Merge branch 'master' of https://github.com/assimp/assimp
commit
196d1b54cb
|
@ -381,6 +381,8 @@ SET(IFC_SRCS
|
|||
IFCMaterial.cpp
|
||||
IFCProfile.cpp
|
||||
IFCCurve.cpp
|
||||
IFCBoolean.cpp
|
||||
IFCOpenings.cpp
|
||||
STEPFile.h
|
||||
STEPFileReader.h
|
||||
STEPFileReader.cpp
|
||||
|
|
1970
code/IFCGeometry.cpp
1970
code/IFCGeometry.cpp
File diff suppressed because it is too large
Load Diff
|
@ -599,7 +599,7 @@ aiNode* ProcessSpatialStructure(aiNode* parent, const IfcProduct& el, Conversion
|
|||
|
||||
// add an output node for this spatial structure
|
||||
std::auto_ptr<aiNode> nd(new aiNode());
|
||||
nd->mName.Set(el.GetClassName()+"_"+(el.Name?el.Name:el.GlobalId));
|
||||
nd->mName.Set(el.GetClassName()+"_"+(el.Name?el.Name.Get():"Unnamed")+"_"+el.GlobalId);
|
||||
nd->mParent = parent;
|
||||
|
||||
if(el.ObjectPlacement) {
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -59,6 +59,9 @@ void TempOpening::Transform(const IfcMatrix4& mat)
|
|||
if(profileMesh) {
|
||||
profileMesh->Transform(mat);
|
||||
}
|
||||
if(profileMesh2D) {
|
||||
profileMesh2D->Transform(mat);
|
||||
}
|
||||
extrusionDir *= IfcMatrix3(mat);
|
||||
}
|
||||
|
||||
|
@ -311,6 +314,13 @@ void TempMesh::RemoveAdjacentDuplicates()
|
|||
}
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void TempMesh::Swap(TempMesh& other)
|
||||
{
|
||||
vertcnt.swap(other.vertcnt);
|
||||
verts.swap(other.verts);
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
bool IsTrue(const EXPRESS::BOOLEAN& in)
|
||||
{
|
||||
|
@ -560,6 +570,7 @@ void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationO
|
|||
out = locm * out * s;
|
||||
}
|
||||
|
||||
|
||||
} // ! IFC
|
||||
} // ! Assimp
|
||||
|
||||
|
|
131
code/IFCUtil.h
131
code/IFCUtil.h
|
@ -61,7 +61,9 @@ namespace IFC {
|
|||
typedef aiColor4t<IfcFloat> IfcColor4;
|
||||
|
||||
|
||||
// helper for std::for_each to delete all heap-allocated items in a container
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Helper for std::for_each to delete all heap-allocated items in a container
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
template<typename T>
|
||||
struct delete_fun
|
||||
{
|
||||
|
@ -70,15 +72,50 @@ struct delete_fun
|
|||
}
|
||||
};
|
||||
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Helper used during mesh construction. Aids at creating aiMesh'es out of relatively few polygons.
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
struct TempMesh
|
||||
{
|
||||
std::vector<IfcVector3> verts;
|
||||
std::vector<unsigned int> vertcnt;
|
||||
|
||||
// utilities
|
||||
aiMesh* ToMesh();
|
||||
void Clear();
|
||||
void Transform(const IfcMatrix4& mat);
|
||||
IfcVector3 Center() const;
|
||||
void Append(const TempMesh& other);
|
||||
|
||||
bool IsEmpty() const {
|
||||
return verts.empty() && vertcnt.empty();
|
||||
}
|
||||
|
||||
void RemoveAdjacentDuplicates();
|
||||
void RemoveDegenerates();
|
||||
|
||||
void FixupFaceOrientation();
|
||||
IfcVector3 ComputeLastPolygonNormal(bool normalize = true) const;
|
||||
void ComputePolygonNormals(std::vector<IfcVector3>& normals,
|
||||
bool normalize = true,
|
||||
size_t ofs = 0) const;
|
||||
|
||||
void Swap(TempMesh& other);
|
||||
};
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Temporary representation of an opening in a wall or a floor
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
struct TempMesh;
|
||||
struct TempOpening
|
||||
{
|
||||
const IFC::IfcSolidModel* solid;
|
||||
IfcVector3 extrusionDir;
|
||||
|
||||
boost::shared_ptr<TempMesh> profileMesh;
|
||||
boost::shared_ptr<TempMesh> profileMesh2D;
|
||||
|
||||
// list of points generated for this opening. This is used to
|
||||
// create connections between two opposing holes created
|
||||
|
@ -96,15 +133,33 @@ struct TempOpening
|
|||
}
|
||||
|
||||
// ------------------------------------------------------------------------------
|
||||
TempOpening(const IFC::IfcSolidModel* solid,IfcVector3 extrusionDir,boost::shared_ptr<TempMesh> profileMesh)
|
||||
TempOpening(const IFC::IfcSolidModel* solid,IfcVector3 extrusionDir,
|
||||
boost::shared_ptr<TempMesh> profileMesh,
|
||||
boost::shared_ptr<TempMesh> profileMesh2D)
|
||||
: solid(solid)
|
||||
, extrusionDir(extrusionDir)
|
||||
, profileMesh(profileMesh)
|
||||
, profileMesh2D(profileMesh2D)
|
||||
{
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------
|
||||
void Transform(const IfcMatrix4& mat); // defined later since TempMesh is not complete yet
|
||||
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------
|
||||
// Helper to sort openings by distance from a given base point
|
||||
struct DistanceSorter {
|
||||
|
||||
DistanceSorter(const IfcVector3& base) : base(base) {}
|
||||
|
||||
bool operator () (const TempOpening& a, const TempOpening& b) const {
|
||||
return (a.profileMesh->Center()-base).SquareLength() < (b.profileMesh->Center()-base).SquareLength();
|
||||
}
|
||||
|
||||
IfcVector3 base;
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
|
@ -155,6 +210,7 @@ struct ConversionData
|
|||
std::vector<TempOpening>* collect_openings;
|
||||
};
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Binary predicate to compare vectors with a given, quadratic epsilon.
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
|
@ -170,38 +226,21 @@ struct FuzzyVectorCompare {
|
|||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Helper used during mesh construction. Aids at creating aiMesh'es out of relatively few polygons.
|
||||
// Ordering predicate to totally order R^2 vectors first by x and then by y
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
struct TempMesh
|
||||
{
|
||||
std::vector<IfcVector3> verts;
|
||||
std::vector<unsigned int> vertcnt;
|
||||
struct XYSorter {
|
||||
|
||||
// utilities
|
||||
aiMesh* ToMesh();
|
||||
void Clear();
|
||||
void Transform(const IfcMatrix4& mat);
|
||||
IfcVector3 Center() const;
|
||||
void Append(const TempMesh& other);
|
||||
|
||||
bool IsEmpty() const {
|
||||
return verts.empty() && vertcnt.empty();
|
||||
// sort first by X coordinates, then by Y coordinates
|
||||
bool operator () (const IfcVector2&a, const IfcVector2& b) const {
|
||||
if (a.x == b.x) {
|
||||
return a.y < b.y;
|
||||
}
|
||||
return a.x < b.x;
|
||||
}
|
||||
|
||||
void RemoveAdjacentDuplicates();
|
||||
void RemoveDegenerates();
|
||||
|
||||
void FixupFaceOrientation();
|
||||
IfcVector3 ComputeLastPolygonNormal(bool normalize = true) const;
|
||||
void ComputePolygonNormals(std::vector<IfcVector3>& normals,
|
||||
bool normalize = true,
|
||||
size_t ofs = 0) const;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// conversion routines for common IFC entities, implemented in IFCUtil.cpp
|
||||
void ConvertColor(aiColor4D& out, const IfcColourRgb& in);
|
||||
void ConvertColor(aiColor4D& out, const IfcColourOrFactor& in,ConversionData& conv,const aiColor4D* base);
|
||||
|
@ -225,9 +264,41 @@ bool ProcessProfile(const IfcProfileDef& prof, TempMesh& meshout, ConversionData
|
|||
unsigned int ProcessMaterials(const IFC::IfcRepresentationItem& item, ConversionData& conv);
|
||||
|
||||
// IFCGeometry.cpp
|
||||
IfcMatrix3 DerivePlaneCoordinateSpace(const TempMesh& curmesh, bool& ok, IfcVector3& norOut);
|
||||
bool ProcessRepresentationItem(const IfcRepresentationItem& item, std::vector<unsigned int>& mesh_indices, ConversionData& conv);
|
||||
void AssignAddedMeshes(std::vector<unsigned int>& mesh_indices,aiNode* nd,ConversionData& /*conv*/);
|
||||
|
||||
void ProcessSweptAreaSolid(const IfcSweptAreaSolid& swept, TempMesh& meshout,
|
||||
ConversionData& conv);
|
||||
|
||||
void ProcessExtrudedAreaSolid(const IfcExtrudedAreaSolid& solid, TempMesh& result,
|
||||
ConversionData& conv, bool collect_openings);
|
||||
|
||||
// IFCBoolean.cpp
|
||||
|
||||
void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv);
|
||||
void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result,
|
||||
const TempMesh& first_operand,
|
||||
ConversionData& conv);
|
||||
|
||||
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBoundedHalfSpace* hs, TempMesh& result,
|
||||
const TempMesh& first_operand,
|
||||
ConversionData& conv);
|
||||
void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result,
|
||||
const TempMesh& first_operand,
|
||||
ConversionData& conv);
|
||||
|
||||
|
||||
// IFCOpenings.cpp
|
||||
|
||||
bool GenerateOpenings(std::vector<TempOpening>& openings,
|
||||
const std::vector<IfcVector3>& nors,
|
||||
TempMesh& curmesh,
|
||||
bool check_intersection,
|
||||
bool generate_connection_geometry,
|
||||
const IfcVector3& wall_extrusion_axis = IfcVector3(0,1,0));
|
||||
|
||||
|
||||
|
||||
// IFCCurve.cpp
|
||||
|
||||
|
@ -331,8 +402,8 @@ public:
|
|||
using Curve::SampleDiscrete;
|
||||
};
|
||||
|
||||
|
||||
|
||||
// IfcProfile.cpp
|
||||
bool ProcessCurve(const IfcCurve& curve, TempMesh& meshout, ConversionData& conv);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -0,0 +1,681 @@
|
|||
/*
|
||||
Open Asset Import Library (assimp)
|
||||
----------------------------------------------------------------------
|
||||
|
||||
Copyright (c) 2006-2010, assimp team
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use of this software in source and binary forms,
|
||||
with or without modification, are permitted provided that the
|
||||
following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above
|
||||
copyright notice, this list of conditions and the
|
||||
following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the
|
||||
following disclaimer in the documentation and/or other
|
||||
materials provided with the distribution.
|
||||
|
||||
* Neither the name of the assimp team, nor the names of its
|
||||
contributors may be used to endorse or promote products
|
||||
derived from this software without specific prior
|
||||
written permission of the assimp team.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
----------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
/** @file IFCBoolean.cpp
|
||||
* @brief Implements a subset of Ifc boolean operations
|
||||
*/
|
||||
|
||||
#include "AssimpPCH.h"
|
||||
|
||||
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
||||
#include "IFCUtil.h"
|
||||
#include "PolyTools.h"
|
||||
#include "ProcessHelper.h"
|
||||
|
||||
#include <iterator>
|
||||
|
||||
namespace Assimp {
|
||||
namespace IFC {
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
enum Intersect {
|
||||
Intersect_No,
|
||||
Intersect_LiesOnPlane,
|
||||
Intersect_Yes
|
||||
};
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0,
|
||||
const IfcVector3& e1,
|
||||
IfcVector3& out)
|
||||
{
|
||||
const IfcVector3 pdelta = e0 - p, seg = e1-e0;
|
||||
const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
|
||||
|
||||
if (fabs(dotOne) < 1e-6) {
|
||||
return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
|
||||
}
|
||||
|
||||
const IfcFloat t = dotTwo/dotOne;
|
||||
// t must be in [0..1] if the intersection point is within the given segment
|
||||
if (t > 1.f || t < 0.f) {
|
||||
return Intersect_No;
|
||||
}
|
||||
out = e0+t*seg;
|
||||
return Intersect_Yes;
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result,
|
||||
const TempMesh& first_operand,
|
||||
ConversionData& conv)
|
||||
{
|
||||
ai_assert(hs != NULL);
|
||||
|
||||
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
||||
if(!plane) {
|
||||
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
||||
return;
|
||||
}
|
||||
|
||||
// extract plane base position vector and normal vector
|
||||
IfcVector3 p,n(0.f,0.f,1.f);
|
||||
if (plane->Position->Axis) {
|
||||
ConvertDirection(n,plane->Position->Axis.Get());
|
||||
}
|
||||
ConvertCartesianPoint(p,plane->Position->Location);
|
||||
|
||||
if(!IsTrue(hs->AgreementFlag)) {
|
||||
n *= -1.f;
|
||||
}
|
||||
|
||||
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
||||
const std::vector<IfcVector3>& in = first_operand.verts;
|
||||
std::vector<IfcVector3>& outvert = result.verts;
|
||||
|
||||
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
|
||||
end = first_operand.vertcnt.end(), iit;
|
||||
|
||||
outvert.reserve(in.size());
|
||||
result.vertcnt.reserve(first_operand.vertcnt.size());
|
||||
|
||||
unsigned int vidx = 0;
|
||||
for(iit = begin; iit != end; vidx += *iit++) {
|
||||
|
||||
unsigned int newcount = 0;
|
||||
for(unsigned int i = 0; i < *iit; ++i) {
|
||||
const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
|
||||
|
||||
// does the next segment intersect the plane?
|
||||
IfcVector3 isectpos;
|
||||
const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
||||
if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
|
||||
if ( (e0-p).Normalize()*n > 0 ) {
|
||||
outvert.push_back(e0);
|
||||
++newcount;
|
||||
}
|
||||
}
|
||||
else if (isect == Intersect_Yes) {
|
||||
if ( (e0-p).Normalize()*n > 0 ) {
|
||||
// e0 is on the right side, so keep it
|
||||
outvert.push_back(e0);
|
||||
outvert.push_back(isectpos);
|
||||
newcount += 2;
|
||||
}
|
||||
else {
|
||||
// e0 is on the wrong side, so drop it and keep e1 instead
|
||||
outvert.push_back(isectpos);
|
||||
++newcount;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!newcount) {
|
||||
continue;
|
||||
}
|
||||
|
||||
IfcVector3 vmin,vmax;
|
||||
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
||||
|
||||
// filter our IfcFloat points - those may happen if a point lies
|
||||
// directly on the intersection line. However, due to IfcFloat
|
||||
// precision a bitwise comparison is not feasible to detect
|
||||
// this case.
|
||||
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
||||
FuzzyVectorCompare fz(epsilon);
|
||||
|
||||
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
||||
|
||||
if (e != outvert.end()) {
|
||||
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
||||
outvert.erase(e,outvert.end());
|
||||
}
|
||||
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
||||
outvert.pop_back();
|
||||
--newcount;
|
||||
}
|
||||
if(newcount > 2) {
|
||||
result.vertcnt.push_back(newcount);
|
||||
}
|
||||
else while(newcount-->0) {
|
||||
result.verts.pop_back();
|
||||
}
|
||||
|
||||
}
|
||||
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// Check if e0-e1 intersects a sub-segment of the given boundary line.
|
||||
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
|
||||
bool IntersectsBoundaryProfile( const IfcVector3& e0, const IfcVector3& e1, const std::vector<IfcVector3>& boundary,
|
||||
std::vector<size_t>& intersected_boundary_segments,
|
||||
std::vector<IfcVector3>& intersected_boundary_points,
|
||||
bool half_open = false,
|
||||
bool* e0_hits_border = NULL)
|
||||
{
|
||||
ai_assert(intersected_boundary_segments.empty());
|
||||
ai_assert(intersected_boundary_points.empty());
|
||||
|
||||
if(e0_hits_border) {
|
||||
*e0_hits_border = false;
|
||||
}
|
||||
|
||||
const IfcVector3& e = e1 - e0;
|
||||
|
||||
for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
|
||||
// boundary segment i: b0-b1
|
||||
const IfcVector3& b0 = boundary[i];
|
||||
const IfcVector3& b1 = boundary[(i+1) % bcount];
|
||||
|
||||
const IfcVector3& b = b1 - b0;
|
||||
|
||||
// segment-segment intersection
|
||||
// solve b0 + b*s = e0 + e*t for (s,t)
|
||||
const IfcFloat det = (-b.x * e.y + e.x * b.y);
|
||||
if(fabs(det) < 1e-6) {
|
||||
// no solutions (parallel lines)
|
||||
continue;
|
||||
}
|
||||
|
||||
const IfcFloat x = b0.x - e0.x;
|
||||
const IfcFloat y = b0.y - e0.y;
|
||||
|
||||
const IfcFloat s = (x*e.y - e.x*y)/det;
|
||||
const IfcFloat t = (x*b.y - b.x*y)/det;
|
||||
|
||||
#ifdef _DEBUG
|
||||
const IfcVector3 check = b0 + b*s - (e0 + e*t);
|
||||
ai_assert((IfcVector2(check.x,check.y)).SquareLength() < 1e-5);
|
||||
#endif
|
||||
|
||||
// for a valid intersection, s-t should be in range [0,1].
|
||||
// note that for t (i.e. the segment point) we only use a
|
||||
// half-sided epsilon because the next segment should catch
|
||||
// this case.
|
||||
const IfcFloat epsilon = 1e-6;
|
||||
if (t >= -epsilon && (t <= 1.0+epsilon || half_open) && s >= -epsilon && s <= 1.0) {
|
||||
|
||||
if (e0_hits_border && !*e0_hits_border) {
|
||||
*e0_hits_border = fabs(t) < 1e-5f;
|
||||
}
|
||||
|
||||
const IfcVector3& p = e0 + e*t;
|
||||
|
||||
// only insert the point into the list if it is sufficiently
|
||||
// far away from the previous intersection point. This way,
|
||||
// we avoid duplicate detection if the intersection is
|
||||
// directly on the vertex between two segments.
|
||||
if (!intersected_boundary_points.empty() && intersected_boundary_segments.back()==i-1 ) {
|
||||
const IfcVector3 diff = intersected_boundary_points.back() - p;
|
||||
if(IfcVector3((diff.x, diff.y)).SquareLength() < 1e-7) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
intersected_boundary_segments.push_back(i);
|
||||
intersected_boundary_points.push_back(p);
|
||||
}
|
||||
}
|
||||
|
||||
return !intersected_boundary_segments.empty();
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
// note: this functions works on 3D vectors, but performs its intersection checks solely in xy.
|
||||
bool PointInPoly(const IfcVector3& p, const std::vector<IfcVector3>& boundary)
|
||||
{
|
||||
// even-odd algorithm: take a random vector that extends from p to infinite
|
||||
// and counts how many times it intersects edges of the boundary.
|
||||
// because checking for segment intersections is prone to numeric inaccuracies
|
||||
// or double detections (i.e. when hitting multiple adjacent segments at their
|
||||
// shared vertices) we do it thrice with different rays and vote on it.
|
||||
|
||||
// the even-odd algorithm doesn't work for points which lie directly on
|
||||
// the border of the polygon. If any of our attempts produces this result,
|
||||
// we return false immediately.
|
||||
|
||||
std::vector<size_t> intersected_boundary_segments;
|
||||
std::vector<IfcVector3> intersected_boundary_points;
|
||||
size_t votes = 0;
|
||||
|
||||
bool is_border;
|
||||
IntersectsBoundaryProfile(p, p + IfcVector3(1.0,0,0), boundary,
|
||||
intersected_boundary_segments,
|
||||
intersected_boundary_points, true, &is_border);
|
||||
|
||||
if(is_border) {
|
||||
return false;
|
||||
}
|
||||
|
||||
votes += intersected_boundary_segments.size() % 2;
|
||||
|
||||
intersected_boundary_segments.clear();
|
||||
intersected_boundary_points.clear();
|
||||
|
||||
IntersectsBoundaryProfile(p, p + IfcVector3(0,1.0,0), boundary,
|
||||
intersected_boundary_segments,
|
||||
intersected_boundary_points, true, &is_border);
|
||||
|
||||
if(is_border) {
|
||||
return false;
|
||||
}
|
||||
|
||||
votes += intersected_boundary_segments.size() % 2;
|
||||
|
||||
intersected_boundary_segments.clear();
|
||||
intersected_boundary_points.clear();
|
||||
|
||||
IntersectsBoundaryProfile(p, p + IfcVector3(0.6,-0.6,0.0), boundary,
|
||||
intersected_boundary_segments,
|
||||
intersected_boundary_points, true, &is_border);
|
||||
|
||||
if(is_border) {
|
||||
return false;
|
||||
}
|
||||
|
||||
votes += intersected_boundary_segments.size() % 2;
|
||||
//ai_assert(votes == 3 || votes == 0);
|
||||
return votes > 1;
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBoundedHalfSpace* hs, TempMesh& result,
|
||||
const TempMesh& first_operand,
|
||||
ConversionData& conv)
|
||||
{
|
||||
ai_assert(hs != NULL);
|
||||
|
||||
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
||||
if(!plane) {
|
||||
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
||||
return;
|
||||
}
|
||||
|
||||
// extract plane base position vector and normal vector
|
||||
IfcVector3 p,n(0.f,0.f,1.f);
|
||||
if (plane->Position->Axis) {
|
||||
ConvertDirection(n,plane->Position->Axis.Get());
|
||||
}
|
||||
ConvertCartesianPoint(p,plane->Position->Location);
|
||||
|
||||
if(!IsTrue(hs->AgreementFlag)) {
|
||||
n *= -1.f;
|
||||
}
|
||||
|
||||
n.Normalize();
|
||||
|
||||
// obtain the polygonal bounding volume
|
||||
boost::shared_ptr<TempMesh> profile = boost::shared_ptr<TempMesh>(new TempMesh());
|
||||
if(!ProcessCurve(hs->PolygonalBoundary, *profile.get(), conv)) {
|
||||
IFCImporter::LogError("expected valid polyline for boundary of boolean halfspace");
|
||||
return;
|
||||
}
|
||||
|
||||
IfcMatrix4 proj_inv;
|
||||
ConvertAxisPlacement(proj_inv,hs->Position);
|
||||
|
||||
// and map everything into a plane coordinate space so all intersection
|
||||
// tests can be done in 2D space.
|
||||
IfcMatrix4 proj = proj_inv;
|
||||
proj.Inverse();
|
||||
|
||||
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
||||
const std::vector<IfcVector3>& in = first_operand.verts;
|
||||
std::vector<IfcVector3>& outvert = result.verts;
|
||||
|
||||
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
|
||||
end = first_operand.vertcnt.end(), iit;
|
||||
|
||||
outvert.reserve(in.size());
|
||||
result.vertcnt.reserve(first_operand.vertcnt.size());
|
||||
|
||||
std::vector<size_t> intersected_boundary_segments;
|
||||
std::vector<IfcVector3> intersected_boundary_points;
|
||||
|
||||
// TODO: the following algorithm doesn't handle all cases.
|
||||
unsigned int vidx = 0;
|
||||
for(iit = begin; iit != end; vidx += *iit++) {
|
||||
if (!*iit) {
|
||||
continue;
|
||||
}
|
||||
|
||||
unsigned int newcount = 0;
|
||||
bool was_outside_boundary = !PointInPoly(proj * in[vidx], profile->verts);
|
||||
|
||||
size_t last_intersected_boundary_segment;
|
||||
IfcVector3 last_intersected_boundary_point;
|
||||
|
||||
bool extra_point_flag = false;
|
||||
IfcVector3 extra_point;
|
||||
|
||||
for(unsigned int i = 0; i < *iit; ++i) {
|
||||
// current segment: [i,i+1 mod size] or [*extra_point,i] if extra_point_flag is set
|
||||
const IfcVector3& e0 = extra_point_flag ? extra_point : in[vidx+i];
|
||||
const IfcVector3& e1 = extra_point_flag ? in[vidx+i] : in[vidx+(i+1)%*iit];
|
||||
|
||||
// does the current segment intersect the polygonal boundary?
|
||||
const IfcVector3& e0_plane = proj * e0;
|
||||
const IfcVector3& e1_plane = proj * e1;
|
||||
|
||||
intersected_boundary_segments.clear();
|
||||
intersected_boundary_points.clear();
|
||||
|
||||
const bool is_outside_boundary = !PointInPoly(e1_plane, profile->verts);
|
||||
const bool is_boundary_intersection = is_outside_boundary != was_outside_boundary;
|
||||
|
||||
IntersectsBoundaryProfile(e0_plane, e1_plane, profile->verts,
|
||||
intersected_boundary_segments,
|
||||
intersected_boundary_points);
|
||||
|
||||
ai_assert(!is_boundary_intersection || !intersected_boundary_segments.empty());
|
||||
|
||||
// does the current segment intersect the plane?
|
||||
// (no extra check if this is an extra point)
|
||||
IfcVector3 isectpos;
|
||||
const Intersect isect = extra_point_flag ? Intersect_No : IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
||||
|
||||
#ifdef _DEBUG
|
||||
if (isect == Intersect_Yes) {
|
||||
const IfcFloat f = fabs((isectpos - p)*n);
|
||||
ai_assert(f < 1e-5);
|
||||
}
|
||||
#endif
|
||||
|
||||
const bool is_white_side = (e0-p)*n >= -1e-6;
|
||||
|
||||
// e0 on good side of plane? (i.e. we should keep all geometry on this side)
|
||||
if (is_white_side) {
|
||||
// but is there an intersection in e0-e1 and is e1 in the clipping
|
||||
// boundary? In this case, generate a line that only goes to the
|
||||
// intersection point.
|
||||
if (isect == Intersect_Yes && !is_outside_boundary) {
|
||||
outvert.push_back(e0);
|
||||
++newcount;
|
||||
|
||||
outvert.push_back(isectpos);
|
||||
++newcount;
|
||||
|
||||
// this is, however, only a line that goes to the plane, but not
|
||||
// necessarily to the point where the bounding volume on the
|
||||
// black side of the plane is hit. So basically, we need another
|
||||
// check for [isectpos-e1], which should yield an intersection
|
||||
// point.
|
||||
extra_point_flag = true;
|
||||
extra_point = isectpos;
|
||||
|
||||
//was_outside_boundary = true;
|
||||
//continue;
|
||||
}
|
||||
else {
|
||||
outvert.push_back(e0);
|
||||
++newcount;
|
||||
}
|
||||
}
|
||||
// e0 on bad side of plane, e1 on good (i.e. we should remove geometry on this side,
|
||||
// but only if it is within the bounding volume).
|
||||
else if (isect == Intersect_Yes) {
|
||||
// is e0 within the clipping volume? Insert the intersection point
|
||||
// of [e0,e1] and the plane instead of e0.
|
||||
if(was_outside_boundary) {
|
||||
outvert.push_back(e0);
|
||||
}
|
||||
else {
|
||||
outvert.push_back(isectpos);
|
||||
}
|
||||
++newcount;
|
||||
}
|
||||
else { // no intersection with plane or parallel; e0,e1 are on the bad side
|
||||
|
||||
// did we just pass the boundary line to the poly bounding?
|
||||
if (is_boundary_intersection) {
|
||||
|
||||
// and are now outside the clipping boundary?
|
||||
if (is_outside_boundary) {
|
||||
// in this case, get the point where the clipping boundary
|
||||
// was entered first. Then, get the point where the clipping
|
||||
// boundary volume was left! These two points with the plane
|
||||
// normal form another plane that intersects the clipping
|
||||
// volume. There are two ways to get from the first to the
|
||||
// second point along the intersection curve, try to pick the
|
||||
// one that lies within the current polygon.
|
||||
|
||||
// TODO this approach doesn't handle all cases
|
||||
|
||||
// ...
|
||||
|
||||
IfcFloat d = 1e10;
|
||||
IfcVector3 vclosest;
|
||||
BOOST_FOREACH(const IfcVector3& v, intersected_boundary_points) {
|
||||
const IfcFloat dn = (v-e1_plane).SquareLength();
|
||||
if (dn < d) {
|
||||
d = dn;
|
||||
vclosest = v;
|
||||
}
|
||||
}
|
||||
|
||||
outvert.push_back(proj_inv * vclosest);
|
||||
++newcount;
|
||||
|
||||
//outvert.push_back(e1);
|
||||
//++newcount;
|
||||
}
|
||||
else {
|
||||
// we just entered the clipping boundary. Record the point
|
||||
// and the segment where we entered and also generate this point.
|
||||
//last_intersected_boundary_segment = intersected_boundary_segments.front();
|
||||
//last_intersected_boundary_point = intersected_boundary_points.front();
|
||||
|
||||
outvert.push_back(e0);
|
||||
++newcount;
|
||||
|
||||
IfcFloat d = 1e10;
|
||||
IfcVector3 vclosest;
|
||||
BOOST_FOREACH(const IfcVector3& v, intersected_boundary_points) {
|
||||
const IfcFloat dn = (v-e0_plane).SquareLength();
|
||||
if (dn < d) {
|
||||
d = dn;
|
||||
vclosest = v;
|
||||
}
|
||||
}
|
||||
|
||||
outvert.push_back(proj_inv * vclosest);
|
||||
++newcount;
|
||||
}
|
||||
}
|
||||
// if not, we just keep the vertex
|
||||
else if (is_outside_boundary) {
|
||||
outvert.push_back(e0);
|
||||
++newcount;
|
||||
}
|
||||
}
|
||||
|
||||
was_outside_boundary = is_outside_boundary;
|
||||
extra_point_flag = false;
|
||||
}
|
||||
|
||||
if (!newcount) {
|
||||
continue;
|
||||
}
|
||||
|
||||
IfcVector3 vmin,vmax;
|
||||
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
||||
|
||||
// filter our IfcFloat points - those may happen if a point lies
|
||||
// directly on the intersection line. However, due to IfcFloat
|
||||
// precision a bitwise comparison is not feasible to detect
|
||||
// this case.
|
||||
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
||||
FuzzyVectorCompare fz(epsilon);
|
||||
|
||||
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
||||
|
||||
if (e != outvert.end()) {
|
||||
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
||||
outvert.erase(e,outvert.end());
|
||||
}
|
||||
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
||||
outvert.pop_back();
|
||||
--newcount;
|
||||
}
|
||||
if(newcount > 2) {
|
||||
result.vertcnt.push_back(newcount);
|
||||
}
|
||||
else while(newcount-->0) {
|
||||
result.verts.pop_back();
|
||||
}
|
||||
|
||||
}
|
||||
IFCImporter::LogDebug("generating CSG geometry by plane clipping with polygonal bounding (IfcBooleanClippingResult)");
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result,
|
||||
const TempMesh& first_operand,
|
||||
ConversionData& conv)
|
||||
{
|
||||
ai_assert(as != NULL);
|
||||
|
||||
// This case is handled by reduction to an instance of the quadrify() algorithm.
|
||||
// Obviously, this won't work for arbitrarily complex cases. In fact, the first
|
||||
// operand should be near-planar. Luckily, this is usually the case in Ifc
|
||||
// buildings.
|
||||
|
||||
boost::shared_ptr<TempMesh> meshtmp = boost::shared_ptr<TempMesh>(new TempMesh());
|
||||
ProcessExtrudedAreaSolid(*as,*meshtmp,conv,false);
|
||||
|
||||
std::vector<TempOpening> openings(1, TempOpening(as,IfcVector3(0,0,0),meshtmp,boost::shared_ptr<TempMesh>()));
|
||||
|
||||
result = first_operand;
|
||||
|
||||
TempMesh temp;
|
||||
|
||||
std::vector<IfcVector3>::const_iterator vit = first_operand.verts.begin();
|
||||
BOOST_FOREACH(unsigned int pcount, first_operand.vertcnt) {
|
||||
temp.Clear();
|
||||
|
||||
temp.verts.insert(temp.verts.end(), vit, vit + pcount);
|
||||
temp.vertcnt.push_back(pcount);
|
||||
|
||||
// The algorithms used to generate mesh geometry sometimes
|
||||
// spit out lines or other degenerates which must be
|
||||
// filtered to avoid running into assertions later on.
|
||||
|
||||
// ComputePolygonNormal returns the Newell normal, so the
|
||||
// length of the normal is the area of the polygon.
|
||||
const IfcVector3& normal = temp.ComputeLastPolygonNormal(false);
|
||||
if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
|
||||
IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
|
||||
continue;
|
||||
}
|
||||
|
||||
GenerateOpenings(openings, std::vector<IfcVector3>(1,IfcVector3(1,0,0)), temp, false, true);
|
||||
result.Append(temp);
|
||||
|
||||
vit += pcount;
|
||||
}
|
||||
|
||||
IFCImporter::LogDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
|
||||
}
|
||||
|
||||
// ------------------------------------------------------------------------------------------------
|
||||
void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
|
||||
{
|
||||
// supported CSG operations:
|
||||
// DIFFERENCE
|
||||
if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
|
||||
if(clip->Operator != "DIFFERENCE") {
|
||||
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
||||
return;
|
||||
}
|
||||
|
||||
// supported cases (1st operand):
|
||||
// IfcBooleanResult -- call ProcessBoolean recursively
|
||||
// IfcSweptAreaSolid -- obtain polygonal geometry first
|
||||
|
||||
// supported cases (2nd operand):
|
||||
// IfcHalfSpaceSolid -- easy, clip against plane
|
||||
// IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
|
||||
|
||||
|
||||
const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
|
||||
const IfcExtrudedAreaSolid* const as = clip->SecondOperand->ResolveSelectPtr<IfcExtrudedAreaSolid>(conv.db);
|
||||
if(!hs && !as) {
|
||||
IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
|
||||
return;
|
||||
}
|
||||
|
||||
TempMesh first_operand;
|
||||
if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
|
||||
ProcessBoolean(*op0,first_operand,conv);
|
||||
}
|
||||
else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
|
||||
ProcessSweptAreaSolid(*swept,first_operand,conv);
|
||||
}
|
||||
else {
|
||||
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
||||
return;
|
||||
}
|
||||
|
||||
if(hs) {
|
||||
|
||||
const IfcPolygonalBoundedHalfSpace* const hs_bounded = clip->SecondOperand->ResolveSelectPtr<IfcPolygonalBoundedHalfSpace>(conv.db);
|
||||
if (hs_bounded) {
|
||||
ProcessPolygonalBoundedBooleanHalfSpaceDifference(hs_bounded, result, first_operand, conv);
|
||||
}
|
||||
else {
|
||||
ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
|
||||
}
|
||||
}
|
||||
else {
|
||||
ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
|
||||
}
|
||||
}
|
||||
else {
|
||||
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
||||
}
|
||||
}
|
||||
|
||||
} // ! IFC
|
||||
} // ! Assimp
|
||||
|
||||
#endif
|
||||
|
|
@ -157,6 +157,7 @@ struct Material
|
|||
aiString textureSpecular;
|
||||
aiString textureAmbient;
|
||||
aiString textureBump;
|
||||
aiString textureNormal;
|
||||
aiString textureSpecularity;
|
||||
aiString textureOpacity;
|
||||
aiString textureDisp;
|
||||
|
|
|
@ -556,6 +556,9 @@ void ObjFileImporter::createMaterials(const ObjFile::Model* pModel, aiScene* pSc
|
|||
if ( 0 != pCurrentMaterial->textureBump.length )
|
||||
mat->AddProperty( &pCurrentMaterial->textureBump, AI_MATKEY_TEXTURE_HEIGHT(0));
|
||||
|
||||
if ( 0 != pCurrentMaterial->textureNormal.length )
|
||||
mat->AddProperty( &pCurrentMaterial->textureNormal, AI_MATKEY_TEXTURE_NORMALS(0));
|
||||
|
||||
if ( 0 != pCurrentMaterial->textureDisp.length )
|
||||
mat->AddProperty( &pCurrentMaterial->textureDisp, AI_MATKEY_TEXTURE_DISPLACEMENT(0) );
|
||||
|
||||
|
|
|
@ -49,6 +49,18 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|||
|
||||
namespace Assimp {
|
||||
|
||||
// Material specific token
|
||||
static const std::string DiffuseTexture = "map_kd";
|
||||
static const std::string AmbientTexture = "map_ka";
|
||||
static const std::string SpecularTexture = "map_ks";
|
||||
static const std::string OpacityTexture = "map_d";
|
||||
static const std::string BumpTexture1 = "map_bump";
|
||||
static const std::string BumpTexture2 = "map_Bump";
|
||||
static const std::string BumpTexture3 = "bump";
|
||||
static const std::string NormalTexture = "map_Kn";
|
||||
static const std::string DisplacementTexture = "disp";
|
||||
static const std::string SpecularityTexture = "map_ns";
|
||||
|
||||
// -------------------------------------------------------------------
|
||||
// Constructor
|
||||
ObjFileMtlImporter::ObjFileMtlImporter( std::vector<char> &buffer,
|
||||
|
@ -249,46 +261,40 @@ void ObjFileMtlImporter::createMaterial()
|
|||
|
||||
// -------------------------------------------------------------------
|
||||
// Gets a texture name from data.
|
||||
void ObjFileMtlImporter::getTexture()
|
||||
{
|
||||
aiString *out = NULL;
|
||||
void ObjFileMtlImporter::getTexture() {
|
||||
aiString *out( NULL );
|
||||
|
||||
// FIXME: just a quick'n'dirty hack, consider cleanup later
|
||||
|
||||
// Diffuse texture
|
||||
if (!ASSIMP_strincmp(&(*m_DataIt),"map_kd",6))
|
||||
const char *pPtr( &(*m_DataIt) );
|
||||
if ( !ASSIMP_strincmp( pPtr, DiffuseTexture.c_str(), DiffuseTexture.size() ) ) {
|
||||
// Diffuse texture
|
||||
out = & m_pModel->m_pCurrentMaterial->texture;
|
||||
|
||||
// Ambient texture
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"map_ka",6))
|
||||
} else if ( !ASSIMP_strincmp( pPtr,AmbientTexture.c_str(),AmbientTexture.size() ) ) {
|
||||
// Ambient texture
|
||||
out = & m_pModel->m_pCurrentMaterial->textureAmbient;
|
||||
|
||||
// Specular texture
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"map_ks",6))
|
||||
} else if (!ASSIMP_strincmp( pPtr, SpecularTexture.c_str(), SpecularTexture.size())) {
|
||||
// Specular texture
|
||||
out = & m_pModel->m_pCurrentMaterial->textureSpecular;
|
||||
|
||||
// Opacity texture
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"map_d",5))
|
||||
} else if ( !ASSIMP_strincmp( pPtr, OpacityTexture.c_str(), OpacityTexture.size() ) ) {
|
||||
// Opacity texture
|
||||
out = & m_pModel->m_pCurrentMaterial->textureOpacity;
|
||||
|
||||
// Ambient texture
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"map_ka",6))
|
||||
} else if (!ASSIMP_strincmp( pPtr,"map_ka",6)) {
|
||||
// Ambient texture
|
||||
out = & m_pModel->m_pCurrentMaterial->textureAmbient;
|
||||
|
||||
// Bump texture
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"map_bump",8) || !ASSIMP_strincmp(&(*m_DataIt),"bump",4))
|
||||
} else if ( !ASSIMP_strincmp( pPtr, BumpTexture1.c_str(), BumpTexture1.size() ) ||
|
||||
!ASSIMP_strincmp( pPtr, BumpTexture2.c_str(), BumpTexture2.size() ) ||
|
||||
!ASSIMP_strincmp( pPtr, BumpTexture3.c_str(), BumpTexture3.size() ) ) {
|
||||
// Bump texture
|
||||
out = & m_pModel->m_pCurrentMaterial->textureBump;
|
||||
|
||||
// Displacement texture
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"disp",4))
|
||||
} else if (!ASSIMP_strincmp( pPtr,NormalTexture.c_str(), NormalTexture.size())) {
|
||||
// Normal map
|
||||
out = & m_pModel->m_pCurrentMaterial->textureNormal;
|
||||
} else if (!ASSIMP_strincmp( pPtr, DisplacementTexture.c_str(), DisplacementTexture.size() ) ) {
|
||||
// Displacement texture
|
||||
out = &m_pModel->m_pCurrentMaterial->textureDisp;
|
||||
|
||||
// Specularity scaling (glossiness)
|
||||
else if (!ASSIMP_strincmp(&(*m_DataIt),"map_ns",6))
|
||||
} else if (!ASSIMP_strincmp( pPtr, SpecularityTexture.c_str(),SpecularityTexture.size() ) ) {
|
||||
// Specularity scaling (glossiness)
|
||||
out = & m_pModel->m_pCurrentMaterial->textureSpecularity;
|
||||
|
||||
else
|
||||
{
|
||||
} else {
|
||||
DefaultLogger::get()->error("OBJ/MTL: Encountered unknown texture type");
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -332,8 +332,8 @@ bool STEP::StringToUTF8(std::string& s)
|
|||
case '4':
|
||||
if (s[i+3] == '\\') {
|
||||
const size_t basei = i+4;
|
||||
// scan for \X0\
|
||||
size_t j = basei, jend = s.size()-4;
|
||||
|
||||
for (; j < jend; ++j) {
|
||||
if (s[j] == '\\' && s[j] == 'X' && s[j] == '0' && s[j] == '\\') {
|
||||
break;
|
||||
|
|
|
@ -382,7 +382,7 @@ bool STLImporter::LoadBinaryFile()
|
|||
|
||||
DefaultLogger::get()->info("STL: Mesh has vertex colors");
|
||||
}
|
||||
aiColor4D* clr = &pMesh->mColors[0][pMesh->mNumFaces*3];
|
||||
aiColor4D* clr = &pMesh->mColors[0][i*3];
|
||||
clr->a = 1.0f;
|
||||
if (bIsMaterialise) // fuck, this is reversed
|
||||
{
|
||||
|
|
|
@ -457,7 +457,7 @@ struct Interpolator <aiVectorKey> {
|
|||
|
||||
template <>
|
||||
struct Interpolator <aiQuatKey> {
|
||||
void operator () (aiQuaternion& out, const aiQuatKey a,
|
||||
void operator () (aiQuaternion& out, const aiQuatKey& a,
|
||||
const aiQuatKey& b, float d) const
|
||||
{
|
||||
Interpolator<aiQuaternion> ipl;
|
||||
|
@ -467,7 +467,7 @@ struct Interpolator <aiQuatKey> {
|
|||
|
||||
template <>
|
||||
struct Interpolator <aiMeshKey> {
|
||||
void operator () (unsigned int& out, const aiMeshKey a,
|
||||
void operator () (unsigned int& out, const aiMeshKey& a,
|
||||
const aiMeshKey& b, float d) const
|
||||
{
|
||||
Interpolator<unsigned int> ipl;
|
||||
|
|
|
@ -1967,6 +1967,10 @@
|
|||
<Filter
|
||||
Name="ifc"
|
||||
>
|
||||
<File
|
||||
RelativePath="..\..\code\IfcBoolean.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\code\IFCCurve.cpp"
|
||||
>
|
||||
|
@ -1987,6 +1991,10 @@
|
|||
RelativePath="..\..\code\IFCMaterial.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\code\IFCOpenings.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\code\IFCProfile.cpp"
|
||||
>
|
||||
|
@ -2019,6 +2027,14 @@
|
|||
RelativePath="..\..\code\STEPFile.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\code\STEPFileEncoding.cpp"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\code\STEPFileEncoding.h"
|
||||
>
|
||||
</File>
|
||||
<File
|
||||
RelativePath="..\..\code\STEPFileReader.cpp"
|
||||
>
|
||||
|
|
Loading…
Reference in New Issue