- Ifc: support IfcPolygonalBoundedHalfSpace entities (WIP).

pull/17/head
Alexander Gessler 2013-02-07 16:31:43 +01:00
parent f7680f7f28
commit 16a635a961
3 changed files with 346 additions and 2 deletions

View File

@ -570,6 +570,7 @@ void ConvertTransformOperator(IfcMatrix4& out, const IfcCartesianTransformationO
out = locm * out * s;
}
} // ! IFC
} // ! Assimp

View File

@ -299,6 +299,7 @@ bool GenerateOpenings(std::vector<TempOpening>& openings,
const IfcVector3& wall_extrusion_axis = IfcVector3(0,1,0));
// IFCCurve.cpp
// ------------------------------------------------------------------------------------------------
@ -403,7 +404,6 @@ public:
// IfcProfile.cpp
bool ProcessCurve(const IfcCurve& curve, TempMesh& meshout, ConversionData& conv);
}
}

View File

@ -182,6 +182,108 @@ void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& re
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
}
// ------------------------------------------------------------------------------------------------
// Check if e0-e1 intersects a sub-segment of the given boundary line.
// note: this method works on 3D vectors, but performs its intersection checks solely in xy.
bool IntersectsBoundaryProfile( const IfcVector3& e0, const IfcVector3& e1, const std::vector<IfcVector3>& boundary,
std::vector<size_t>& intersected_boundary_segments,
std::vector<IfcVector3>& intersected_boundary_points,
bool half_open = false)
{
ai_assert(intersected_boundary_segments.empty());
ai_assert(intersected_boundary_points.empty());
const IfcVector3& e = e1 - e0;
for (size_t i = 0, bcount = boundary.size(); i < bcount; ++i) {
// boundary segment i: b0-b1
const IfcVector3& b0 = boundary[i];
const IfcVector3& b1 = boundary[(i+1) % bcount];
const IfcVector3& b = b1 - b0;
// segment-segment intersection
// solve b0 + b*s = e0 + e*s for (s,t)
const IfcFloat det = (-b.x * e.y + e.x * b.y);
if(fabs(det) < 1e-6) {
// no solutions (parallel lines)
continue;
}
const IfcFloat x = b0.x - e0.x;
const IfcFloat y = b0.y - e0.y;
const IfcFloat s = (x*e.y - e.x*y)/det;
const IfcFloat t = (x*b.y - b.x*y)/det;
#ifdef _DEBUG
const IfcVector3 check = b0 + b*s - (e0 + e*t);
ai_assert((IfcVector2(check.x,check.y)).SquareLength() < 1e-5);
#endif
// for a valid intersection, s-t should be in range [0,1]
if (s >= 0.0 && (s <= 1.0 || half_open) && t >= 0.0 && t <= 1.0) {
const IfcVector3& p = b0 + b*s;
// only insert the point into the list if it is sufficiently
// far away from the previous intersection point. This way,
// we avoid duplicate detection if the intersection is
// directly on the vertex between two segments.
if (!intersected_boundary_points.empty() && intersected_boundary_segments.back()==(i==0?bcount-1:i-1) ) {
if((intersected_boundary_points.back() - p).SquareLength() < 1e-5) {
continue;
}
}
intersected_boundary_segments.push_back(i);
intersected_boundary_points.push_back(p);
}
}
return false;
}
// ------------------------------------------------------------------------------------------------
bool PointInPoly(const IfcVector3& p, const std::vector<IfcVector3>& boundary)
{
// even-odd algorithm: take a random vector that extends from p to infinite
// and counts how many times it intersects edges of the boundary.
// because checking for segment intersections is prone to numeric inaccuracies
// or double detections (i.e. when hitting multiple adjacent segments at their
// shared vertices) we do it thrice with different rays and vote on it.
std::vector<size_t> intersected_boundary_segments;
std::vector<IfcVector3> intersected_boundary_points;
size_t votes = 0;
IntersectsBoundaryProfile(p, p + IfcVector3(1.0,0,0), boundary,
intersected_boundary_segments,
intersected_boundary_points, true);
votes += intersected_boundary_segments.size() % 2;
intersected_boundary_segments.clear();
intersected_boundary_points.clear();
IntersectsBoundaryProfile(p, p + IfcVector3(0,1.0,0), boundary,
intersected_boundary_segments,
intersected_boundary_points, true);
votes += intersected_boundary_segments.size() % 2;
intersected_boundary_segments.clear();
intersected_boundary_points.clear();
IntersectsBoundaryProfile(p, p + IfcVector3(0,0,1.0), boundary,
intersected_boundary_segments,
intersected_boundary_points, true);
votes += intersected_boundary_segments.size() % 2;
return votes > 1;
}
// ------------------------------------------------------------------------------------------------
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBoundedHalfSpace* hs, TempMesh& result,
const TempMesh& first_operand,
@ -189,9 +291,249 @@ void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBounded
{
ai_assert(hs != NULL);
return; // niy
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
if(!plane) {
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
return;
}
// extract plane base position vector and normal vector
IfcVector3 p,n(0.f,0.f,1.f);
if (plane->Position->Axis) {
ConvertDirection(n,plane->Position->Axis.Get());
}
ConvertCartesianPoint(p,plane->Position->Location);
if(!IsTrue(hs->AgreementFlag)) {
n *= -1.f;
}
n.Normalize();
// obtain the polygonal bounding volume
boost::shared_ptr<TempMesh> profile = boost::shared_ptr<TempMesh>(new TempMesh());
if(!ProcessCurve(hs->PolygonalBoundary, *profile.get(), conv)) {
IFCImporter::LogError("expected valid polyline for boundary of boolean halfspace");
return;
}
IfcMatrix4 mat;
ConvertAxisPlacement(mat,hs->Position);
profile->Transform(mat);
// project the profile onto the plane (orthogonally along the plane normal)
IfcVector3 r;
bool have_r = false;
BOOST_FOREACH(IfcVector3& vec, profile->verts) {
vec = vec + ((p - vec) * n) * n;
ai_assert(fabs((vec-p) * n) < 1e-6);
if (!have_r && (vec-p).SquareLength() > 1e-8) {
r = vec-p;
have_r = true;
}
}
if (!have_r) {
IFCImporter::LogError("polyline for boundary of boolean halfspace is degenerate");
return;
}
// and map everything into a plane coordinate space so all intersection
// tests can be done in 2D space.
IfcMatrix4 proj;
r.Normalize();
IfcVector3 u = n ^ r;
u.Normalize();
proj.a1 = r.x;
proj.a2 = r.y;
proj.a3 = r.z;
proj.b1 = u.x;
proj.b2 = u.y;
proj.b3 = u.z;
proj.c1 = n.x;
proj.c2 = n.y;
proj.c3 = n.z;
BOOST_FOREACH(IfcVector3& vec, profile->verts) {
vec *= proj;
}
const IfcMatrix4 proj_inv = IfcMatrix4(proj).Inverse();
// clip the current contents of `meshout` against the plane we obtained from the second operand
const std::vector<IfcVector3>& in = first_operand.verts;
std::vector<IfcVector3>& outvert = result.verts;
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
end = first_operand.vertcnt.end(), iit;
outvert.reserve(in.size());
result.vertcnt.reserve(first_operand.vertcnt.size());
std::vector<size_t> intersected_boundary_segments;
std::vector<IfcVector3> intersected_boundary_points;
unsigned int vidx = 0;
for(iit = begin; iit != end; vidx += *iit++) {
if (!*iit) {
continue;
}
unsigned int newcount = 0;
bool was_outside_boundary = !PointInPoly(in[vidx], profile->verts);
size_t last_intersected_boundary_segment;
IfcVector3 last_intersected_boundary_point;
bool extra_point_flag = false;
IfcVector3 extra_point;
for(unsigned int i = 0; i < *iit; ++i) {
// current segment: [i,i+1 mod size] or [*extra_point,i] if extra_point_flag is set
const IfcVector3& e0 = extra_point_flag ? extra_point : in[vidx+i];
const IfcVector3& e1 = extra_point_flag ? in[vidx+i] : in[vidx+(i+1)%*iit];
// does the current segment intersect the polygonal boundary?
const IfcVector3& e0_plane = proj * e0;
const IfcVector3& e1_plane = proj * e1;
intersected_boundary_segments.clear();
intersected_boundary_points.clear();
const bool is_boundary_intersection = IntersectsBoundaryProfile(e0_plane, e1_plane, profile->verts,
intersected_boundary_segments,
intersected_boundary_points);
const bool is_outside_boundary = is_boundary_intersection ? !was_outside_boundary : was_outside_boundary;
// does the current segment intersect the plane?
// (no extra check if this is an extra point)
IfcVector3 isectpos;
const Intersect isect = extra_point_flag ? Intersect_No : IntersectSegmentPlane(p,n,e0,e1,isectpos);
// is it on the side of the plane that we keep?
const bool is_white_side =(e0-p).Normalize()*n > 0;
// e0 on good side of plane? (i.e. we should keep geometry on this side)
if (is_white_side) {
// but is there an intersection in e0-e1 and is e1 in the clipping
// boundary? In this case, generate a line that only goes to the
// intersection point.
if (isect == Intersect_Yes && PointInPoly(e1, profile->verts)) {
outvert.push_back(e0);
++newcount;
outvert.push_back(isectpos);
++newcount;
// this is, however, only a line that goes to the plane, but not
// necessarily to the point where the bounding volume on the
// black side of the plane is hit. So basically, we need another
// check for [isectpos-e1], which should give an intersection
// point and also set the last_intersected_boundary_*'s.
extra_point_flag = true;
extra_point = isectpos;
continue;
}
else {
outvert.push_back(e0);
++newcount;
}
}
// e0 on bad side of plane (i.e. we should remove geometry on this side,
// but only if it is within the bounding volume).
else if (isect == Intersect_Yes) {
if (is_boundary_intersection) {}
// drop it and keep e1 instead
outvert.push_back(isectpos);
++newcount;
}
else {
// did we just pass the boundary line?
if (is_boundary_intersection) {
// and are now outside the clipping boundary?
if (is_outside_boundary) {
// in this case, get the point where the clipping boundary
// was entered first. Then, get the point where the clipping
// boundary volume was left! These two points with the plane
// normal form another plane that intersects the clipping
// volume. There are two ways to get from the first to the
// second point along the intersection curve, try to pick the
// one that lies within the current polygon.
// TODO this approach doesn't handle all cases
// ...
outvert.push_back(proj_inv * intersected_boundary_points.back());
++newcount;
outvert.push_back(e1);
++newcount;
}
else {
// we just entered the clipping boundary. Record the point
// and the segment where we entered and also generate this point.
last_intersected_boundary_segment = intersected_boundary_segments.front();
last_intersected_boundary_point = intersected_boundary_points.front();
outvert.push_back(e0);
++newcount;
outvert.push_back(proj_inv * last_intersected_boundary_point);
++newcount;
}
}
// if not, we just keep the vertex
else if (is_outside_boundary) {
outvert.push_back(e0);
++newcount;
}
}
was_outside_boundary = is_outside_boundary;
extra_point_flag = false;
}
if (!newcount) {
continue;
}
IfcVector3 vmin,vmax;
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
// filter our IfcFloat points - those may happen if a point lies
// directly on the intersection line. However, due to IfcFloat
// precision a bitwise comparison is not feasible to detect
// this case.
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
FuzzyVectorCompare fz(epsilon);
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
if (e != outvert.end()) {
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
outvert.erase(e,outvert.end());
}
if (fz(*( outvert.end()-newcount),outvert.back())) {
outvert.pop_back();
--newcount;
}
if(newcount > 2) {
result.vertcnt.push_back(newcount);
}
else while(newcount-->0) {
result.verts.pop_back();
}
}
IFCImporter::LogDebug("generating CSG geometry by plane clipping with polygonal bounding (IfcBooleanClippingResult)");
}
// ------------------------------------------------------------------------------------------------
@ -283,6 +625,7 @@ void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, Conversio
}
if(hs) {
const IfcPolygonalBoundedHalfSpace* const hs_bounded = clip->SecondOperand->ResolveSelectPtr<IfcPolygonalBoundedHalfSpace>(conv.db);
if (hs_bounded) {
ProcessPolygonalBoundedBooleanHalfSpaceDifference(hs_bounded, result, first_operand, conv);