Added pre and post rotation handling to FBXConverter::GenerateSimpleNodeAnim. Fixed quaternion interpolation flip. Cleaned code.

pull/3086/head
napina 2020-03-25 08:20:31 +02:00
parent 16725cc3f6
commit 14b8d1242b
2 changed files with 103 additions and 190 deletions

View File

@ -655,7 +655,8 @@ bool FBXConverter::NeedsComplexTransformationChain(const Model &model) {
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
const TransformationComp comp = static_cast<TransformationComp>(i);
if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation) {
if (comp == TransformationComp_Rotation || comp == TransformationComp_Scaling || comp == TransformationComp_Translation ||
comp == TransformationComp_PreRotation || comp == TransformationComp_PostRotation) {
continue;
}
@ -2739,15 +2740,12 @@ void FBXConverter::GenerateNodeAnimations(std::vector<aiNodeAnim *> &node_anims,
// be invoked _later_ (animations come first). If this node has only rotation,
// scaling and translation _and_ there are no animated other components either,
// we can use a single node and also a single node animation channel.
if (!has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim *const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
if( !has_complex && !NeedsComplexTransformationChain(target)) {
aiNodeAnim* const nd = GenerateSimpleNodeAnim(fixed_name, target, chain,
node_property_map.end(),
layer_map,
start, stop,
max_time,
min_time,
true // input is TRS order, assimp is SRT
min_time
);
ai_assert(nd);
@ -3021,133 +3019,121 @@ aiNodeAnim *FBXConverter::GenerateTranslationNodeAnim(const std::string &name,
return na.release();
}
aiNodeAnim *FBXConverter::GenerateSimpleNodeAnim(const std::string &name,
const Model &target,
aiNodeAnim* FBXConverter::GenerateSimpleNodeAnim(const std::string& name,
const Model& target,
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
NodeMap::const_iterator iter_end,
const LayerMap &layer_map,
NodeMap::const_iterator iterEnd,
int64_t start, int64_t stop,
double &max_time,
double &min_time,
bool reverse_order)
double& maxTime,
double& minTime)
{
std::unique_ptr<aiNodeAnim> na(new aiNodeAnim());
na->mNodeName.Set(name);
const PropertyTable &props = target.Props();
// need to convert from TRS order to SRT?
if (reverse_order) {
// collect unique times and keyframe lists
KeyFrameListList keyframeLists[TransformationComp_MAXIMUM];
KeyTimeList keytimes;
aiVector3D def_scale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
aiVector3D def_translate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
aiVector3D def_rot = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
for (size_t i = 0; i < TransformationComp_MAXIMUM; ++i) {
if (chain[i] == iterEnd)
continue;
KeyFrameListList scaling;
KeyFrameListList translation;
KeyFrameListList rotation;
keyframeLists[i] = GetKeyframeList((*chain[i]).second, start, stop);
if (chain[TransformationComp_Scaling] != iter_end) {
scaling = GetKeyframeList((*chain[TransformationComp_Scaling]).second, start, stop);
for (KeyFrameListList::const_iterator it = keyframeLists[i].begin(); it != keyframeLists[i].end(); ++it) {
const KeyTimeList& times = *std::get<0>(*it);
keytimes.insert(keytimes.end(), times.begin(), times.end());
}
if (chain[TransformationComp_Translation] != iter_end) {
translation = GetKeyframeList((*chain[TransformationComp_Translation]).second, start, stop);
}
// remove duplicates
std::sort(keytimes.begin(), keytimes.end());
if (chain[TransformationComp_Rotation] != iter_end) {
rotation = GetKeyframeList((*chain[TransformationComp_Rotation]).second, start, stop);
}
auto last = std::unique(keytimes.begin(), keytimes.end());
keytimes.erase(last, keytimes.end());
}
KeyFrameListList joined;
joined.insert(joined.end(), scaling.begin(), scaling.end());
joined.insert(joined.end(), translation.begin(), translation.end());
joined.insert(joined.end(), rotation.begin(), rotation.end());
const Model::RotOrder rotOrder = target.RotationOrder();
const size_t keyCount = keytimes.size();
const KeyTimeList &times = GetKeyTimeList(joined);
aiVector3D defTranslate = PropertyGet(props, "Lcl Translation", aiVector3D(0.f, 0.f, 0.f));
aiVector3D defRotation = PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f));
aiVector3D defScale = PropertyGet(props, "Lcl Scaling", aiVector3D(1.f, 1.f, 1.f));
aiQuaternion defQuat = EulerToQuaternion(defRotation, rotOrder);
aiQuatKey *out_quat = new aiQuatKey[times.size()];
aiVectorKey *out_scale = new aiVectorKey[times.size()];
aiVectorKey *out_translation = new aiVectorKey[times.size()];
aiVectorKey* outTranslations = new aiVectorKey[keyCount];
aiQuatKey* outRotations = new aiQuatKey[keyCount];
aiVectorKey* outScales = new aiVectorKey[keyCount];
if (times.size()) {
ConvertTransformOrder_TRStoSRT(out_quat, out_scale, out_translation,
scaling,
translation,
rotation,
times,
max_time,
min_time,
target.RotationOrder(),
def_scale,
def_translate,
def_rot);
}
// XXX remove duplicates / redundant keys which this operation did
// likely produce if not all three channels were equally dense.
na->mNumScalingKeys = static_cast<unsigned int>(times.size());
na->mNumRotationKeys = na->mNumScalingKeys;
na->mNumPositionKeys = na->mNumScalingKeys;
na->mScalingKeys = out_scale;
na->mRotationKeys = out_quat;
na->mPositionKeys = out_translation;
if (keyframeLists[TransformationComp_Translation].size() > 0) {
InterpolateKeys(outTranslations, keytimes, keyframeLists[TransformationComp_Translation], defTranslate, maxTime, minTime);
} else {
// if a particular transformation is not given, grab it from
// the corresponding node to meet the semantics of aiNodeAnim,
// which requires all of rotation, scaling and translation
// to be set.
if (chain[TransformationComp_Scaling] != iter_end) {
ConvertScaleKeys(na.get(), (*chain[TransformationComp_Scaling]).second,
layer_map,
start, stop,
max_time,
min_time);
} else {
na->mScalingKeys = new aiVectorKey[1];
na->mNumScalingKeys = 1;
na->mScalingKeys[0].mTime = 0.;
na->mScalingKeys[0].mValue = PropertyGet(props, "Lcl Scaling",
aiVector3D(1.f, 1.f, 1.f));
}
if (chain[TransformationComp_Rotation] != iter_end) {
ConvertRotationKeys(na.get(), (*chain[TransformationComp_Rotation]).second,
layer_map,
start, stop,
max_time,
min_time,
target.RotationOrder());
} else {
na->mRotationKeys = new aiQuatKey[1];
na->mNumRotationKeys = 1;
na->mRotationKeys[0].mTime = 0.;
na->mRotationKeys[0].mValue = EulerToQuaternion(
PropertyGet(props, "Lcl Rotation", aiVector3D(0.f, 0.f, 0.f)),
target.RotationOrder());
}
if (chain[TransformationComp_Translation] != iter_end) {
ConvertTranslationKeys(na.get(), (*chain[TransformationComp_Translation]).second,
layer_map,
start, stop,
max_time,
min_time);
} else {
na->mPositionKeys = new aiVectorKey[1];
na->mNumPositionKeys = 1;
na->mPositionKeys[0].mTime = 0.;
na->mPositionKeys[0].mValue = PropertyGet(props, "Lcl Translation",
aiVector3D(0.f, 0.f, 0.f));
for (size_t i = 0; i < keyCount; ++i) {
outTranslations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
outTranslations[i].mValue = defTranslate;
}
}
if (keyframeLists[TransformationComp_Rotation].size() > 0) {
InterpolateKeys(outRotations, keytimes, keyframeLists[TransformationComp_Rotation], defRotation, maxTime, minTime, rotOrder);
} else {
for (size_t i = 0; i < keyCount; ++i) {
outRotations[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
outRotations[i].mValue = defQuat;
}
}
if (keyframeLists[TransformationComp_Scaling].size() > 0) {
InterpolateKeys(outScales, keytimes, keyframeLists[TransformationComp_Scaling], defScale, maxTime, minTime);
} else {
for (size_t i = 0; i < keyCount; ++i) {
outScales[i].mTime = CONVERT_FBX_TIME(keytimes[i]) * anim_fps;
outScales[i].mValue = defScale;
}
}
bool ok = false;
const float zero_epsilon = 1e-6f;
const aiVector3D& preRotation = PropertyGet<aiVector3D>(props, "PreRotation", ok);
if (ok && preRotation.SquareLength() > zero_epsilon) {
const aiQuaternion preQuat = EulerToQuaternion(preRotation, Model::RotOrder_EulerXYZ);
for (size_t i = 0; i < keyCount; ++i) {
outRotations[i].mValue = preQuat * outRotations[i].mValue;
}
}
const aiVector3D& postRotation = PropertyGet<aiVector3D>(props, "PostRotation", ok);
if (ok && postRotation.SquareLength() > zero_epsilon) {
const aiQuaternion postQuat = EulerToQuaternion(postRotation, Model::RotOrder_EulerXYZ);
for (size_t i = 0; i < keyCount; ++i) {
outRotations[i].mValue = outRotations[i].mValue * postQuat;
}
}
// convert TRS to SRT
for (size_t i = 0; i < keyCount; ++i) {
aiQuaternion& r = outRotations[i].mValue;
aiVector3D& s = outScales[i].mValue;
aiVector3D& t = outTranslations[i].mValue;
aiMatrix4x4 mat, temp;
aiMatrix4x4::Translation(t, mat);
mat *= aiMatrix4x4(r.GetMatrix());
mat *= aiMatrix4x4::Scaling(s, temp);
mat.Decompose(s, r, t);
}
na->mNumScalingKeys = static_cast<unsigned int>(keyCount);
na->mNumRotationKeys = na->mNumScalingKeys;
na->mNumPositionKeys = na->mNumScalingKeys;
na->mScalingKeys = outScales;
na->mRotationKeys = outRotations;
na->mPositionKeys = outTranslations;
return na.release();
}
@ -3328,10 +3314,7 @@ void FBXConverter::InterpolateKeys(aiQuatKey *valOut, const KeyTimeList &keys, c
// take shortest path by checking the inner product
// http://www.3dkingdoms.com/weekly/weekly.php?a=36
if (quat.x * lastq.x + quat.y * lastq.y + quat.z * lastq.z + quat.w * lastq.w < 0) {
quat.x = -quat.x;
quat.y = -quat.y;
quat.z = -quat.z;
quat.w = -quat.w;
quat.Conjugate();
}
lastq = quat;
@ -3339,60 +3322,6 @@ void FBXConverter::InterpolateKeys(aiQuatKey *valOut, const KeyTimeList &keys, c
}
}
void FBXConverter::ConvertTransformOrder_TRStoSRT(aiQuatKey *out_quat, aiVectorKey *out_scale,
aiVectorKey *out_translation,
const KeyFrameListList &scaling,
const KeyFrameListList &translation,
const KeyFrameListList &rotation,
const KeyTimeList &times,
double &maxTime,
double &minTime,
Model::RotOrder order,
const aiVector3D &def_scale,
const aiVector3D &def_translate,
const aiVector3D &def_rotation) {
if (rotation.size()) {
InterpolateKeys(out_quat, times, rotation, def_rotation, maxTime, minTime, order);
} else {
for (size_t i = 0; i < times.size(); ++i) {
out_quat[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
out_quat[i].mValue = EulerToQuaternion(def_rotation, order);
}
}
if (scaling.size()) {
InterpolateKeys(out_scale, times, scaling, def_scale, maxTime, minTime);
} else {
for (size_t i = 0; i < times.size(); ++i) {
out_scale[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
out_scale[i].mValue = def_scale;
}
}
if (translation.size()) {
InterpolateKeys(out_translation, times, translation, def_translate, maxTime, minTime);
} else {
for (size_t i = 0; i < times.size(); ++i) {
out_translation[i].mTime = CONVERT_FBX_TIME(times[i]) * anim_fps;
out_translation[i].mValue = def_translate;
}
}
const size_t count = times.size();
for (size_t i = 0; i < count; ++i) {
aiQuaternion &r = out_quat[i].mValue;
aiVector3D &s = out_scale[i].mValue;
aiVector3D &t = out_translation[i].mValue;
aiMatrix4x4 mat, temp;
aiMatrix4x4::Translation(t, mat);
mat *= aiMatrix4x4(r.GetMatrix());
mat *= aiMatrix4x4::Scaling(s, temp);
mat.Decompose(s, r, t);
}
}
aiQuaternion FBXConverter::EulerToQuaternion(const aiVector3D &rot, Model::RotOrder order) {
aiMatrix4x4 m;
GetRotationMatrix(order, rot, m);

View File

@ -349,12 +349,10 @@ private:
aiNodeAnim* GenerateSimpleNodeAnim(const std::string& name,
const Model& target,
NodeMap::const_iterator chain[TransformationComp_MAXIMUM],
NodeMap::const_iterator iter_end,
const LayerMap& layer_map,
NodeMap::const_iterator iterEnd,
int64_t start, int64_t stop,
double& max_time,
double& min_time,
bool reverse_order = false);
double& maxTime,
double& minTime);
// key (time), value, mapto (component index)
typedef std::tuple<std::shared_ptr<KeyTimeList>, std::shared_ptr<KeyValueList>, unsigned int > KeyFrameList;
@ -379,20 +377,6 @@ private:
double& minTime,
Model::RotOrder order);
// ------------------------------------------------------------------------------------------------
void ConvertTransformOrder_TRStoSRT(aiQuatKey* out_quat, aiVectorKey* out_scale,
aiVectorKey* out_translation,
const KeyFrameListList& scaling,
const KeyFrameListList& translation,
const KeyFrameListList& rotation,
const KeyTimeList& times,
double& maxTime,
double& minTime,
Model::RotOrder order,
const aiVector3D& def_scale,
const aiVector3D& def_translate,
const aiVector3D& def_rotation);
// ------------------------------------------------------------------------------------------------
// euler xyz -> quat
aiQuaternion EulerToQuaternion(const aiVector3D& rot, Model::RotOrder order);