Merge branch 'master' into dev/gltf-KHR_materials

pull/3552/head
Danny-Kint 2020-12-28 08:48:54 +01:00
parent 7bb4b3fb03
commit 07b59f539d
No known key found for this signature in database
GPG Key ID: A90CB6CD5F51DC2D
1 changed files with 326 additions and 287 deletions

View File

@ -229,88 +229,96 @@ inline void SetMaterialTextureProperty(std::vector<int> &embeddedTexIdxs, Asset
static aiMaterial *ImportMaterial(std::vector<int> &embeddedTexIdxs, Asset &r, Material &mat) { static aiMaterial *ImportMaterial(std::vector<int> &embeddedTexIdxs, Asset &r, Material &mat) {
aiMaterial *aimat = new aiMaterial(); aiMaterial *aimat = new aiMaterial();
if (!mat.name.empty()) { try {
aiString str(mat.name); if (!mat.name.empty()) {
aiString str(mat.name);
aimat->AddProperty(&str, AI_MATKEY_NAME); aimat->AddProperty(&str, AI_MATKEY_NAME);
}
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE);
aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR);
aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR);
float roughnessAsShininess = 1 - mat.pbrMetallicRoughness.roughnessFactor;
roughnessAsShininess *= roughnessAsShininess * 1000;
aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE);
SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE);
aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED);
aiString alphaMode(mat.alphaMode);
aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE);
aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF);
//pbrSpecularGlossiness
if (mat.pbrSpecularGlossiness.isPresent) {
PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value;
aimat->AddProperty(&mat.pbrSpecularGlossiness.isPresent, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS);
SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR);
float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f;
aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS);
aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS_GLOSSINESS_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE);
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR);
}
if (mat.unlit) {
aimat->AddProperty(&mat.unlit, 1, AI_MATKEY_GLTF_UNLIT);
}
//KHR_materials_sheen
if (mat.materialSheen.isPresent) {
MaterialSheen &sheen = mat.materialSheen.value;
aimat->AddProperty(&mat.materialSheen.isPresent, 1, AI_MATKEY_GLTF_MATERIAL_SHEEN);
SetMaterialColorProperty(r, sheen.sheenColorFactor, aimat, AI_MATKEY_GLTF_MATERIAL_SHEEN_COLOR_FACTOR);
aimat->AddProperty(&sheen.sheenRoughnessFactor, 1, AI_MATKEY_GLTF_MATERIAL_SHEEN_ROUGHNESS_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenColorTexture, aimat, AI_MATKEY_GLTF_MATERIAL_SHEEN_COLOR_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenRoughnessTexture, aimat, AI_MATKEY_GLTF_MATERIAL_SHEEN_ROUGHNESS_TEXTURE);
}
//KHR_materials_clearcoat
if (mat.materialClearcoat.isPresent) {
MaterialClearcoat &clearcoat = mat.materialClearcoat.value;
aimat->AddProperty(&mat.materialClearcoat.isPresent, 1, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT);
aimat->AddProperty(&clearcoat.clearcoatFactor, 1, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_FACTOR);
aimat->AddProperty(&clearcoat.clearcoatRoughnessFactor, 1, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_ROUGHNESS_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatTexture, aimat, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatRoughnessTexture, aimat, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_ROUGHNESS_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatNormalTexture, aimat, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_NORMAL_TEXTURE);
}
//KHR_materials_transmission
if (mat.materialTransmission.isPresent) {
MaterialTransmission &transmission = mat.materialTransmission.value;
aimat->AddProperty(&mat.materialTransmission.isPresent, 1, AI_MATKEY_GLTF_MATERIAL_TRANSMISSION);
aimat->AddProperty(&transmission.transmissionFactor, 1, AI_MATKEY_GLTF_MATERIAL_TRANSMISSION_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, transmission.transmissionTexture, aimat, AI_MATKEY_GLTF_MATERIAL_TRANSMISSION_TEXTURE);
}
return aimat;
} catch (...) {
delete aimat;
throw;
} }
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
SetMaterialColorProperty(r, mat.pbrMetallicRoughness.baseColorFactor, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, aiTextureType_DIFFUSE);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.baseColorTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_BASE_COLOR_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.pbrMetallicRoughness.metallicRoughnessTexture, aimat, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLICROUGHNESS_TEXTURE);
aimat->AddProperty(&mat.pbrMetallicRoughness.metallicFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_METALLIC_FACTOR);
aimat->AddProperty(&mat.pbrMetallicRoughness.roughnessFactor, 1, AI_MATKEY_GLTF_PBRMETALLICROUGHNESS_ROUGHNESS_FACTOR);
float roughnessAsShininess = 1 - mat.pbrMetallicRoughness.roughnessFactor;
roughnessAsShininess *= roughnessAsShininess * 1000;
aimat->AddProperty(&roughnessAsShininess, 1, AI_MATKEY_SHININESS);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.normalTexture, aimat, aiTextureType_NORMALS);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.occlusionTexture, aimat, aiTextureType_LIGHTMAP);
SetMaterialTextureProperty(embeddedTexIdxs, r, mat.emissiveTexture, aimat, aiTextureType_EMISSIVE);
SetMaterialColorProperty(r, mat.emissiveFactor, aimat, AI_MATKEY_COLOR_EMISSIVE);
aimat->AddProperty(&mat.doubleSided, 1, AI_MATKEY_TWOSIDED);
aiString alphaMode(mat.alphaMode);
aimat->AddProperty(&alphaMode, AI_MATKEY_GLTF_ALPHAMODE);
aimat->AddProperty(&mat.alphaCutoff, 1, AI_MATKEY_GLTF_ALPHACUTOFF);
//pbrSpecularGlossiness
if (mat.pbrSpecularGlossiness.isPresent) {
PbrSpecularGlossiness &pbrSG = mat.pbrSpecularGlossiness.value;
aimat->AddProperty(&mat.pbrSpecularGlossiness.isPresent, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS);
SetMaterialColorProperty(r, pbrSG.diffuseFactor, aimat, AI_MATKEY_COLOR_DIFFUSE);
SetMaterialColorProperty(r, pbrSG.specularFactor, aimat, AI_MATKEY_COLOR_SPECULAR);
float glossinessAsShininess = pbrSG.glossinessFactor * 1000.0f;
aimat->AddProperty(&glossinessAsShininess, 1, AI_MATKEY_SHININESS);
aimat->AddProperty(&pbrSG.glossinessFactor, 1, AI_MATKEY_GLTF_PBRSPECULARGLOSSINESS_GLOSSINESS_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.diffuseTexture, aimat, aiTextureType_DIFFUSE);
SetMaterialTextureProperty(embeddedTexIdxs, r, pbrSG.specularGlossinessTexture, aimat, aiTextureType_SPECULAR);
}
if (mat.unlit) {
aimat->AddProperty(&mat.unlit, 1, AI_MATKEY_GLTF_UNLIT);
}
//KHR_materials_sheen
if (mat.materialSheen.isPresent) {
MaterialSheen &sheen = mat.materialSheen.value;
aimat->AddProperty(&mat.materialSheen.isPresent, 1, AI_MATKEY_GLTF_MATERIAL_SHEEN);
SetMaterialColorProperty(r, sheen.sheenColorFactor, aimat, AI_MATKEY_GLTF_MATERIAL_SHEEN_COLOR_FACTOR);
aimat->AddProperty(&sheen.sheenRoughnessFactor, 1, AI_MATKEY_GLTF_MATERIAL_SHEEN_ROUGHNESS_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenColorTexture, aimat, AI_MATKEY_GLTF_MATERIAL_SHEEN_COLOR_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, sheen.sheenRoughnessTexture, aimat, AI_MATKEY_GLTF_MATERIAL_SHEEN_ROUGHNESS_TEXTURE);
}
//KHR_materials_clearcoat
if (mat.materialClearcoat.isPresent) {
MaterialClearcoat &clearcoat = mat.materialClearcoat.value;
aimat->AddProperty(&mat.materialClearcoat.isPresent, 1, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT);
aimat->AddProperty(&clearcoat.clearcoatFactor, 1, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_FACTOR);
aimat->AddProperty(&clearcoat.clearcoatRoughnessFactor, 1, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_ROUGHNESS_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatTexture, aimat, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatRoughnessTexture, aimat, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_ROUGHNESS_TEXTURE);
SetMaterialTextureProperty(embeddedTexIdxs, r, clearcoat.clearcoatNormalTexture, aimat, AI_MATKEY_GLTF_MATERIAL_CLEARCOAT_NORMAL_TEXTURE);
}
//KHR_materials_transmission
if (mat.materialTransmission.isPresent) {
MaterialTransmission &transmission = mat.materialTransmission.value;
aimat->AddProperty(&mat.materialTransmission.isPresent, 1, AI_MATKEY_GLTF_MATERIAL_TRANSMISSION);
aimat->AddProperty(&transmission.transmissionFactor, 1, AI_MATKEY_GLTF_MATERIAL_TRANSMISSION_FACTOR);
SetMaterialTextureProperty(embeddedTexIdxs, r, transmission.transmissionTexture, aimat, AI_MATKEY_GLTF_MATERIAL_TRANSMISSION_TEXTURE);
}
return aimat;
} }
void glTF2Importer::ImportMaterials(glTF2::Asset &r) { void glTF2Importer::ImportMaterials(glTF2::Asset &r) {
@ -320,6 +328,7 @@ void glTF2Importer::ImportMaterials(glTF2::Asset &r) {
mScene->mNumMaterials = numImportedMaterials + 1; mScene->mNumMaterials = numImportedMaterials + 1;
mScene->mMaterials = new aiMaterial *[mScene->mNumMaterials]; mScene->mMaterials = new aiMaterial *[mScene->mNumMaterials];
std::fill(mScene->mMaterials, mScene->mMaterials + mScene->mNumMaterials, nullptr);
mScene->mMaterials[numImportedMaterials] = ImportMaterial(embeddedTexIdxs, r, defaultMaterial); mScene->mMaterials[numImportedMaterials] = ImportMaterial(embeddedTexIdxs, r, defaultMaterial);
for (unsigned int i = 0; i < numImportedMaterials; ++i) { for (unsigned int i = 0; i < numImportedMaterials; ++i) {
@ -481,6 +490,7 @@ void glTF2Importer::ImportMeshes(glTF2::Asset &r) {
if (targets.size() > 0) { if (targets.size() > 0) {
aim->mNumAnimMeshes = (unsigned int)targets.size(); aim->mNumAnimMeshes = (unsigned int)targets.size();
aim->mAnimMeshes = new aiAnimMesh *[aim->mNumAnimMeshes]; aim->mAnimMeshes = new aiAnimMesh *[aim->mNumAnimMeshes];
std::fill(aim->mAnimMeshes, aim->mAnimMeshes + aim->mNumAnimMeshes, nullptr);
for (size_t i = 0; i < targets.size(); i++) { for (size_t i = 0; i < targets.size(); i++) {
bool needPositions = targets[i].position.size() > 0; bool needPositions = targets[i].position.size() > 0;
bool needNormals = targets[i].normal.size() > 0; bool needNormals = targets[i].normal.size() > 0;
@ -539,7 +549,9 @@ void glTF2Importer::ImportMeshes(glTF2::Asset &r) {
size_t count = prim.indices->count; size_t count = prim.indices->count;
Accessor::Indexer data = prim.indices->GetIndexer(); Accessor::Indexer data = prim.indices->GetIndexer();
ai_assert(data.IsValid()); if (!data.IsValid()) {
throw DeadlyImportError("GLTF: Invalid accessor without data in mesh ", getContextForErrorMessages(mesh.id, mesh.name));
}
switch (prim.mode) { switch (prim.mode) {
case PrimitiveMode_POINTS: { case PrimitiveMode_POINTS: {
@ -728,6 +740,7 @@ void glTF2Importer::ImportCameras(glTF2::Asset &r) {
ASSIMP_LOG_DEBUG_F("Importing ", numCameras, " cameras"); ASSIMP_LOG_DEBUG_F("Importing ", numCameras, " cameras");
mScene->mNumCameras = numCameras; mScene->mNumCameras = numCameras;
mScene->mCameras = new aiCamera *[numCameras]; mScene->mCameras = new aiCamera *[numCameras];
std::fill(mScene->mCameras, mScene->mCameras + numCameras, nullptr);
for (size_t i = 0; i < numCameras; ++i) { for (size_t i = 0; i < numCameras; ++i) {
Camera &cam = r.cameras[i]; Camera &cam = r.cameras[i];
@ -764,6 +777,7 @@ void glTF2Importer::ImportLights(glTF2::Asset &r) {
ASSIMP_LOG_DEBUG_F("Importing ", numLights, " lights"); ASSIMP_LOG_DEBUG_F("Importing ", numLights, " lights");
mScene->mNumLights = numLights; mScene->mNumLights = numLights;
mScene->mLights = new aiLight *[numLights]; mScene->mLights = new aiLight *[numLights];
std::fill(mScene->mLights, mScene->mLights + numLights, nullptr);
for (size_t i = 0; i < numLights; ++i) { for (size_t i = 0; i < numLights; ++i) {
Light &light = r.lights[i]; Light &light = r.lights[i];
@ -927,129 +941,136 @@ aiNode *ImportNode(aiScene *pScene, glTF2::Asset &r, std::vector<unsigned int> &
aiNode *ainode = new aiNode(GetNodeName(node)); aiNode *ainode = new aiNode(GetNodeName(node));
if (!node.children.empty()) { try {
ainode->mNumChildren = unsigned(node.children.size()); if (!node.children.empty()) {
ainode->mChildren = new aiNode *[ainode->mNumChildren]; ainode->mNumChildren = unsigned(node.children.size());
ainode->mChildren = new aiNode *[ainode->mNumChildren];
std::fill(ainode->mChildren, ainode->mChildren + ainode->mNumChildren, nullptr);
for (unsigned int i = 0; i < ainode->mNumChildren; ++i) { for (unsigned int i = 0; i < ainode->mNumChildren; ++i) {
aiNode *child = ImportNode(pScene, r, meshOffsets, node.children[i]); aiNode *child = ImportNode(pScene, r, meshOffsets, node.children[i]);
child->mParent = ainode; child->mParent = ainode;
ainode->mChildren[i] = child; ainode->mChildren[i] = child;
}
} }
}
if (node.extensions) { if (node.extensions) {
ainode->mMetaData = new aiMetadata; ainode->mMetaData = new aiMetadata;
ParseExtensions(ainode->mMetaData, node.extensions); ParseExtensions(ainode->mMetaData, node.extensions);
}
GetNodeTransform(ainode->mTransformation, node);
if (!node.meshes.empty()) {
// GLTF files contain at most 1 mesh per node.
if (node.meshes.size() > 1)
{
throw DeadlyImportError("GLTF: Invalid input, found ", node.meshes.size(), " meshes in ", getContextForErrorMessages(node.id, node.name), ", but only 1 mesh per node allowed.");
} }
int mesh_idx = node.meshes[0].GetIndex();
int count = meshOffsets[mesh_idx + 1] - meshOffsets[mesh_idx];
ainode->mNumMeshes = count; GetNodeTransform(ainode->mTransformation, node);
ainode->mMeshes = new unsigned int[count];
if (node.skin) { if (!node.meshes.empty()) {
for (int primitiveNo = 0; primitiveNo < count; ++primitiveNo) { // GLTF files contain at most 1 mesh per node.
aiMesh *mesh = pScene->mMeshes[meshOffsets[mesh_idx] + primitiveNo]; if (node.meshes.size() > 1)
unsigned int numBones =static_cast<unsigned int>(node.skin->jointNames.size()); {
throw DeadlyImportError("GLTF: Invalid input, found ", node.meshes.size(), " meshes in ", getContextForErrorMessages(node.id, node.name), ", but only 1 mesh per node allowed.");
}
int mesh_idx = node.meshes[0].GetIndex();
int count = meshOffsets[mesh_idx + 1] - meshOffsets[mesh_idx];
std::vector<std::vector<aiVertexWeight>> weighting(numBones); ainode->mNumMeshes = count;
BuildVertexWeightMapping(node.meshes[0]->primitives[primitiveNo], weighting); ainode->mMeshes = new unsigned int[count];
mesh->mNumBones = static_cast<unsigned int>(numBones); if (node.skin) {
mesh->mBones = new aiBone *[mesh->mNumBones]; for (int primitiveNo = 0; primitiveNo < count; ++primitiveNo) {
aiMesh *mesh = pScene->mMeshes[meshOffsets[mesh_idx] + primitiveNo];
unsigned int numBones =static_cast<unsigned int>(node.skin->jointNames.size());
// GLTF and Assimp choose to store bone weights differently. std::vector<std::vector<aiVertexWeight>> weighting(numBones);
// GLTF has each vertex specify which bones influence the vertex. BuildVertexWeightMapping(node.meshes[0]->primitives[primitiveNo], weighting);
// Assimp has each bone specify which vertices it has influence over.
// To convert this data, we first read over the vertex data and pull
// out the bone-to-vertex mapping. Then, when creating the aiBones,
// we copy the bone-to-vertex mapping into the bone. This is unfortunate
// both because it's somewhat slow and because, for many applications,
// we then need to reconvert the data back into the vertex-to-bone
// mapping which makes things doubly-slow.
mat4 *pbindMatrices = nullptr; mesh->mNumBones = static_cast<unsigned int>(numBones);
node.skin->inverseBindMatrices->ExtractData(pbindMatrices); mesh->mBones = new aiBone *[mesh->mNumBones];
std::fill(mesh->mBones, mesh->mBones + mesh->mNumBones, nullptr);
for (uint32_t i = 0; i < numBones; ++i) { // GLTF and Assimp choose to store bone weights differently.
const std::vector<aiVertexWeight> &weights = weighting[i]; // GLTF has each vertex specify which bones influence the vertex.
aiBone *bone = new aiBone(); // Assimp has each bone specify which vertices it has influence over.
// To convert this data, we first read over the vertex data and pull
// out the bone-to-vertex mapping. Then, when creating the aiBones,
// we copy the bone-to-vertex mapping into the bone. This is unfortunate
// both because it's somewhat slow and because, for many applications,
// we then need to reconvert the data back into the vertex-to-bone
// mapping which makes things doubly-slow.
Ref<Node> joint = node.skin->jointNames[i]; mat4 *pbindMatrices = nullptr;
if (!joint->name.empty()) { node.skin->inverseBindMatrices->ExtractData(pbindMatrices);
bone->mName = joint->name;
} else { for (uint32_t i = 0; i < numBones; ++i) {
// Assimp expects each bone to have a unique name. const std::vector<aiVertexWeight> &weights = weighting[i];
static const std::string kDefaultName = "bone_"; aiBone *bone = new aiBone();
char postfix[10] = { 0 };
ASSIMP_itoa10(postfix, i); Ref<Node> joint = node.skin->jointNames[i];
bone->mName = (kDefaultName + postfix); if (!joint->name.empty()) {
bone->mName = joint->name;
} else {
// Assimp expects each bone to have a unique name.
static const std::string kDefaultName = "bone_";
char postfix[10] = { 0 };
ASSIMP_itoa10(postfix, i);
bone->mName = (kDefaultName + postfix);
}
GetNodeTransform(bone->mOffsetMatrix, *joint);
CopyValue(pbindMatrices[i], bone->mOffsetMatrix);
bone->mNumWeights = static_cast<uint32_t>(weights.size());
if (bone->mNumWeights > 0) {
bone->mWeights = new aiVertexWeight[bone->mNumWeights];
memcpy(bone->mWeights, weights.data(), bone->mNumWeights * sizeof(aiVertexWeight));
} else {
// Assimp expects all bones to have at least 1 weight.
bone->mWeights = new aiVertexWeight[1];
bone->mNumWeights = 1;
bone->mWeights->mVertexId = 0;
bone->mWeights->mWeight = 0.f;
}
mesh->mBones[i] = bone;
} }
GetNodeTransform(bone->mOffsetMatrix, *joint);
CopyValue(pbindMatrices[i], bone->mOffsetMatrix);
bone->mNumWeights = static_cast<uint32_t>(weights.size());
if (bone->mNumWeights > 0) { if (pbindMatrices) {
bone->mWeights = new aiVertexWeight[bone->mNumWeights]; delete[] pbindMatrices;
memcpy(bone->mWeights, weights.data(), bone->mNumWeights * sizeof(aiVertexWeight));
} else {
// Assimp expects all bones to have at least 1 weight.
bone->mWeights = new aiVertexWeight[1];
bone->mNumWeights = 1;
bone->mWeights->mVertexId = 0;
bone->mWeights->mWeight = 0.f;
} }
mesh->mBones[i] = bone;
} }
}
if (pbindMatrices) { int k = 0;
delete[] pbindMatrices; for (unsigned int j = meshOffsets[mesh_idx]; j < meshOffsets[mesh_idx + 1]; ++j, ++k) {
ainode->mMeshes[k] = j;
}
}
if (node.camera) {
pScene->mCameras[node.camera.GetIndex()]->mName = ainode->mName;
if (node.translation.isPresent) {
aiVector3D trans;
CopyValue(node.translation.value, trans);
pScene->mCameras[node.camera.GetIndex()]->mPosition = trans;
}
}
if (node.light) {
pScene->mLights[node.light.GetIndex()]->mName = ainode->mName;
//range is optional - see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
//it is added to meta data of parent node, because there is no other place to put it
if (node.light->range.isPresent) {
if (!ainode->mMetaData) {
ainode->mMetaData = aiMetadata::Alloc(1);
ainode->mMetaData->Set(0, "PBR_LightRange", node.light->range.value);
}
else {
ainode->mMetaData->Add("PBR_LightRange", node.light->range.value);
} }
} }
} }
int k = 0; return ainode;
for (unsigned int j = meshOffsets[mesh_idx]; j < meshOffsets[mesh_idx + 1]; ++j, ++k) { } catch (...) {
ainode->mMeshes[k] = j; delete ainode;
} throw;
} }
if (node.camera) {
pScene->mCameras[node.camera.GetIndex()]->mName = ainode->mName;
if (node.translation.isPresent) {
aiVector3D trans;
CopyValue(node.translation.value, trans);
pScene->mCameras[node.camera.GetIndex()]->mPosition = trans;
}
}
if (node.light) {
pScene->mLights[node.light.GetIndex()]->mName = ainode->mName;
//range is optional - see https://github.com/KhronosGroup/glTF/tree/master/extensions/2.0/Khronos/KHR_lights_punctual
//it is added to meta data of parent node, because there is no other place to put it
if (node.light->range.isPresent) {
if (!ainode->mMetaData) {
ainode->mMetaData = aiMetadata::Alloc(1);
ainode->mMetaData->Set(0, "PBR_LightRange", node.light->range.value);
}
else {
ainode->mMetaData->Add("PBR_LightRange", node.light->range.value);
}
}
}
return ainode;
} }
void glTF2Importer::ImportNodes(glTF2::Asset &r) { void glTF2Importer::ImportNodes(glTF2::Asset &r) {
@ -1065,14 +1086,16 @@ void glTF2Importer::ImportNodes(glTF2::Asset &r) {
if (numRootNodes == 1) { // a single root node: use it if (numRootNodes == 1) { // a single root node: use it
mScene->mRootNode = ImportNode(mScene, r, meshOffsets, rootNodes[0]); mScene->mRootNode = ImportNode(mScene, r, meshOffsets, rootNodes[0]);
} else if (numRootNodes > 1) { // more than one root node: create a fake root } else if (numRootNodes > 1) { // more than one root node: create a fake root
aiNode *root = new aiNode("ROOT"); aiNode *root = mScene->mRootNode = new aiNode("ROOT");
root->mChildren = new aiNode *[numRootNodes]; root->mChildren = new aiNode *[numRootNodes];
std::fill(root->mChildren, root->mChildren + numRootNodes, nullptr);
for (unsigned int i = 0; i < numRootNodes; ++i) { for (unsigned int i = 0; i < numRootNodes; ++i) {
aiNode *node = ImportNode(mScene, r, meshOffsets, rootNodes[i]); aiNode *node = ImportNode(mScene, r, meshOffsets, rootNodes[i]);
node->mParent = root; node->mParent = root;
root->mChildren[root->mNumChildren++] = node; root->mChildren[root->mNumChildren++] = node;
} }
mScene->mRootNode = root;
} else { } else {
mScene->mRootNode = new aiNode("ROOT"); mScene->mRootNode = new aiNode("ROOT");
} }
@ -1095,133 +1118,145 @@ struct AnimationSamplers {
aiNodeAnim *CreateNodeAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) { aiNodeAnim *CreateNodeAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) {
aiNodeAnim *anim = new aiNodeAnim(); aiNodeAnim *anim = new aiNodeAnim();
anim->mNodeName = GetNodeName(node);
static const float kMillisecondsFromSeconds = 1000.f; try {
anim->mNodeName = GetNodeName(node);
if (samplers.translation) { static const float kMillisecondsFromSeconds = 1000.f;
float *times = nullptr;
samplers.translation->input->ExtractData(times); if (samplers.translation) {
aiVector3D *values = nullptr; float *times = nullptr;
samplers.translation->output->ExtractData(values); samplers.translation->input->ExtractData(times);
anim->mNumPositionKeys = static_cast<uint32_t>(samplers.translation->input->count); aiVector3D *values = nullptr;
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys]; samplers.translation->output->ExtractData(values);
unsigned int ii = (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; anim->mNumPositionKeys = static_cast<uint32_t>(samplers.translation->input->count);
for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) { anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
anim->mPositionKeys[i].mTime = times[i] * kMillisecondsFromSeconds; unsigned int ii = (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
anim->mPositionKeys[i].mValue = values[ii]; for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
ii += (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1; anim->mPositionKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
anim->mPositionKeys[i].mValue = values[ii];
ii += (samplers.translation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
}
delete[] times;
delete[] values;
} else if (node.translation.isPresent) {
anim->mNumPositionKeys = 1;
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
anim->mPositionKeys->mTime = 0.f;
anim->mPositionKeys->mValue.x = node.translation.value[0];
anim->mPositionKeys->mValue.y = node.translation.value[1];
anim->mPositionKeys->mValue.z = node.translation.value[2];
} }
delete[] times;
delete[] values;
} else if (node.translation.isPresent) {
anim->mNumPositionKeys = 1;
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
anim->mPositionKeys->mTime = 0.f;
anim->mPositionKeys->mValue.x = node.translation.value[0];
anim->mPositionKeys->mValue.y = node.translation.value[1];
anim->mPositionKeys->mValue.z = node.translation.value[2];
}
if (samplers.rotation) { if (samplers.rotation) {
float *times = nullptr; float *times = nullptr;
samplers.rotation->input->ExtractData(times); samplers.rotation->input->ExtractData(times);
aiQuaternion *values = nullptr; aiQuaternion *values = nullptr;
samplers.rotation->output->ExtractData(values); samplers.rotation->output->ExtractData(values);
anim->mNumRotationKeys = static_cast<uint32_t>(samplers.rotation->input->count); anim->mNumRotationKeys = static_cast<uint32_t>(samplers.rotation->input->count);
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys]; anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
unsigned int ii = (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; unsigned int ii = (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) { for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
anim->mRotationKeys[i].mTime = times[i] * kMillisecondsFromSeconds; anim->mRotationKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
anim->mRotationKeys[i].mValue.x = values[ii].w; anim->mRotationKeys[i].mValue.x = values[ii].w;
anim->mRotationKeys[i].mValue.y = values[ii].x; anim->mRotationKeys[i].mValue.y = values[ii].x;
anim->mRotationKeys[i].mValue.z = values[ii].y; anim->mRotationKeys[i].mValue.z = values[ii].y;
anim->mRotationKeys[i].mValue.w = values[ii].z; anim->mRotationKeys[i].mValue.w = values[ii].z;
ii += (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1; ii += (samplers.rotation->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
}
delete[] times;
delete[] values;
} else if (node.rotation.isPresent) {
anim->mNumRotationKeys = 1;
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
anim->mRotationKeys->mTime = 0.f;
anim->mRotationKeys->mValue.x = node.rotation.value[0];
anim->mRotationKeys->mValue.y = node.rotation.value[1];
anim->mRotationKeys->mValue.z = node.rotation.value[2];
anim->mRotationKeys->mValue.w = node.rotation.value[3];
} }
delete[] times;
delete[] values;
} else if (node.rotation.isPresent) {
anim->mNumRotationKeys = 1;
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
anim->mRotationKeys->mTime = 0.f;
anim->mRotationKeys->mValue.x = node.rotation.value[0];
anim->mRotationKeys->mValue.y = node.rotation.value[1];
anim->mRotationKeys->mValue.z = node.rotation.value[2];
anim->mRotationKeys->mValue.w = node.rotation.value[3];
}
if (samplers.scale) { if (samplers.scale) {
float *times = nullptr; float *times = nullptr;
samplers.scale->input->ExtractData(times); samplers.scale->input->ExtractData(times);
aiVector3D *values = nullptr; aiVector3D *values = nullptr;
samplers.scale->output->ExtractData(values); samplers.scale->output->ExtractData(values);
anim->mNumScalingKeys = static_cast<uint32_t>(samplers.scale->input->count); anim->mNumScalingKeys = static_cast<uint32_t>(samplers.scale->input->count);
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys]; anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
unsigned int ii = (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; unsigned int ii = (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
for (unsigned int i = 0; i < anim->mNumScalingKeys; ++i) { for (unsigned int i = 0; i < anim->mNumScalingKeys; ++i) {
anim->mScalingKeys[i].mTime = times[i] * kMillisecondsFromSeconds; anim->mScalingKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
anim->mScalingKeys[i].mValue = values[ii]; anim->mScalingKeys[i].mValue = values[ii];
ii += (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1; ii += (samplers.scale->interpolation == Interpolation_CUBICSPLINE) ? 3 : 1;
}
delete[] times;
delete[] values;
} else if (node.scale.isPresent) {
anim->mNumScalingKeys = 1;
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
anim->mScalingKeys->mTime = 0.f;
anim->mScalingKeys->mValue.x = node.scale.value[0];
anim->mScalingKeys->mValue.y = node.scale.value[1];
anim->mScalingKeys->mValue.z = node.scale.value[2];
} }
delete[] times;
delete[] values;
} else if (node.scale.isPresent) {
anim->mNumScalingKeys = 1;
anim->mScalingKeys = new aiVectorKey[anim->mNumScalingKeys];
anim->mScalingKeys->mTime = 0.f;
anim->mScalingKeys->mValue.x = node.scale.value[0];
anim->mScalingKeys->mValue.y = node.scale.value[1];
anim->mScalingKeys->mValue.z = node.scale.value[2];
}
return anim; return anim;
} catch (...) {
delete anim;
throw;
}
} }
aiMeshMorphAnim *CreateMeshMorphAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) { aiMeshMorphAnim *CreateMeshMorphAnim(glTF2::Asset&, Node &node, AnimationSamplers &samplers) {
aiMeshMorphAnim *anim = new aiMeshMorphAnim(); aiMeshMorphAnim *anim = new aiMeshMorphAnim();
anim->mName = GetNodeName(node);
static const float kMillisecondsFromSeconds = 1000.f; try {
anim->mName = GetNodeName(node);
if (nullptr != samplers.weight) { static const float kMillisecondsFromSeconds = 1000.f;
float *times = nullptr;
samplers.weight->input->ExtractData(times);
float *values = nullptr;
samplers.weight->output->ExtractData(values);
anim->mNumKeys = static_cast<uint32_t>(samplers.weight->input->count);
// for Interpolation_CUBICSPLINE can have more outputs if (nullptr != samplers.weight) {
const unsigned int weightStride = (unsigned int)samplers.weight->output->count / anim->mNumKeys; float *times = nullptr;
const unsigned int numMorphs = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? weightStride - 2 : weightStride; samplers.weight->input->ExtractData(times);
float *values = nullptr;
samplers.weight->output->ExtractData(values);
anim->mNumKeys = static_cast<uint32_t>(samplers.weight->input->count);
anim->mKeys = new aiMeshMorphKey[anim->mNumKeys]; // for Interpolation_CUBICSPLINE can have more outputs
unsigned int ii = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0; const unsigned int weightStride = (unsigned int)samplers.weight->output->count / anim->mNumKeys;
for (unsigned int i = 0u; i < anim->mNumKeys; ++i) { const unsigned int numMorphs = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? weightStride - 2 : weightStride;
unsigned int k = weightStride * i + ii;
anim->mKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
anim->mKeys[i].mNumValuesAndWeights = numMorphs;
anim->mKeys[i].mValues = new unsigned int[numMorphs];
anim->mKeys[i].mWeights = new double[numMorphs];
for (unsigned int j = 0u; j < numMorphs; ++j, ++k) { anim->mKeys = new aiMeshMorphKey[anim->mNumKeys];
anim->mKeys[i].mValues[j] = j; unsigned int ii = (samplers.weight->interpolation == Interpolation_CUBICSPLINE) ? 1 : 0;
anim->mKeys[i].mWeights[j] = (0.f > values[k]) ? 0.f : values[k]; for (unsigned int i = 0u; i < anim->mNumKeys; ++i) {
unsigned int k = weightStride * i + ii;
anim->mKeys[i].mTime = times[i] * kMillisecondsFromSeconds;
anim->mKeys[i].mNumValuesAndWeights = numMorphs;
anim->mKeys[i].mValues = new unsigned int[numMorphs];
anim->mKeys[i].mWeights = new double[numMorphs];
for (unsigned int j = 0u; j < numMorphs; ++j, ++k) {
anim->mKeys[i].mValues[j] = j;
anim->mKeys[i].mWeights[j] = (0.f > values[k]) ? 0.f : values[k];
}
} }
delete[] times;
delete[] values;
} }
delete[] times; return anim;
delete[] values; } catch (...) {
delete anim;
throw;
} }
return anim;
} }
std::unordered_map<unsigned int, AnimationSamplers> GatherSamplers(Animation &anim) { std::unordered_map<unsigned int, AnimationSamplers> GatherSamplers(Animation &anim) {
std::unordered_map<unsigned int, AnimationSamplers> samplers; std::unordered_map<unsigned int, AnimationSamplers> samplers;
for (unsigned int c = 0; c < anim.channels.size(); ++c) { for (unsigned int c = 0; c < anim.channels.size(); ++c) {
Animation::Channel &channel = anim.channels[c]; Animation::Channel &channel = anim.channels[c];
if (channel.sampler >= static_cast<int>(anim.samplers.size())) { if (channel.sampler < 0 || channel.sampler >= static_cast<int>(anim.samplers.size())) {
continue; continue;
} }
@ -1253,10 +1288,13 @@ void glTF2Importer::ImportAnimations(glTF2::Asset &r) {
} }
mScene->mAnimations = new aiAnimation *[numAnimations]; mScene->mAnimations = new aiAnimation *[numAnimations];
std::fill(mScene->mAnimations, mScene->mAnimations + numAnimations, nullptr);
for (unsigned int i = 0; i < numAnimations; ++i) { for (unsigned int i = 0; i < numAnimations; ++i) {
aiAnimation *ai_anim = mScene->mAnimations[i] = new aiAnimation();
Animation &anim = r.animations[i]; Animation &anim = r.animations[i];
aiAnimation *ai_anim = new aiAnimation();
ai_anim->mName = anim.name; ai_anim->mName = anim.name;
ai_anim->mDuration = 0; ai_anim->mDuration = 0;
ai_anim->mTicksPerSecond = 0; ai_anim->mTicksPerSecond = 0;
@ -1278,6 +1316,7 @@ void glTF2Importer::ImportAnimations(glTF2::Asset &r) {
ai_anim->mNumChannels = numChannels; ai_anim->mNumChannels = numChannels;
if (ai_anim->mNumChannels > 0) { if (ai_anim->mNumChannels > 0) {
ai_anim->mChannels = new aiNodeAnim *[ai_anim->mNumChannels]; ai_anim->mChannels = new aiNodeAnim *[ai_anim->mNumChannels];
std::fill(ai_anim->mChannels, ai_anim->mChannels + ai_anim->mNumChannels, nullptr);
int j = 0; int j = 0;
for (auto &iter : samplers) { for (auto &iter : samplers) {
if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) { if ((nullptr != iter.second.rotation) || (nullptr != iter.second.scale) || (nullptr != iter.second.translation)) {
@ -1290,6 +1329,7 @@ void glTF2Importer::ImportAnimations(glTF2::Asset &r) {
ai_anim->mNumMorphMeshChannels = numMorphMeshChannels; ai_anim->mNumMorphMeshChannels = numMorphMeshChannels;
if (ai_anim->mNumMorphMeshChannels > 0) { if (ai_anim->mNumMorphMeshChannels > 0) {
ai_anim->mMorphMeshChannels = new aiMeshMorphAnim *[ai_anim->mNumMorphMeshChannels]; ai_anim->mMorphMeshChannels = new aiMeshMorphAnim *[ai_anim->mNumMorphMeshChannels];
std::fill(ai_anim->mMorphMeshChannels, ai_anim->mMorphMeshChannels + ai_anim->mNumMorphMeshChannels, nullptr);
int j = 0; int j = 0;
for (auto &iter : samplers) { for (auto &iter : samplers) {
if (nullptr != iter.second.weight) { if (nullptr != iter.second.weight) {
@ -1341,8 +1381,6 @@ void glTF2Importer::ImportAnimations(glTF2::Asset &r) {
ai_anim->mDuration = maxDuration; ai_anim->mDuration = maxDuration;
ai_anim->mTicksPerSecond = 1000.0; ai_anim->mTicksPerSecond = 1000.0;
mScene->mAnimations[i] = ai_anim;
} }
} }
@ -1362,6 +1400,7 @@ void glTF2Importer::ImportEmbeddedTextures(glTF2::Asset &r) {
ASSIMP_LOG_DEBUG_F("Importing ", numEmbeddedTexs, " embedded textures"); ASSIMP_LOG_DEBUG_F("Importing ", numEmbeddedTexs, " embedded textures");
mScene->mTextures = new aiTexture *[numEmbeddedTexs]; mScene->mTextures = new aiTexture *[numEmbeddedTexs];
std::fill(mScene->mTextures, mScene->mTextures + numEmbeddedTexs, nullptr);
// Add the embedded textures // Add the embedded textures
for (size_t i = 0; i < r.images.Size(); ++i) { for (size_t i = 0; i < r.images.Size(); ++i) {