Adding double precision import support for formats that can be exported

pull/947/head
Chris Russ 2016-07-16 12:14:36 +10:00
parent fa1d6d8c55
commit 05a6ee6473
26 changed files with 204 additions and 233 deletions

View File

@ -149,7 +149,7 @@ void ColladaExporter::WriteFile()
// Writes the asset header
void ColladaExporter::WriteHeader()
{
static const float epsilon = 0.00001f;
static const ai_real epsilon = 0.00001;
static const aiQuaternion x_rot(aiMatrix3x3(
0, -1, 0,
1, 0, 0,
@ -176,9 +176,9 @@ void ColladaExporter::WriteHeader()
bool add_root_node = false;
float scale = 1.0;
ai_real scale = 1.0;
if(std::abs(scaling.x - scaling.y) <= epsilon && std::abs(scaling.x - scaling.z) <= epsilon && std::abs(scaling.y - scaling.z) <= epsilon) {
scale = (float) ((((double) scaling.x) + ((double) scaling.y) + ((double) scaling.z)) / 3.0);
scale = (ai_real) ((((double) scaling.x) + ((double) scaling.y) + ((double) scaling.z)) / 3.0);
} else {
add_root_node = true;
}
@ -450,7 +450,7 @@ void ColladaExporter::WriteSpotLight(const aiLight *const light){
srcLight->mFalloffAngle);
*/
const float fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone);
const ai_real fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone);
mOutput << startstr <<"<falloff_angle sid=\"fall_off_angle\">"
<< fallOffAngle
<<"</falloff_angle>" << endstr;
@ -803,10 +803,10 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
PushTag();
// Positions
WriteFloatArray( idstr + "-positions", FloatType_Vector, (float*) mesh->mVertices, mesh->mNumVertices);
WriteFloatArray( idstr + "-positions", FloatType_Vector, (ai_real*) mesh->mVertices, mesh->mNumVertices);
// Normals, if any
if( mesh->HasNormals() )
WriteFloatArray( idstr + "-normals", FloatType_Vector, (float*) mesh->mNormals, mesh->mNumVertices);
WriteFloatArray( idstr + "-normals", FloatType_Vector, (ai_real*) mesh->mNormals, mesh->mNumVertices);
// texture coords
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
@ -814,7 +814,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
if( mesh->HasTextureCoords( a) )
{
WriteFloatArray( idstr + "-tex" + std::to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2,
(float*) mesh->mTextureCoords[a], mesh->mNumVertices);
(ai_real*) mesh->mTextureCoords[a], mesh->mNumVertices);
}
}
@ -822,7 +822,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
{
if( mesh->HasVertexColors( a) )
WriteFloatArray( idstr + "-color" + std::to_string(a), FloatType_Color, (float*) mesh->mColors[a], mesh->mNumVertices);
WriteFloatArray( idstr + "-color" + std::to_string(a), FloatType_Color, (ai_real*) mesh->mColors[a], mesh->mNumVertices);
}
// assemble vertex structure
@ -917,7 +917,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
// ------------------------------------------------------------------------------------------------
// Writes a float array of the given type
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount)
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount)
{
size_t floatsPerElement = 0;
switch( pType )

View File

@ -108,7 +108,7 @@ protected:
enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color };
/// Writes a float array of the given type
void WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount);
void WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount);
/// Writes the scene library
void WriteSceneLibrary();
@ -160,10 +160,10 @@ protected:
struct Property
{
bool exist;
float value;
ai_real value;
Property()
: exist(false)
, value(0.0f)
, value(0.0)
{}
};

View File

@ -94,7 +94,7 @@ struct Transform
{
std::string mID; ///< SID of the transform step, by which anim channels address their target node
TransformType mType;
float f[16]; ///< Interpretation of data depends on the type of the transformation
ai_real f[16]; ///< Interpretation of data depends on the type of the transformation
};
/** A collada camera. */
@ -116,16 +116,16 @@ struct Camera
bool mOrtho;
//! Horizontal field of view in degrees
float mHorFov;
ai_real mHorFov;
//! Vertical field of view in degrees
float mVerFov;
ai_real mVerFov;
//! Screen aspect
float mAspect;
ai_real mAspect;
//! Near& far z
float mZNear, mZFar;
ai_real mZNear, mZFar;
};
#define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f
@ -152,21 +152,21 @@ struct Light
aiColor3D mColor;
//! Light attenuation
float mAttConstant,mAttLinear,mAttQuadratic;
ai_real mAttConstant,mAttLinear,mAttQuadratic;
//! Spot light falloff
float mFalloffAngle;
float mFalloffExponent;
ai_real mFalloffAngle;
ai_real mFalloffExponent;
// -----------------------------------------------------
// FCOLLADA extension from here
//! ... related stuff from maja and max extensions
float mPenumbraAngle;
float mOuterAngle;
ai_real mPenumbraAngle;
ai_real mOuterAngle;
//! Common light intensity
float mIntensity;
ai_real mIntensity;
};
/** Short vertex index description */
@ -275,7 +275,7 @@ struct Node
struct Data
{
bool mIsStringArray;
std::vector<float> mValues;
std::vector<ai_real> mValues;
std::vector<std::string> mStrings;
};
@ -387,7 +387,7 @@ struct Controller
std::string mJointNameSource;
///< The bind shape matrix, as array of floats. I'm not sure what this matrix actually describes, but it can't be ignored in all cases
float mBindShapeMatrix[16];
ai_real mBindShapeMatrix[16];
// accessor URL of the joint inverse bind matrices
std::string mJointOffsetMatrixSource;
@ -490,11 +490,11 @@ struct Sampler
/** Weighting factor
*/
float mWeighting;
ai_real mWeighting;
/** Mixing factor from OKINO
*/
float mMixWithPrevious;
ai_real mMixWithPrevious;
};
/** A collada effect. Can contain about anything according to the Collada spec,
@ -513,8 +513,8 @@ struct Effect
mTexTransparent, mTexBump, mTexReflective;
// Scalar factory
float mShininess, mRefractIndex, mReflectivity;
float mTransparency;
ai_real mShininess, mRefractIndex, mReflectivity;
ai_real mTransparency;
bool mHasTransparency;
bool mRGBTransparency;
bool mInvertTransparency;

View File

@ -704,7 +704,7 @@ aiMesh* ColladaLoader::CreateMesh( const ColladaParser& pParser, const Collada::
size_t jointIndex = iit->first;
size_t vertexIndex = iit->second;
float weight = ReadFloat( weightsAcc, weights, vertexIndex, 0);
ai_real weight = ReadFloat( weightsAcc, weights, vertexIndex, 0);
// one day I gonna kill that XSI Collada exporter
if( weight > 0.0f)
@ -1071,7 +1071,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
continue;
// resolve the data pointers for all anim channels. Find the minimum time while we're at it
float startTime = 1e20f, endTime = -1e20f;
ai_real startTime = 1e20, endTime = -1e20;
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{
Collada::ChannelEntry& e = *it;
@ -1100,7 +1100,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// now for every unique point in time, find or interpolate the key values for that time
// and apply them to the transform chain. Then the node's present transformation can be calculated.
float time = startTime;
ai_real time = startTime;
while( 1)
{
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
@ -1109,7 +1109,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// find the keyframe behind the current point in time
size_t pos = 0;
float postTime = 0.f;
ai_real postTime = 0.0;
while( 1)
{
if( pos >= e.mTimeAccessor->mCount)
@ -1123,19 +1123,19 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
pos = std::min( pos, e.mTimeAccessor->mCount-1);
// read values from there
float temp[16];
ai_real temp[16];
for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
temp[c] = ReadFloat( *e.mValueAccessor, *e.mValueData, pos, c);
// if not exactly at the key time, interpolate with previous value set
if( postTime > time && pos > 0)
{
float preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0);
float factor = (time - postTime) / (preTime - postTime);
ai_real preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0);
ai_real factor = (time - postTime) / (preTime - postTime);
for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
{
float v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c);
ai_real v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c);
temp[c] += (v - temp[c]) * factor;
}
}
@ -1152,7 +1152,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
resultTrafos.push_back( mat);
// find next point in time to evaluate. That's the closest frame larger than the current in any channel
float nextTime = 1e20f;
ai_real nextTime = 1e20;
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{
Collada::ChannelEntry& channelElement = *it;
@ -1161,7 +1161,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
size_t pos = 0;
while( pos < channelElement.mTimeAccessor->mCount)
{
const float t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const ai_real t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
if( t > time)
{
nextTime = std::min( nextTime, t);
@ -1174,16 +1174,16 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// Sub-sample axis-angle channels if the delta between two consecutive
// key-frame angles is >= 180 degrees.
if (transforms[channelElement.mTransformIndex].mType == Collada::TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) {
const float cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
const float last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
const float cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const float last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
const float last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
const float delta = std::fabs(cur_key_angle - last_eval_angle);
if (delta >= 180.0f) {
const int subSampleCount = static_cast<int>(floorf(delta / 90.0f));
const ai_real cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
const ai_real last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
const ai_real cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const ai_real last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
const ai_real last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
const ai_real delta = std::abs(cur_key_angle - last_eval_angle);
if (delta >= 180.0) {
const int subSampleCount = static_cast<int>(floorf(delta / 90.0));
if (cur_key_time != time) {
const float nextSampleTime = time + (cur_key_time - time) / subSampleCount;
const ai_real nextSampleTime = time + (cur_key_time - time) / subSampleCount;
nextTime = std::min(nextTime, nextSampleTime);
}
}
@ -1289,7 +1289,7 @@ void ColladaLoader::AddTexture ( aiMaterial& mat, const ColladaParser& pParser,
_AI_MATKEY_TEXBLEND_BASE, type, idx);
// Blend factor
mat.AddProperty((float*)&sampler.mWeighting , 1,
mat.AddProperty((ai_real*)&sampler.mWeighting , 1,
_AI_MATKEY_TEXBLEND_BASE, type, idx);
// UV source index ... if we didn't resolve the mapping, it is actually just
@ -1464,11 +1464,11 @@ void ColladaLoader::BuildMaterials( ColladaParser& pParser, aiScene* /*pScene*/)
const int shadeMode = aiShadingMode_Phong;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
aiColor4D colAmbient( 0.2f, 0.2f, 0.2f, 1.0f), colDiffuse( 0.8f, 0.8f, 0.8f, 1.0f), colSpecular( 0.5f, 0.5f, 0.5f, 0.5f);
aiColor4D colAmbient( 0.2, 0.2, 0.2, 1.0), colDiffuse( 0.8, 0.8, 0.8, 1.0), colSpecular( 0.5, 0.5, 0.5, 0.5);
mat->AddProperty( &colAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
mat->AddProperty( &colDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &colSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
const float specExp = 5.0f;
const ai_real specExp = 5.0;
mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
}
#endif
@ -1587,7 +1587,7 @@ void ColladaLoader::ConvertPath (aiString& ss)
// ------------------------------------------------------------------------------------------------
// Reads a float value from an accessor and its data array.
float ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const
ai_real ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const
{
// FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller
size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset;

View File

@ -190,7 +190,7 @@ protected:
* @param pOffset Offset into the element, for multipart elements such as vectors or matrices
* @return the specified value
*/
float ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const;
ai_real ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const;
/** Reads a string value from an accessor and its data array.
* @param pAccessor The accessor to use for reading

View File

@ -128,7 +128,7 @@ bool ColladaParser::ReadBoolFromTextContent()
// ------------------------------------------------------------------------------------------------
// Read float from text contents of current element
float ColladaParser::ReadFloatFromTextContent()
ai_real ColladaParser::ReadFloatFromTextContent()
{
const char* cur = GetTextContent();
return fast_atof(cur);
@ -674,7 +674,7 @@ void ColladaParser::ReadController( Collada::Controller& pController)
for( unsigned int a = 0; a < 16; a++)
{
// read a number
content = fast_atoreal_move<float>( content, pController.mBindShapeMatrix[a]);
content = fast_atoreal_move<ai_real>( content, pController.mBindShapeMatrix[a]);
// skip whitespace after it
SkipSpacesAndLineEnd( &content);
}
@ -1179,13 +1179,13 @@ void ColladaParser::ReadLight( Collada::Light& pLight)
// text content contains 3 floats
const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.r);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.r);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.g);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.g);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.b);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.b);
SkipSpacesAndLineEnd( &content);
TestClosing( "color");
@ -1578,16 +1578,16 @@ void ColladaParser::ReadEffectColor( aiColor4D& pColor, Sampler& pSampler)
// text content contains 4 floats
const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, (float&)pColor.r);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.r);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.g);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.g);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.b);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.b);
SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.a);
content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.a);
SkipSpacesAndLineEnd( &content);
TestClosing( "color");
}
@ -1636,7 +1636,7 @@ void ColladaParser::ReadEffectColor( aiColor4D& pColor, Sampler& pSampler)
// ------------------------------------------------------------------------------------------------
// Reads an effect entry containing a float
void ColladaParser::ReadEffectFloat( float& pFloat)
void ColladaParser::ReadEffectFloat( ai_real& pFloat)
{
while( mReader->read())
{
@ -1645,7 +1645,7 @@ void ColladaParser::ReadEffectFloat( float& pFloat)
{
// text content contains a single floats
const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, pFloat);
content = fast_atoreal_move<ai_real>( content, pFloat);
SkipSpacesAndLineEnd( &content);
TestClosing( "float");
@ -1943,9 +1943,9 @@ void ColladaParser::ReadDataArray()
if( *content == 0)
ThrowException( "Expected more values while reading float_array contents.");
float value;
ai_real value;
// read a number
content = fast_atoreal_move<float>( content, value);
content = fast_atoreal_move<ai_real>( content, value);
data.mValues.push_back( value);
// skip whitespace after it
SkipSpacesAndLineEnd( &content);
@ -2456,11 +2456,11 @@ void ColladaParser::ExtractDataObjectFromChannel( const InputChannel& pInput, si
ThrowException( format() << "Invalid data index (" << pLocalIndex << "/" << acc.mCount << ") in primitive specification" );
// get a pointer to the start of the data object referred to by the accessor and the local index
const float* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride;
const ai_real* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride;
// assemble according to the accessors component sub-offset list. We don't care, yet,
// what kind of object exactly we're extracting here
float obj[4];
ai_real obj[4];
for( size_t c = 0; c < 4; ++c)
obj[c] = dataObject[acc.mSubOffset[c]];
@ -2764,7 +2764,7 @@ void ColladaParser::ReadNodeTransformation( Node* pNode, TransformType pType)
for( unsigned int a = 0; a < sNumParameters[pType]; a++)
{
// read a number
content = fast_atoreal_move<float>( content, tf.f[a]);
content = fast_atoreal_move<ai_real>( content, tf.f[a]);
// skip whitespace after it
SkipSpacesAndLineEnd( &content);
}
@ -3075,7 +3075,7 @@ aiMatrix4x4 ColladaParser::CalculateResultTransform( const std::vector<Transform
case TF_ROTATE:
{
aiMatrix4x4 rot;
float angle = tf.f[3] * float( AI_MATH_PI) / 180.0f;
ai_real angle = tf.f[3] * ai_real( AI_MATH_PI) / 180.0;
aiVector3D axis( tf.f[0], tf.f[1], tf.f[2]);
aiMatrix4x4::Rotation( angle, axis, rot);
res *= rot;

View File

@ -147,7 +147,7 @@ namespace Assimp
void ReadEffectColor( aiColor4D& pColor, Collada::Sampler& pSampler);
/** Reads an effect entry containing a float */
void ReadEffectFloat( float& pFloat);
void ReadEffectFloat( ai_real& pFloat);
/** Reads an effect parameter specification of any kind */
void ReadEffectParam( Collada::EffectParam& pParam);
@ -259,7 +259,7 @@ namespace Assimp
bool ReadBoolFromTextContent();
/** Reads a single float from current text content */
float ReadFloatFromTextContent();
ai_real ReadFloatFromTextContent();
/** Calculates the resulting transformation from all the given transform steps */
aiMatrix4x4 CalculateResultTransform( const std::vector<Collada::Transform>& pTransforms) const;
@ -335,7 +335,7 @@ namespace Assimp
Collada::Animation mAnims;
/** Size unit: how large compared to a meter */
float mUnitSize;
ai_real mUnitSize;
/** Which is the up vector */
enum { UP_X, UP_Y, UP_Z } mUpDirection;

View File

@ -161,9 +161,9 @@ void OFFImporter::InternReadFile( const std::string& pFile,
aiVector3D& v = tempPositions[i];
sz = line; SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz,(float&)v.x); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz,(float&)v.y); SkipSpaces(&sz);
fast_atoreal_move<float>(sz,(float&)v.z);
sz = fast_atoreal_move<ai_real>(sz,(ai_real&)v.x); SkipSpaces(&sz);
sz = fast_atoreal_move<ai_real>(sz,(ai_real&)v.y); SkipSpaces(&sz);
fast_atoreal_move<ai_real>(sz,(ai_real&)v.z);
}
@ -242,7 +242,7 @@ void OFFImporter::InternReadFile( const std::string& pFile,
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
aiMaterial* pcMat = new aiMaterial();
aiColor4D clr(0.6f,0.6f,0.6f,1.0f);
aiColor4D clr(0.6,0.6,0.6,1.0);
pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_DIFFUSE);
pScene->mMaterials[0] = pcMat;

View File

@ -167,7 +167,7 @@ void ObjExporter::WriteMaterialFile()
mOutputMat << "Ke " << c.r << " " << c.g << " " << c.b << endl;
}
float o;
ai_real o;
if(AI_SUCCESS == mat->Get(AI_MATKEY_OPACITY,o)) {
mOutputMat << "d " << o << endl;
}

View File

@ -191,21 +191,21 @@ struct Material
//! Emissive color
aiColor3D emissive;
//! Alpha value
float alpha;
ai_real alpha;
//! Shineness factor
float shineness;
ai_real shineness;
//! Illumination model
int illumination_model;
//! Index of refraction
float ior;
ai_real ior;
//! Constructor
Material()
: diffuse (0.6f,0.6f,0.6f)
, alpha (1.f)
, shineness (0.0f)
: diffuse (0.6,0.6,0.6)
, alpha (1.0)
, shineness (0.0)
, illumination_model (1)
, ior (1.f)
, ior (1.0)
{
// empty
for (size_t i = 0; i < TextureTypeCount; ++i)

View File

@ -232,7 +232,7 @@ void ObjFileMtlImporter::getColorRGBA( aiColor3D *pColor )
{
ai_assert( NULL != pColor );
float r( 0.0f ), g( 0.0f ), b( 0.0f );
ai_real r( 0.0 ), g( 0.0 ), b( 0.0 );
m_DataIt = getFloat<DataArrayIt>( m_DataIt, m_DataItEnd, r );
pColor->r = r;
@ -255,10 +255,10 @@ void ObjFileMtlImporter::getIlluminationModel( int &illum_model )
// -------------------------------------------------------------------
// Loads a single float value.
void ObjFileMtlImporter::getFloatValue( float &value )
void ObjFileMtlImporter::getFloatValue( ai_real &value )
{
m_DataIt = CopyNextWord<DataArrayIt>( m_DataIt, m_DataItEnd, m_buffer, BUFFERSIZE );
value = (float) fast_atof(m_buffer);
value = (ai_real) fast_atof(m_buffer);
}
// -------------------------------------------------------------------

View File

@ -41,6 +41,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <vector>
#include <string>
#include <assimp/defs.h>
struct aiColor3D;
struct aiString;
@ -85,7 +86,7 @@ private:
/// Get illumination model from loaded data
void getIlluminationModel( int &illum_model );
/// Gets a float value from data.
void getFloatValue( float &value );
void getFloatValue( ai_real &value );
/// Creates a new material from loaded data.
void createMaterial();
/// Get texture name from loaded data.

View File

@ -279,23 +279,23 @@ size_t ObjFileParser::getNumComponentsInLine() {
// -------------------------------------------------------------------
void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) {
size_t numComponents = getNumComponentsInLine();
float x, y, z;
ai_real x, y, z;
if( 2 == numComponents ) {
copyNextWord( m_buffer, Buffersize );
x = ( float ) fast_atof( m_buffer );
x = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize );
y = ( float ) fast_atof( m_buffer );
y = ( ai_real ) fast_atof( m_buffer );
z = 0.0;
} else if( 3 == numComponents ) {
copyNextWord( m_buffer, Buffersize );
x = ( float ) fast_atof( m_buffer );
x = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize );
y = ( float ) fast_atof( m_buffer );
y = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
} else {
throw DeadlyImportError( "OBJ: Invalid number of components" );
}
@ -306,15 +306,15 @@ void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) {
// -------------------------------------------------------------------
// Get values for a new 3D vector instance
void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) {
float x, y, z;
ai_real x, y, z;
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
point3d_array.push_back( aiVector3D( x, y, z ) );
m_DataIt = skipLine<DataArrayIt>( m_DataIt, m_DataItEnd, m_uiLine );
@ -323,26 +323,26 @@ void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) {
// -------------------------------------------------------------------
// Get values for two 3D vectors on the same line
void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, std::vector<aiVector3D> &point3d_array_b ) {
float x, y, z;
ai_real x, y, z;
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
point3d_array_a.push_back( aiVector3D( x, y, z ) );
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer );
z = ( ai_real ) fast_atof( m_buffer );
point3d_array_b.push_back( aiVector3D( x, y, z ) );
@ -352,12 +352,12 @@ void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, st
// -------------------------------------------------------------------
// Get values for a new 2D vector instance
void ObjFileParser::getVector2( std::vector<aiVector2D> &point2d_array ) {
float x, y;
ai_real x, y;
copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer);
x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer);
y = (ai_real) fast_atof(m_buffer);
point2d_array.push_back(aiVector2D(x, y));

View File

@ -196,12 +196,12 @@ inline char_t CopyNextWord( char_t it, char_t end, char *pBuffer, size_t length
* @return Current-iterator with new position
*/
template<class char_t>
inline char_t getFloat( char_t it, char_t end, float &value )
inline char_t getFloat( char_t it, char_t end, ai_real &value )
{
static const size_t BUFFERSIZE = 1024;
char buffer[ BUFFERSIZE ];
it = CopyNextWord<char_t>( it, end, buffer, BUFFERSIZE );
value = (float) fast_atof( buffer );
value = (ai_real) fast_atof( buffer );
return it;
}

View File

@ -481,13 +481,13 @@ void PLYImporter::LoadTextureCoordinates(std::vector<aiVector2D>* pvOut)
if (0xFFFFFFFF != aiPositions[0])
{
vOut.x = PLY::PropertyInstance::ConvertTo<float>(
vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.y = PLY::PropertyInstance::ConvertTo<float>(
vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]);
}
// and add them to our nice list
@ -502,7 +502,7 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
{
ai_assert(NULL != pvOut);
unsigned int aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
ai_uint aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
PLY::EDataType aiTypes[3] = {EDT_Char,EDT_Char,EDT_Char};
PLY::ElementInstanceList* pcList = NULL;
unsigned int cnt = 0;
@ -591,19 +591,19 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
if (0xFFFFFFFF != aiPositions[0])
{
vOut.x = PLY::PropertyInstance::ConvertTo<float>(
vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]);
}
if (0xFFFFFFFF != aiPositions[1])
{
vOut.y = PLY::PropertyInstance::ConvertTo<float>(
vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]);
}
if (0xFFFFFFFF != aiPositions[2])
{
vOut.z = PLY::PropertyInstance::ConvertTo<float>(
vOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[2]).avList.front(),aiTypes[2]);
}
@ -615,7 +615,7 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
// ------------------------------------------------------------------------------------------------
// Convert a color component to [0...1]
float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
ai_real PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType)
{
switch (eType)
@ -623,20 +623,20 @@ float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
case EDT_Float:
return val.fFloat;
case EDT_Double:
return (float)val.fDouble;
return (ai_real)val.fDouble;
case EDT_UChar:
return (float)val.iUInt / (float)0xFF;
return (ai_real)val.iUInt / (ai_real)0xFF;
case EDT_Char:
return (float)(val.iInt+(0xFF/2)) / (float)0xFF;
return (ai_real)(val.iInt+(0xFF/2)) / (ai_real)0xFF;
case EDT_UShort:
return (float)val.iUInt / (float)0xFFFF;
return (ai_real)val.iUInt / (ai_real)0xFFFF;
case EDT_Short:
return (float)(val.iInt+(0xFFFF/2)) / (float)0xFFFF;
return (ai_real)(val.iInt+(0xFFFF/2)) / (ai_real)0xFFFF;
case EDT_UInt:
return (float)val.iUInt / (float)0xFFFF;
return (ai_real)val.iUInt / (ai_real)0xFFFF;
case EDT_Int:
return ((float)val.iInt / (float)0xFF) + 0.5f;
return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f;
default: ;
};
return 0.0f;
@ -727,7 +727,7 @@ void PLYImporter::LoadVertexColor(std::vector<aiColor4D>* pvOut)
}
// assume 1.0 for the alpha channel ifit is not set
if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0f;
if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0;
else
{
vOut.a = NormalizeColorValue(GetProperty((*i).alProperties,
@ -1076,14 +1076,14 @@ void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut)
// handle phong power and shading mode
int iMode;
if (0xFFFFFFFF != iPhong) {
float fSpec = PLY::PropertyInstance::ConvertTo<float>(GetProperty((*i).alProperties, iPhong).avList.front(),ePhong);
ai_real fSpec = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(),ePhong);
// if shininess is 0 (and the pow() calculation would therefore always
// become 1, not depending on the angle), use gouraud lighting
if (fSpec) {
// scale this with 15 ... hopefully this is correct
fSpec *= 15;
pcHelper->AddProperty<float>(&fSpec, 1, AI_MATKEY_SHININESS);
pcHelper->AddProperty<ai_real>(&fSpec, 1, AI_MATKEY_SHININESS);
iMode = (int)aiShadingMode_Phong;
}
@ -1094,8 +1094,8 @@ void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut)
// handle opacity
if (0xFFFFFFFF != iOpacity) {
float fOpacity = PLY::PropertyInstance::ConvertTo<float>(GetProperty((*i).alProperties, iPhong).avList.front(),eOpacity);
pcHelper->AddProperty<float>(&fOpacity, 1, AI_MATKEY_OPACITY);
ai_real fOpacity = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(),eOpacity);
pcHelper->AddProperty<ai_real>(&fOpacity, 1, AI_MATKEY_OPACITY);
}
// The face order is absolutely undefined for PLY, so we have to

View File

@ -155,7 +155,7 @@ protected:
/** Static helper to parse a color channel value. The input value
* is normalized to 0-1.
*/
static float NormalizeColorValue (
static ai_real NormalizeColorValue (
PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType);

View File

@ -825,8 +825,8 @@ bool PLY::PropertyInstance::ParseValue(
case EDT_Double:
float f;
pCur = fast_atoreal_move<float>(pCur,f);
double f;
pCur = fast_atoreal_move<double>(pCur,f);
out->fDouble = (double)f;
break;

View File

@ -162,12 +162,12 @@ void STLExporter :: WriteMeshBinary(const aiMesh* m)
}
nor.Normalize();
}
float nx = nor.x, ny = nor.y, nz = nor.z;
ai_real nx = nor.x, ny = nor.y, nz = nor.z;
AI_SWAP4(nx); AI_SWAP4(ny); AI_SWAP4(nz);
mOutput.write((char *)&nx, 4); mOutput.write((char *)&ny, 4); mOutput.write((char *)&nz, 4);
for(unsigned int a = 0; a < f.mNumIndices; ++a) {
const aiVector3D& v = m->mVertices[f.mIndices[a]];
float vx = v.x, vy = v.y, vz = v.z;
ai_real vx = v.x, vy = v.y, vz = v.z;
AI_SWAP4(vx); AI_SWAP4(vy); AI_SWAP4(vz);
mOutput.write((char *)&vx, 4); mOutput.write((char *)&vy, 4); mOutput.write((char *)&vz, 4);
}

View File

@ -189,7 +189,7 @@ void STLImporter::InternReadFile( const std::string& pFile,
this->mBuffer = &mBuffer2[0];
// the default vertex color is light gray.
clrColorDefault.r = clrColorDefault.g = clrColorDefault.b = clrColorDefault.a = 0.6f;
clrColorDefault.r = clrColorDefault.g = clrColorDefault.b = clrColorDefault.a = 0.6;
// allocate a single node
pScene->mRootNode = new aiNode();
@ -217,13 +217,13 @@ void STLImporter::InternReadFile( const std::string& pFile,
s.Set(AI_DEFAULT_MATERIAL_NAME);
pcMat->AddProperty(&s, AI_MATKEY_NAME);
aiColor4D clrDiffuse(0.6f,0.6f,0.6f,1.0f);
aiColor4D clrDiffuse(0.6,0.6,0.6,1.0);
if (bMatClr) {
clrDiffuse = clrColorDefault;
}
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_DIFFUSE);
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_SPECULAR);
clrDiffuse = aiColor4D(0.05f,0.05f,0.05f,1.0f);
clrDiffuse = aiColor4D(0.05,0.05,0.05,1.0);
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_AMBIENT);
pScene->mNumMaterials = 1;
@ -307,11 +307,11 @@ void STLImporter::LoadASCIIFile()
}
sz += 7;
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->x );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->x );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->y );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->y );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->z );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->z );
normalBuffer.push_back(*vn);
normalBuffer.push_back(*vn);
}
@ -332,11 +332,11 @@ void STLImporter::LoadASCIIFile()
SkipSpaces(&sz);
positionBuffer.push_back(aiVector3D());
aiVector3D* vn = &positionBuffer.back();
sz = fast_atoreal_move<float>(sz, (float&)vn->x );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->x );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->y );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->y );
SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->z );
sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->z );
faceVertexCounter++;
}
}
@ -416,10 +416,10 @@ bool STLImporter::LoadBinaryFile()
// read the default vertex color for facets
bIsMaterialise = true;
DefaultLogger::get()->info("STL: Taking code path for Materialise files");
clrColorDefault.r = (*sz2++) / 255.0f;
clrColorDefault.g = (*sz2++) / 255.0f;
clrColorDefault.b = (*sz2++) / 255.0f;
clrColorDefault.a = (*sz2++) / 255.0f;
clrColorDefault.r = (*sz2++) / 255.0;
clrColorDefault.g = (*sz2++) / 255.0;
clrColorDefault.b = (*sz2++) / 255.0;
clrColorDefault.a = (*sz2++) / 255.0;
break;
}
}
@ -480,18 +480,18 @@ bool STLImporter::LoadBinaryFile()
DefaultLogger::get()->info("STL: Mesh has vertex colors");
}
aiColor4D* clr = &pMesh->mColors[0][i*3];
clr->a = 1.0f;
clr->a = 1.0;
if (bIsMaterialise) // this is reversed
{
clr->r = (color & 0x31u) / 31.0f;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0f;
clr->b = ((color & (0x31u<<10))>>10u) / 31.0f;
clr->r = (color & 0x31u) / 31.0;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0;
clr->b = ((color & (0x31u<<10))>>10u) / 31.0;
}
else
{
clr->b = (color & 0x31u) / 31.0f;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0f;
clr->r = ((color & (0x31u<<10))>>10u) / 31.0f;
clr->b = (color & 0x31u) / 31.0;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0;
clr->r = ((color & (0x31u<<10))>>10u) / 31.0;
}
// assign the color to all vertices of the face
*(clr+1) = *clr;

View File

@ -82,7 +82,7 @@ struct Material
std::string mName;
bool mIsReference; // if true, mName holds a name by which the actual material can be found in the material list
aiColor4D mDiffuse;
float mSpecularExponent;
ai_real mSpecularExponent;
aiColor3D mSpecular;
aiColor3D mEmissive;
std::vector<TexEntry> mTextures;
@ -100,7 +100,7 @@ struct Material
struct BoneWeight
{
unsigned int mVertex;
float mWeight;
ai_real mWeight;
};
/** Helper structure to represent a bone in a mesh */

View File

@ -373,7 +373,7 @@ void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vec
{
const XFile::Bone& obone = bones[c];
// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
std::vector<float> oldWeights( sourceMesh->mPositions.size(), 0.0f);
std::vector<ai_real> oldWeights( sourceMesh->mPositions.size(), 0.0);
for( unsigned int d = 0; d < obone.mWeights.size(); d++)
oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight;
@ -383,8 +383,8 @@ void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vec
for( unsigned int d = 0; d < orgPoints.size(); d++)
{
// does the new vertex stem from an old vertex which was influenced by this bone?
float w = oldWeights[orgPoints[d]];
if( w > 0.0f)
ai_real w = oldWeights[orgPoints[d]];
if( w > 0.0)
newWeights.push_back( aiVertexWeight( d, w));
}
@ -713,4 +713,3 @@ void XFileImporter::ConvertMaterials( aiScene* pScene, std::vector<XFile::Materi
}
#endif // !! ASSIMP_BUILD_NO_X_IMPORTER

View File

@ -1326,7 +1326,7 @@ unsigned int XFileParser::ReadInt()
}
// ------------------------------------------------------------------------------------------------
float XFileParser::ReadFloat()
ai_real XFileParser::ReadFloat()
{
if( mIsBinaryFormat)
{
@ -1343,7 +1343,7 @@ float XFileParser::ReadFloat()
if( mBinaryFloatSize == 8)
{
if( End - P >= 8) {
float result = (float) (*(double*) P);
ai_real result = (ai_real) (*(double*) P);
P += 8;
return result;
} else {
@ -1353,7 +1353,7 @@ float XFileParser::ReadFloat()
} else
{
if( End - P >= 4) {
float result = *(float*) P;
ai_real result = *(ai_real*) P;
P += 4;
return result;
} else {
@ -1372,17 +1372,17 @@ float XFileParser::ReadFloat()
{
P += 9;
CheckForSeparator();
return 0.0f;
return 0.0;
} else
if( strncmp( P, "1.#QNAN0", 8) == 0)
{
P += 8;
CheckForSeparator();
return 0.0f;
return 0.0;
}
float result = 0.0f;
P = fast_atoreal_move<float>( P, result);
ai_real result = 0.0;
P = fast_atoreal_move<ai_real>( P, result);
CheckForSeparator();

View File

@ -127,7 +127,7 @@ protected:
unsigned short ReadBinWord();
unsigned int ReadBinDWord();
unsigned int ReadInt();
float ReadFloat();
ai_real ReadFloat();
aiVector2D ReadVector2();
aiVector3D ReadVector3();
aiColor3D ReadRGB();

View File

@ -19,6 +19,7 @@
#include <limits>
#include <stdint.h>
#include <stdexcept>
#include <assimp/defs.h>
#include "StringComparison.h"
@ -350,51 +351,26 @@ inline const char* fast_atoreal_move(const char* c, Real& out, bool check_comma
// ------------------------------------------------------------------------------------
// The same but more human.
inline float fast_atof(const char* c)
inline ai_real fast_atof(const char* c)
{
float ret;
fast_atoreal_move<float>(c, ret);
ai_real ret;
fast_atoreal_move<ai_real>(c, ret);
return ret;
}
inline float fast_atof( const char* c, const char** cout)
inline ai_real fast_atof( const char* c, const char** cout)
{
float ret;
*cout = fast_atoreal_move<float>(c, ret);
ai_real ret;
*cout = fast_atoreal_move<ai_real>(c, ret);
return ret;
}
inline float fast_atof( const char** inout)
inline ai_real fast_atof( const char** inout)
{
float ret;
*inout = fast_atoreal_move<float>(*inout, ret);
return ret;
}
inline double fast_atod(const char* c)
{
double ret;
fast_atoreal_move<double>(c, ret);
return ret;
}
inline double fast_atod( const char* c, const char** cout)
{
double ret;
*cout = fast_atoreal_move<double>(c, ret);
return ret;
}
inline double fast_atod( const char** inout)
{
double ret;
*inout = fast_atoreal_move<double>(*inout, ret);
ai_real ret;
*inout = fast_atoreal_move<ai_real>(*inout, ret);
return ret;
}
@ -402,4 +378,3 @@ inline double fast_atod( const char** inout)
} // end of namespace Assimp
#endif

View File

@ -228,6 +228,21 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# define ASSIMP_BUILD_DEBUG
#endif
//////////////////////////////////////////////////////////////////////////
/* Define AI_DOUBLE_PRECISION to compile assimp
* with double precision support (64-bit). */
//////////////////////////////////////////////////////////////////////////
#ifdef AI_DOUBLE_PRECISION
typedef double ai_real;
typedef signed long long int ai_int;
typedef unsigned long long int ai_uint;
#else // AI_DOUBLE_PRECISION
typedef float ai_real;
typedef signed int ai_int;
typedef unsigned int ai_uint;
#endif // AI_DOUBLE_PRECISION
//////////////////////////////////////////////////////////////////////////
/* Useful constants */
//////////////////////////////////////////////////////////////////////////
@ -242,6 +257,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_MATH_TWO_PI_F (AI_MATH_PI_F * 2.0f)
#define AI_MATH_HALF_PI_F (AI_MATH_PI_F * 0.5f)
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*(ai_real)0.0174532925)
#define AI_RAD_TO_DEG(x) ((x)*(ai_real)57.2957795)
/* Support for big-endian builds */
#if defined(__BYTE_ORDER__)
# if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
@ -265,18 +284,4 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define AI_MAX_ALLOC(type) ((256U * 1024 * 1024) / sizeof(type))
#ifdef AI_DOUBLE_PRECISION
typedef double ai_real;
typedef signed long long int ai_int;
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*0.0174532925)
#define AI_RAD_TO_DEG(x) ((x)*57.2957795)
#else
typedef float ai_real;
typedef signed int ai_int;
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*0.0174532925f)
#define AI_RAD_TO_DEG(x) ((x)*57.2957795f)
#endif // AI_SINGLEPRECISION
#endif // !! AI_DEFINES_H_INC

View File

@ -179,19 +179,10 @@ protected:
};
struct FastAtofWrapper {
float operator()(const char* str) { return Assimp::fast_atof(str); }
};
struct FastAtodWrapper {
double operator()(const char* str) { return Assimp::fast_atod(str); }
ai_real operator()(const char* str) { return Assimp::fast_atof(str); }
};
TEST_F(FastAtofTest, FastAtof)
{
RunTest<float>(FastAtofWrapper());
}
TEST_F(FastAtofTest, FastAtod)
{
RunTest<double>(FastAtodWrapper());
RunTest<ai_real>(FastAtofWrapper());
}