, const Vertex &rhs, bool complex)
|
||||
{
|
||||
// A little helper to find locally close vertices faster.
|
||||
// Try to reuse the lookup table from the last step.
|
||||
const static float epsilon = 1e-5f;
|
||||
// Squared because we check against squared length of the vector difference
|
||||
static const float squareEpsilon = epsilon * epsilon;
|
||||
|
||||
// Square compare is useful for animeshes vertexes compare
|
||||
if ((lhs.position - rhs.position).SquareLength() > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// We just test the other attributes even if they're not present in the mesh.
|
||||
// In this case they're initialized to 0 so the comparison succeeds.
|
||||
// By this method the non-present attributes are effectively ignored in the comparison.
|
||||
if ((lhs.normal - rhs.normal).SquareLength() > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((lhs.texcoords[0] - rhs.texcoords[0]).SquareLength() > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((lhs.tangent - rhs.tangent).SquareLength() > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ((lhs.bitangent - rhs.bitangent).SquareLength() > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// Usually we won't have vertex colors or multiple UVs, so we can skip from here
|
||||
// Actually this increases runtime performance slightly, at least if branch
|
||||
// prediction is on our side.
|
||||
if (complex) {
|
||||
for (int i = 0; i < 8; i++) {
|
||||
if (i > 0 && (lhs.texcoords[i] - rhs.texcoords[i]).SquareLength() > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
if (GetColorDifference(lhs.colors[i], rhs.colors[i]) > squareEpsilon) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template<class XMesh>
|
||||
void updateXMeshVertices(XMesh *pMesh, std::vector<Vertex> &uniqueVertices) {
|
||||
// replace vertex data with the unique data sets
|
||||
pMesh->mNumVertices = (unsigned int)uniqueVertices.size();
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// NOTE - we're *not* calling Vertex::SortBack() because it would check for
|
||||
// presence of every single vertex component once PER VERTEX. And our CPU
|
||||
// dislikes branches, even if they're easily predictable.
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
// Position, if present (check made for aiAnimMesh)
|
||||
if (pMesh->mVertices)
|
||||
{
|
||||
delete [] pMesh->mVertices;
|
||||
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
|
||||
for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mVertices[a] = uniqueVertices[a].position;
|
||||
}
|
||||
}
|
||||
|
||||
// Normals, if present
|
||||
if (pMesh->mNormals)
|
||||
{
|
||||
delete [] pMesh->mNormals;
|
||||
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
|
||||
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mNormals[a] = uniqueVertices[a].normal;
|
||||
}
|
||||
}
|
||||
// Tangents, if present
|
||||
if (pMesh->mTangents)
|
||||
{
|
||||
delete [] pMesh->mTangents;
|
||||
pMesh->mTangents = new aiVector3D[pMesh->mNumVertices];
|
||||
for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mTangents[a] = uniqueVertices[a].tangent;
|
||||
}
|
||||
}
|
||||
// Bitangents as well
|
||||
if (pMesh->mBitangents)
|
||||
{
|
||||
delete [] pMesh->mBitangents;
|
||||
pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices];
|
||||
for (unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mBitangents[a] = uniqueVertices[a].bitangent;
|
||||
}
|
||||
}
|
||||
// Vertex colors
|
||||
for (unsigned int a = 0; pMesh->HasVertexColors(a); a++)
|
||||
{
|
||||
delete [] pMesh->mColors[a];
|
||||
pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices];
|
||||
for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
||||
pMesh->mColors[a][b] = uniqueVertices[b].colors[a];
|
||||
}
|
||||
}
|
||||
// Texture coords
|
||||
for (unsigned int a = 0; pMesh->HasTextureCoords(a); a++)
|
||||
{
|
||||
delete [] pMesh->mTextureCoords[a];
|
||||
pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices];
|
||||
for (unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
||||
pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a];
|
||||
}
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Unites identical vertices in the given mesh
|
||||
int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
||||
|
@ -138,9 +257,6 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|||
static_assert(AI_MAX_VERTICES == 0x7fffffff, "AI_MAX_VERTICES == 0x7fffffff");
|
||||
std::vector<unsigned int> replaceIndex( pMesh->mNumVertices, 0xffffffff);
|
||||
|
||||
// A little helper to find locally close vertices faster.
|
||||
// Try to reuse the lookup table from the last step.
|
||||
const static float epsilon = 1e-5f;
|
||||
// float posEpsilonSqr;
|
||||
SpatialSort* vertexFinder = NULL;
|
||||
SpatialSort _vertexFinder;
|
||||
|
@ -162,9 +278,6 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|||
// posEpsilonSqr = ComputePositionEpsilon(pMesh);
|
||||
}
|
||||
|
||||
// Squared because we check against squared length of the vector difference
|
||||
static const float squareEpsilon = epsilon * epsilon;
|
||||
|
||||
// Again, better waste some bytes than a realloc ...
|
||||
std::vector<unsigned int> verticesFound;
|
||||
verticesFound.reserve(10);
|
||||
|
@ -172,6 +285,16 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|||
// Run an optimized code path if we don't have multiple UVs or vertex colors.
|
||||
// This should yield false in more than 99% of all imports ...
|
||||
const bool complex = ( pMesh->GetNumColorChannels() > 0 || pMesh->GetNumUVChannels() > 1);
|
||||
const bool hasAnimMeshes = pMesh->mNumAnimMeshes > 0;
|
||||
|
||||
// We'll never have more vertices afterwards.
|
||||
std::vector<std::vector<Vertex>> uniqueAnimatedVertices;
|
||||
if (hasAnimMeshes) {
|
||||
uniqueAnimatedVertices.resize(pMesh->mNumAnimMeshes);
|
||||
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
||||
uniqueAnimatedVertices[animMeshIndex].reserve(pMesh->mNumVertices);
|
||||
}
|
||||
}
|
||||
|
||||
// Now check each vertex if it brings something new to the table
|
||||
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
|
@ -184,74 +307,32 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|||
|
||||
// check all unique vertices close to the position if this vertex is already present among them
|
||||
for( unsigned int b = 0; b < verticesFound.size(); b++) {
|
||||
|
||||
const unsigned int vidx = verticesFound[b];
|
||||
const unsigned int uidx = replaceIndex[ vidx];
|
||||
if( uidx & 0x80000000)
|
||||
continue;
|
||||
|
||||
const Vertex& uv = uniqueVertices[ uidx];
|
||||
// Position mismatch is impossible - the vertex finder already discarded all non-matching positions
|
||||
|
||||
// We just test the other attributes even if they're not present in the mesh.
|
||||
// In this case they're initialized to 0 so the comparison succeeds.
|
||||
// By this method the non-present attributes are effectively ignored in the comparison.
|
||||
if( (uv.normal - v.normal).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( (uv.texcoords[0] - v.texcoords[0]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( (uv.tangent - v.tangent).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( (uv.bitangent - v.bitangent).SquareLength() > squareEpsilon)
|
||||
if (!areVerticesEqual(v, uv, complex)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Usually we won't have vertex colors or multiple UVs, so we can skip from here
|
||||
// Actually this increases runtime performance slightly, at least if branch
|
||||
// prediction is on our side.
|
||||
if (complex){
|
||||
// manually unrolled because continue wouldn't work as desired in an inner loop,
|
||||
// also because some compilers seem to fail the task. Colors and UV coords
|
||||
// are interleaved since the higher entries are most likely to be
|
||||
// zero and thus useless. By interleaving the arrays, vertices are,
|
||||
// on average, rejected earlier.
|
||||
|
||||
if( (uv.texcoords[1] - v.texcoords[1]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[0], v.colors[0]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( (uv.texcoords[2] - v.texcoords[2]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[1], v.colors[1]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( (uv.texcoords[3] - v.texcoords[3]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[2], v.colors[2]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( (uv.texcoords[4] - v.texcoords[4]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[3], v.colors[3]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( (uv.texcoords[5] - v.texcoords[5]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[4], v.colors[4]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( (uv.texcoords[6] - v.texcoords[6]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[5], v.colors[5]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( (uv.texcoords[7] - v.texcoords[7]).SquareLength() > squareEpsilon)
|
||||
continue;
|
||||
if( GetColorDifference( uv.colors[6], v.colors[6]) > squareEpsilon)
|
||||
continue;
|
||||
|
||||
if( GetColorDifference( uv.colors[7], v.colors[7]) > squareEpsilon)
|
||||
if (hasAnimMeshes) {
|
||||
// If given vertex is animated, then it has to be preserver 1 to 1 (base mesh and animated mesh require same topology)
|
||||
// NOTE: not doing this totaly breaks anim meshes as they don't have their own faces (they use pMesh->mFaces)
|
||||
bool breaksAnimMesh = false;
|
||||
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
||||
const Vertex& animatedUV = uniqueAnimatedVertices[animMeshIndex][ uidx];
|
||||
Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
|
||||
if (!areVerticesEqual(aniMeshVertex, animatedUV, complex)) {
|
||||
breaksAnimMesh = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (breaksAnimMesh) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// we're still here -> this vertex perfectly matches our given vertex
|
||||
|
@ -270,6 +351,12 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|||
// no unique vertex matches it up to now -> so add it
|
||||
replaceIndex[a] = (unsigned int)uniqueVertices.size();
|
||||
uniqueVertices.push_back( v);
|
||||
if (hasAnimMeshes) {
|
||||
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
||||
Vertex aniMeshVertex(pMesh->mAnimMeshes[animMeshIndex], a);
|
||||
uniqueAnimatedVertices[animMeshIndex].push_back(aniMeshVertex);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -287,64 +374,10 @@ int JoinVerticesProcess::ProcessMesh( aiMesh* pMesh, unsigned int meshIndex)
|
|||
));
|
||||
}
|
||||
|
||||
// replace vertex data with the unique data sets
|
||||
pMesh->mNumVertices = (unsigned int)uniqueVertices.size();
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// NOTE - we're *not* calling Vertex::SortBack() because it would check for
|
||||
// presence of every single vertex component once PER VERTEX. And our CPU
|
||||
// dislikes branches, even if they're easily predictable.
|
||||
// ----------------------------------------------------------------------------
|
||||
|
||||
// Position
|
||||
delete [] pMesh->mVertices;
|
||||
pMesh->mVertices = new aiVector3D[pMesh->mNumVertices];
|
||||
for( unsigned int a = 0; a < pMesh->mNumVertices; a++)
|
||||
pMesh->mVertices[a] = uniqueVertices[a].position;
|
||||
|
||||
// Normals, if present
|
||||
if( pMesh->mNormals)
|
||||
{
|
||||
delete [] pMesh->mNormals;
|
||||
pMesh->mNormals = new aiVector3D[pMesh->mNumVertices];
|
||||
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mNormals[a] = uniqueVertices[a].normal;
|
||||
}
|
||||
}
|
||||
// Tangents, if present
|
||||
if( pMesh->mTangents)
|
||||
{
|
||||
delete [] pMesh->mTangents;
|
||||
pMesh->mTangents = new aiVector3D[pMesh->mNumVertices];
|
||||
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mTangents[a] = uniqueVertices[a].tangent;
|
||||
}
|
||||
}
|
||||
// Bitangents as well
|
||||
if( pMesh->mBitangents)
|
||||
{
|
||||
delete [] pMesh->mBitangents;
|
||||
pMesh->mBitangents = new aiVector3D[pMesh->mNumVertices];
|
||||
for( unsigned int a = 0; a < pMesh->mNumVertices; a++) {
|
||||
pMesh->mBitangents[a] = uniqueVertices[a].bitangent;
|
||||
}
|
||||
}
|
||||
// Vertex colors
|
||||
for( unsigned int a = 0; pMesh->HasVertexColors(a); a++)
|
||||
{
|
||||
delete [] pMesh->mColors[a];
|
||||
pMesh->mColors[a] = new aiColor4D[pMesh->mNumVertices];
|
||||
for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
||||
pMesh->mColors[a][b] = uniqueVertices[b].colors[a];
|
||||
}
|
||||
}
|
||||
// Texture coords
|
||||
for( unsigned int a = 0; pMesh->HasTextureCoords(a); a++)
|
||||
{
|
||||
delete [] pMesh->mTextureCoords[a];
|
||||
pMesh->mTextureCoords[a] = new aiVector3D[pMesh->mNumVertices];
|
||||
for( unsigned int b = 0; b < pMesh->mNumVertices; b++) {
|
||||
pMesh->mTextureCoords[a][b] = uniqueVertices[b].texcoords[a];
|
||||
updateXMeshVertices(pMesh, uniqueVertices);
|
||||
if (hasAnimMeshes) {
|
||||
for (unsigned int animMeshIndex = 0; animMeshIndex < pMesh->mNumAnimMeshes; animMeshIndex++) {
|
||||
updateXMeshVertices(pMesh->mAnimMeshes[animMeshIndex], uniqueAnimatedVertices[animMeshIndex]);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -134,6 +134,30 @@ public:
|
|||
}
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
/** Extract a particular vertex from a anim mesh and interleave all components */
|
||||
explicit Vertex(const aiAnimMesh* msh, unsigned int idx) {
|
||||
ai_assert(idx < msh->mNumVertices);
|
||||
position = msh->mVertices[idx];
|
||||
|
||||
if (msh->HasNormals()) {
|
||||
normal = msh->mNormals[idx];
|
||||
}
|
||||
|
||||
if (msh->HasTangentsAndBitangents()) {
|
||||
tangent = msh->mTangents[idx];
|
||||
bitangent = msh->mBitangents[idx];
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; msh->HasTextureCoords(i); ++i) {
|
||||
texcoords[i] = msh->mTextureCoords[i][idx];
|
||||
}
|
||||
|
||||
for (unsigned int i = 0; msh->HasVertexColors(i); ++i) {
|
||||
colors[i] = msh->mColors[i][idx];
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
Vertex& operator += (const Vertex& v) {
|
||||
|
|
Loading…
Reference in New Issue