Adding double precision import support for formats that can be exported

pull/947/head
Chris Russ 2016-07-16 12:14:36 +10:00
parent fa1d6d8c55
commit 05a6ee6473
26 changed files with 204 additions and 233 deletions

View File

@ -149,7 +149,7 @@ void ColladaExporter::WriteFile()
// Writes the asset header // Writes the asset header
void ColladaExporter::WriteHeader() void ColladaExporter::WriteHeader()
{ {
static const float epsilon = 0.00001f; static const ai_real epsilon = 0.00001;
static const aiQuaternion x_rot(aiMatrix3x3( static const aiQuaternion x_rot(aiMatrix3x3(
0, -1, 0, 0, -1, 0,
1, 0, 0, 1, 0, 0,
@ -176,9 +176,9 @@ void ColladaExporter::WriteHeader()
bool add_root_node = false; bool add_root_node = false;
float scale = 1.0; ai_real scale = 1.0;
if(std::abs(scaling.x - scaling.y) <= epsilon && std::abs(scaling.x - scaling.z) <= epsilon && std::abs(scaling.y - scaling.z) <= epsilon) { if(std::abs(scaling.x - scaling.y) <= epsilon && std::abs(scaling.x - scaling.z) <= epsilon && std::abs(scaling.y - scaling.z) <= epsilon) {
scale = (float) ((((double) scaling.x) + ((double) scaling.y) + ((double) scaling.z)) / 3.0); scale = (ai_real) ((((double) scaling.x) + ((double) scaling.y) + ((double) scaling.z)) / 3.0);
} else { } else {
add_root_node = true; add_root_node = true;
} }
@ -450,7 +450,7 @@ void ColladaExporter::WriteSpotLight(const aiLight *const light){
srcLight->mFalloffAngle); srcLight->mFalloffAngle);
*/ */
const float fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone); const ai_real fallOffAngle = AI_RAD_TO_DEG(light->mAngleInnerCone);
mOutput << startstr <<"<falloff_angle sid=\"fall_off_angle\">" mOutput << startstr <<"<falloff_angle sid=\"fall_off_angle\">"
<< fallOffAngle << fallOffAngle
<<"</falloff_angle>" << endstr; <<"</falloff_angle>" << endstr;
@ -803,10 +803,10 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
PushTag(); PushTag();
// Positions // Positions
WriteFloatArray( idstr + "-positions", FloatType_Vector, (float*) mesh->mVertices, mesh->mNumVertices); WriteFloatArray( idstr + "-positions", FloatType_Vector, (ai_real*) mesh->mVertices, mesh->mNumVertices);
// Normals, if any // Normals, if any
if( mesh->HasNormals() ) if( mesh->HasNormals() )
WriteFloatArray( idstr + "-normals", FloatType_Vector, (float*) mesh->mNormals, mesh->mNumVertices); WriteFloatArray( idstr + "-normals", FloatType_Vector, (ai_real*) mesh->mNormals, mesh->mNumVertices);
// texture coords // texture coords
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
@ -814,7 +814,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
if( mesh->HasTextureCoords( a) ) if( mesh->HasTextureCoords( a) )
{ {
WriteFloatArray( idstr + "-tex" + std::to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2, WriteFloatArray( idstr + "-tex" + std::to_string(a), mesh->mNumUVComponents[a] == 3 ? FloatType_TexCoord3 : FloatType_TexCoord2,
(float*) mesh->mTextureCoords[a], mesh->mNumVertices); (ai_real*) mesh->mTextureCoords[a], mesh->mNumVertices);
} }
} }
@ -822,7 +822,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a) for( size_t a = 0; a < AI_MAX_NUMBER_OF_TEXTURECOORDS; ++a)
{ {
if( mesh->HasVertexColors( a) ) if( mesh->HasVertexColors( a) )
WriteFloatArray( idstr + "-color" + std::to_string(a), FloatType_Color, (float*) mesh->mColors[a], mesh->mNumVertices); WriteFloatArray( idstr + "-color" + std::to_string(a), FloatType_Color, (ai_real*) mesh->mColors[a], mesh->mNumVertices);
} }
// assemble vertex structure // assemble vertex structure
@ -917,7 +917,7 @@ void ColladaExporter::WriteGeometry( size_t pIndex)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Writes a float array of the given type // Writes a float array of the given type
void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount) void ColladaExporter::WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount)
{ {
size_t floatsPerElement = 0; size_t floatsPerElement = 0;
switch( pType ) switch( pType )

View File

@ -108,7 +108,7 @@ protected:
enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color }; enum FloatDataType { FloatType_Vector, FloatType_TexCoord2, FloatType_TexCoord3, FloatType_Color };
/// Writes a float array of the given type /// Writes a float array of the given type
void WriteFloatArray( const std::string& pIdString, FloatDataType pType, const float* pData, size_t pElementCount); void WriteFloatArray( const std::string& pIdString, FloatDataType pType, const ai_real* pData, size_t pElementCount);
/// Writes the scene library /// Writes the scene library
void WriteSceneLibrary(); void WriteSceneLibrary();
@ -160,10 +160,10 @@ protected:
struct Property struct Property
{ {
bool exist; bool exist;
float value; ai_real value;
Property() Property()
: exist(false) : exist(false)
, value(0.0f) , value(0.0)
{} {}
}; };

View File

@ -94,7 +94,7 @@ struct Transform
{ {
std::string mID; ///< SID of the transform step, by which anim channels address their target node std::string mID; ///< SID of the transform step, by which anim channels address their target node
TransformType mType; TransformType mType;
float f[16]; ///< Interpretation of data depends on the type of the transformation ai_real f[16]; ///< Interpretation of data depends on the type of the transformation
}; };
/** A collada camera. */ /** A collada camera. */
@ -116,16 +116,16 @@ struct Camera
bool mOrtho; bool mOrtho;
//! Horizontal field of view in degrees //! Horizontal field of view in degrees
float mHorFov; ai_real mHorFov;
//! Vertical field of view in degrees //! Vertical field of view in degrees
float mVerFov; ai_real mVerFov;
//! Screen aspect //! Screen aspect
float mAspect; ai_real mAspect;
//! Near& far z //! Near& far z
float mZNear, mZFar; ai_real mZNear, mZFar;
}; };
#define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f #define ASSIMP_COLLADA_LIGHT_ANGLE_NOT_SET 1e9f
@ -152,21 +152,21 @@ struct Light
aiColor3D mColor; aiColor3D mColor;
//! Light attenuation //! Light attenuation
float mAttConstant,mAttLinear,mAttQuadratic; ai_real mAttConstant,mAttLinear,mAttQuadratic;
//! Spot light falloff //! Spot light falloff
float mFalloffAngle; ai_real mFalloffAngle;
float mFalloffExponent; ai_real mFalloffExponent;
// ----------------------------------------------------- // -----------------------------------------------------
// FCOLLADA extension from here // FCOLLADA extension from here
//! ... related stuff from maja and max extensions //! ... related stuff from maja and max extensions
float mPenumbraAngle; ai_real mPenumbraAngle;
float mOuterAngle; ai_real mOuterAngle;
//! Common light intensity //! Common light intensity
float mIntensity; ai_real mIntensity;
}; };
/** Short vertex index description */ /** Short vertex index description */
@ -275,7 +275,7 @@ struct Node
struct Data struct Data
{ {
bool mIsStringArray; bool mIsStringArray;
std::vector<float> mValues; std::vector<ai_real> mValues;
std::vector<std::string> mStrings; std::vector<std::string> mStrings;
}; };
@ -387,7 +387,7 @@ struct Controller
std::string mJointNameSource; std::string mJointNameSource;
///< The bind shape matrix, as array of floats. I'm not sure what this matrix actually describes, but it can't be ignored in all cases ///< The bind shape matrix, as array of floats. I'm not sure what this matrix actually describes, but it can't be ignored in all cases
float mBindShapeMatrix[16]; ai_real mBindShapeMatrix[16];
// accessor URL of the joint inverse bind matrices // accessor URL of the joint inverse bind matrices
std::string mJointOffsetMatrixSource; std::string mJointOffsetMatrixSource;
@ -490,11 +490,11 @@ struct Sampler
/** Weighting factor /** Weighting factor
*/ */
float mWeighting; ai_real mWeighting;
/** Mixing factor from OKINO /** Mixing factor from OKINO
*/ */
float mMixWithPrevious; ai_real mMixWithPrevious;
}; };
/** A collada effect. Can contain about anything according to the Collada spec, /** A collada effect. Can contain about anything according to the Collada spec,
@ -513,8 +513,8 @@ struct Effect
mTexTransparent, mTexBump, mTexReflective; mTexTransparent, mTexBump, mTexReflective;
// Scalar factory // Scalar factory
float mShininess, mRefractIndex, mReflectivity; ai_real mShininess, mRefractIndex, mReflectivity;
float mTransparency; ai_real mTransparency;
bool mHasTransparency; bool mHasTransparency;
bool mRGBTransparency; bool mRGBTransparency;
bool mInvertTransparency; bool mInvertTransparency;

View File

@ -704,7 +704,7 @@ aiMesh* ColladaLoader::CreateMesh( const ColladaParser& pParser, const Collada::
size_t jointIndex = iit->first; size_t jointIndex = iit->first;
size_t vertexIndex = iit->second; size_t vertexIndex = iit->second;
float weight = ReadFloat( weightsAcc, weights, vertexIndex, 0); ai_real weight = ReadFloat( weightsAcc, weights, vertexIndex, 0);
// one day I gonna kill that XSI Collada exporter // one day I gonna kill that XSI Collada exporter
if( weight > 0.0f) if( weight > 0.0f)
@ -1071,7 +1071,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
continue; continue;
// resolve the data pointers for all anim channels. Find the minimum time while we're at it // resolve the data pointers for all anim channels. Find the minimum time while we're at it
float startTime = 1e20f, endTime = -1e20f; ai_real startTime = 1e20, endTime = -1e20;
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{ {
Collada::ChannelEntry& e = *it; Collada::ChannelEntry& e = *it;
@ -1100,7 +1100,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// now for every unique point in time, find or interpolate the key values for that time // now for every unique point in time, find or interpolate the key values for that time
// and apply them to the transform chain. Then the node's present transformation can be calculated. // and apply them to the transform chain. Then the node's present transformation can be calculated.
float time = startTime; ai_real time = startTime;
while( 1) while( 1)
{ {
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
@ -1109,7 +1109,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// find the keyframe behind the current point in time // find the keyframe behind the current point in time
size_t pos = 0; size_t pos = 0;
float postTime = 0.f; ai_real postTime = 0.0;
while( 1) while( 1)
{ {
if( pos >= e.mTimeAccessor->mCount) if( pos >= e.mTimeAccessor->mCount)
@ -1123,19 +1123,19 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
pos = std::min( pos, e.mTimeAccessor->mCount-1); pos = std::min( pos, e.mTimeAccessor->mCount-1);
// read values from there // read values from there
float temp[16]; ai_real temp[16];
for( size_t c = 0; c < e.mValueAccessor->mSize; ++c) for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
temp[c] = ReadFloat( *e.mValueAccessor, *e.mValueData, pos, c); temp[c] = ReadFloat( *e.mValueAccessor, *e.mValueData, pos, c);
// if not exactly at the key time, interpolate with previous value set // if not exactly at the key time, interpolate with previous value set
if( postTime > time && pos > 0) if( postTime > time && pos > 0)
{ {
float preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0); ai_real preTime = ReadFloat( *e.mTimeAccessor, *e.mTimeData, pos-1, 0);
float factor = (time - postTime) / (preTime - postTime); ai_real factor = (time - postTime) / (preTime - postTime);
for( size_t c = 0; c < e.mValueAccessor->mSize; ++c) for( size_t c = 0; c < e.mValueAccessor->mSize; ++c)
{ {
float v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c); ai_real v = ReadFloat( *e.mValueAccessor, *e.mValueData, pos-1, c);
temp[c] += (v - temp[c]) * factor; temp[c] += (v - temp[c]) * factor;
} }
} }
@ -1152,7 +1152,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
resultTrafos.push_back( mat); resultTrafos.push_back( mat);
// find next point in time to evaluate. That's the closest frame larger than the current in any channel // find next point in time to evaluate. That's the closest frame larger than the current in any channel
float nextTime = 1e20f; ai_real nextTime = 1e20;
for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it) for( std::vector<Collada::ChannelEntry>::iterator it = entries.begin(); it != entries.end(); ++it)
{ {
Collada::ChannelEntry& channelElement = *it; Collada::ChannelEntry& channelElement = *it;
@ -1161,7 +1161,7 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
size_t pos = 0; size_t pos = 0;
while( pos < channelElement.mTimeAccessor->mCount) while( pos < channelElement.mTimeAccessor->mCount)
{ {
const float t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0); const ai_real t = ReadFloat( *channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
if( t > time) if( t > time)
{ {
nextTime = std::min( nextTime, t); nextTime = std::min( nextTime, t);
@ -1174,16 +1174,16 @@ void ColladaLoader::CreateAnimation( aiScene* pScene, const ColladaParser& pPars
// Sub-sample axis-angle channels if the delta between two consecutive // Sub-sample axis-angle channels if the delta between two consecutive
// key-frame angles is >= 180 degrees. // key-frame angles is >= 180 degrees.
if (transforms[channelElement.mTransformIndex].mType == Collada::TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) { if (transforms[channelElement.mTransformIndex].mType == Collada::TF_ROTATE && channelElement.mSubElement == 3 && pos > 0 && pos < channelElement.mTimeAccessor->mCount) {
const float cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0); const ai_real cur_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos, 0);
const float last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0); const ai_real last_key_angle = ReadFloat(*channelElement.mValueAccessor, *channelElement.mValueData, pos - 1, 0);
const float cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0); const ai_real cur_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos, 0);
const float last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0); const ai_real last_key_time = ReadFloat(*channelElement.mTimeAccessor, *channelElement.mTimeData, pos - 1, 0);
const float last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time); const ai_real last_eval_angle = last_key_angle + (cur_key_angle - last_key_angle) * (time - last_key_time) / (cur_key_time - last_key_time);
const float delta = std::fabs(cur_key_angle - last_eval_angle); const ai_real delta = std::abs(cur_key_angle - last_eval_angle);
if (delta >= 180.0f) { if (delta >= 180.0) {
const int subSampleCount = static_cast<int>(floorf(delta / 90.0f)); const int subSampleCount = static_cast<int>(floorf(delta / 90.0));
if (cur_key_time != time) { if (cur_key_time != time) {
const float nextSampleTime = time + (cur_key_time - time) / subSampleCount; const ai_real nextSampleTime = time + (cur_key_time - time) / subSampleCount;
nextTime = std::min(nextTime, nextSampleTime); nextTime = std::min(nextTime, nextSampleTime);
} }
} }
@ -1289,7 +1289,7 @@ void ColladaLoader::AddTexture ( aiMaterial& mat, const ColladaParser& pParser,
_AI_MATKEY_TEXBLEND_BASE, type, idx); _AI_MATKEY_TEXBLEND_BASE, type, idx);
// Blend factor // Blend factor
mat.AddProperty((float*)&sampler.mWeighting , 1, mat.AddProperty((ai_real*)&sampler.mWeighting , 1,
_AI_MATKEY_TEXBLEND_BASE, type, idx); _AI_MATKEY_TEXBLEND_BASE, type, idx);
// UV source index ... if we didn't resolve the mapping, it is actually just // UV source index ... if we didn't resolve the mapping, it is actually just
@ -1464,11 +1464,11 @@ void ColladaLoader::BuildMaterials( ColladaParser& pParser, aiScene* /*pScene*/)
const int shadeMode = aiShadingMode_Phong; const int shadeMode = aiShadingMode_Phong;
mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL); mat->AddProperty<int>( &shadeMode, 1, AI_MATKEY_SHADING_MODEL);
aiColor4D colAmbient( 0.2f, 0.2f, 0.2f, 1.0f), colDiffuse( 0.8f, 0.8f, 0.8f, 1.0f), colSpecular( 0.5f, 0.5f, 0.5f, 0.5f); aiColor4D colAmbient( 0.2, 0.2, 0.2, 1.0), colDiffuse( 0.8, 0.8, 0.8, 1.0), colSpecular( 0.5, 0.5, 0.5, 0.5);
mat->AddProperty( &colAmbient, 1, AI_MATKEY_COLOR_AMBIENT); mat->AddProperty( &colAmbient, 1, AI_MATKEY_COLOR_AMBIENT);
mat->AddProperty( &colDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE); mat->AddProperty( &colDiffuse, 1, AI_MATKEY_COLOR_DIFFUSE);
mat->AddProperty( &colSpecular, 1, AI_MATKEY_COLOR_SPECULAR); mat->AddProperty( &colSpecular, 1, AI_MATKEY_COLOR_SPECULAR);
const float specExp = 5.0f; const ai_real specExp = 5.0;
mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS); mat->AddProperty( &specExp, 1, AI_MATKEY_SHININESS);
} }
#endif #endif
@ -1587,7 +1587,7 @@ void ColladaLoader::ConvertPath (aiString& ss)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Reads a float value from an accessor and its data array. // Reads a float value from an accessor and its data array.
float ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const ai_real ColladaLoader::ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const
{ {
// FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller // FIXME: (thom) Test for data type here in every access? For the moment, I leave this to the caller
size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset; size_t pos = pAccessor.mStride * pIndex + pAccessor.mOffset + pOffset;

View File

@ -190,7 +190,7 @@ protected:
* @param pOffset Offset into the element, for multipart elements such as vectors or matrices * @param pOffset Offset into the element, for multipart elements such as vectors or matrices
* @return the specified value * @return the specified value
*/ */
float ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const; ai_real ReadFloat( const Collada::Accessor& pAccessor, const Collada::Data& pData, size_t pIndex, size_t pOffset) const;
/** Reads a string value from an accessor and its data array. /** Reads a string value from an accessor and its data array.
* @param pAccessor The accessor to use for reading * @param pAccessor The accessor to use for reading

View File

@ -128,7 +128,7 @@ bool ColladaParser::ReadBoolFromTextContent()
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Read float from text contents of current element // Read float from text contents of current element
float ColladaParser::ReadFloatFromTextContent() ai_real ColladaParser::ReadFloatFromTextContent()
{ {
const char* cur = GetTextContent(); const char* cur = GetTextContent();
return fast_atof(cur); return fast_atof(cur);
@ -674,7 +674,7 @@ void ColladaParser::ReadController( Collada::Controller& pController)
for( unsigned int a = 0; a < 16; a++) for( unsigned int a = 0; a < 16; a++)
{ {
// read a number // read a number
content = fast_atoreal_move<float>( content, pController.mBindShapeMatrix[a]); content = fast_atoreal_move<ai_real>( content, pController.mBindShapeMatrix[a]);
// skip whitespace after it // skip whitespace after it
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
} }
@ -1179,13 +1179,13 @@ void ColladaParser::ReadLight( Collada::Light& pLight)
// text content contains 3 floats // text content contains 3 floats
const char* content = GetTextContent(); const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.r); content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.r);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.g); content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.g);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pLight.mColor.b); content = fast_atoreal_move<ai_real>( content, (ai_real&)pLight.mColor.b);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
TestClosing( "color"); TestClosing( "color");
@ -1578,16 +1578,16 @@ void ColladaParser::ReadEffectColor( aiColor4D& pColor, Sampler& pSampler)
// text content contains 4 floats // text content contains 4 floats
const char* content = GetTextContent(); const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, (float&)pColor.r); content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.r);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.g); content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.g);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.b); content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.b);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
content = fast_atoreal_move<float>( content, (float&)pColor.a); content = fast_atoreal_move<ai_real>( content, (ai_real&)pColor.a);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
TestClosing( "color"); TestClosing( "color");
} }
@ -1636,7 +1636,7 @@ void ColladaParser::ReadEffectColor( aiColor4D& pColor, Sampler& pSampler)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Reads an effect entry containing a float // Reads an effect entry containing a float
void ColladaParser::ReadEffectFloat( float& pFloat) void ColladaParser::ReadEffectFloat( ai_real& pFloat)
{ {
while( mReader->read()) while( mReader->read())
{ {
@ -1645,7 +1645,7 @@ void ColladaParser::ReadEffectFloat( float& pFloat)
{ {
// text content contains a single floats // text content contains a single floats
const char* content = GetTextContent(); const char* content = GetTextContent();
content = fast_atoreal_move<float>( content, pFloat); content = fast_atoreal_move<ai_real>( content, pFloat);
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
TestClosing( "float"); TestClosing( "float");
@ -1943,9 +1943,9 @@ void ColladaParser::ReadDataArray()
if( *content == 0) if( *content == 0)
ThrowException( "Expected more values while reading float_array contents."); ThrowException( "Expected more values while reading float_array contents.");
float value; ai_real value;
// read a number // read a number
content = fast_atoreal_move<float>( content, value); content = fast_atoreal_move<ai_real>( content, value);
data.mValues.push_back( value); data.mValues.push_back( value);
// skip whitespace after it // skip whitespace after it
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
@ -2456,11 +2456,11 @@ void ColladaParser::ExtractDataObjectFromChannel( const InputChannel& pInput, si
ThrowException( format() << "Invalid data index (" << pLocalIndex << "/" << acc.mCount << ") in primitive specification" ); ThrowException( format() << "Invalid data index (" << pLocalIndex << "/" << acc.mCount << ") in primitive specification" );
// get a pointer to the start of the data object referred to by the accessor and the local index // get a pointer to the start of the data object referred to by the accessor and the local index
const float* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride; const ai_real* dataObject = &(acc.mData->mValues[0]) + acc.mOffset + pLocalIndex* acc.mStride;
// assemble according to the accessors component sub-offset list. We don't care, yet, // assemble according to the accessors component sub-offset list. We don't care, yet,
// what kind of object exactly we're extracting here // what kind of object exactly we're extracting here
float obj[4]; ai_real obj[4];
for( size_t c = 0; c < 4; ++c) for( size_t c = 0; c < 4; ++c)
obj[c] = dataObject[acc.mSubOffset[c]]; obj[c] = dataObject[acc.mSubOffset[c]];
@ -2764,7 +2764,7 @@ void ColladaParser::ReadNodeTransformation( Node* pNode, TransformType pType)
for( unsigned int a = 0; a < sNumParameters[pType]; a++) for( unsigned int a = 0; a < sNumParameters[pType]; a++)
{ {
// read a number // read a number
content = fast_atoreal_move<float>( content, tf.f[a]); content = fast_atoreal_move<ai_real>( content, tf.f[a]);
// skip whitespace after it // skip whitespace after it
SkipSpacesAndLineEnd( &content); SkipSpacesAndLineEnd( &content);
} }
@ -3075,7 +3075,7 @@ aiMatrix4x4 ColladaParser::CalculateResultTransform( const std::vector<Transform
case TF_ROTATE: case TF_ROTATE:
{ {
aiMatrix4x4 rot; aiMatrix4x4 rot;
float angle = tf.f[3] * float( AI_MATH_PI) / 180.0f; ai_real angle = tf.f[3] * ai_real( AI_MATH_PI) / 180.0;
aiVector3D axis( tf.f[0], tf.f[1], tf.f[2]); aiVector3D axis( tf.f[0], tf.f[1], tf.f[2]);
aiMatrix4x4::Rotation( angle, axis, rot); aiMatrix4x4::Rotation( angle, axis, rot);
res *= rot; res *= rot;

View File

@ -147,7 +147,7 @@ namespace Assimp
void ReadEffectColor( aiColor4D& pColor, Collada::Sampler& pSampler); void ReadEffectColor( aiColor4D& pColor, Collada::Sampler& pSampler);
/** Reads an effect entry containing a float */ /** Reads an effect entry containing a float */
void ReadEffectFloat( float& pFloat); void ReadEffectFloat( ai_real& pFloat);
/** Reads an effect parameter specification of any kind */ /** Reads an effect parameter specification of any kind */
void ReadEffectParam( Collada::EffectParam& pParam); void ReadEffectParam( Collada::EffectParam& pParam);
@ -259,7 +259,7 @@ namespace Assimp
bool ReadBoolFromTextContent(); bool ReadBoolFromTextContent();
/** Reads a single float from current text content */ /** Reads a single float from current text content */
float ReadFloatFromTextContent(); ai_real ReadFloatFromTextContent();
/** Calculates the resulting transformation from all the given transform steps */ /** Calculates the resulting transformation from all the given transform steps */
aiMatrix4x4 CalculateResultTransform( const std::vector<Collada::Transform>& pTransforms) const; aiMatrix4x4 CalculateResultTransform( const std::vector<Collada::Transform>& pTransforms) const;
@ -335,7 +335,7 @@ namespace Assimp
Collada::Animation mAnims; Collada::Animation mAnims;
/** Size unit: how large compared to a meter */ /** Size unit: how large compared to a meter */
float mUnitSize; ai_real mUnitSize;
/** Which is the up vector */ /** Which is the up vector */
enum { UP_X, UP_Y, UP_Z } mUpDirection; enum { UP_X, UP_Y, UP_Z } mUpDirection;

View File

@ -161,9 +161,9 @@ void OFFImporter::InternReadFile( const std::string& pFile,
aiVector3D& v = tempPositions[i]; aiVector3D& v = tempPositions[i];
sz = line; SkipSpaces(&sz); sz = line; SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz,(float&)v.x); SkipSpaces(&sz); sz = fast_atoreal_move<ai_real>(sz,(ai_real&)v.x); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz,(float&)v.y); SkipSpaces(&sz); sz = fast_atoreal_move<ai_real>(sz,(ai_real&)v.y); SkipSpaces(&sz);
fast_atoreal_move<float>(sz,(float&)v.z); fast_atoreal_move<ai_real>(sz,(ai_real&)v.z);
} }
@ -242,7 +242,7 @@ void OFFImporter::InternReadFile( const std::string& pFile,
pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials]; pScene->mMaterials = new aiMaterial*[pScene->mNumMaterials];
aiMaterial* pcMat = new aiMaterial(); aiMaterial* pcMat = new aiMaterial();
aiColor4D clr(0.6f,0.6f,0.6f,1.0f); aiColor4D clr(0.6,0.6,0.6,1.0);
pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_DIFFUSE); pcMat->AddProperty(&clr,1,AI_MATKEY_COLOR_DIFFUSE);
pScene->mMaterials[0] = pcMat; pScene->mMaterials[0] = pcMat;

View File

@ -167,7 +167,7 @@ void ObjExporter::WriteMaterialFile()
mOutputMat << "Ke " << c.r << " " << c.g << " " << c.b << endl; mOutputMat << "Ke " << c.r << " " << c.g << " " << c.b << endl;
} }
float o; ai_real o;
if(AI_SUCCESS == mat->Get(AI_MATKEY_OPACITY,o)) { if(AI_SUCCESS == mat->Get(AI_MATKEY_OPACITY,o)) {
mOutputMat << "d " << o << endl; mOutputMat << "d " << o << endl;
} }

View File

@ -191,21 +191,21 @@ struct Material
//! Emissive color //! Emissive color
aiColor3D emissive; aiColor3D emissive;
//! Alpha value //! Alpha value
float alpha; ai_real alpha;
//! Shineness factor //! Shineness factor
float shineness; ai_real shineness;
//! Illumination model //! Illumination model
int illumination_model; int illumination_model;
//! Index of refraction //! Index of refraction
float ior; ai_real ior;
//! Constructor //! Constructor
Material() Material()
: diffuse (0.6f,0.6f,0.6f) : diffuse (0.6,0.6,0.6)
, alpha (1.f) , alpha (1.0)
, shineness (0.0f) , shineness (0.0)
, illumination_model (1) , illumination_model (1)
, ior (1.f) , ior (1.0)
{ {
// empty // empty
for (size_t i = 0; i < TextureTypeCount; ++i) for (size_t i = 0; i < TextureTypeCount; ++i)

View File

@ -232,7 +232,7 @@ void ObjFileMtlImporter::getColorRGBA( aiColor3D *pColor )
{ {
ai_assert( NULL != pColor ); ai_assert( NULL != pColor );
float r( 0.0f ), g( 0.0f ), b( 0.0f ); ai_real r( 0.0 ), g( 0.0 ), b( 0.0 );
m_DataIt = getFloat<DataArrayIt>( m_DataIt, m_DataItEnd, r ); m_DataIt = getFloat<DataArrayIt>( m_DataIt, m_DataItEnd, r );
pColor->r = r; pColor->r = r;
@ -255,10 +255,10 @@ void ObjFileMtlImporter::getIlluminationModel( int &illum_model )
// ------------------------------------------------------------------- // -------------------------------------------------------------------
// Loads a single float value. // Loads a single float value.
void ObjFileMtlImporter::getFloatValue( float &value ) void ObjFileMtlImporter::getFloatValue( ai_real &value )
{ {
m_DataIt = CopyNextWord<DataArrayIt>( m_DataIt, m_DataItEnd, m_buffer, BUFFERSIZE ); m_DataIt = CopyNextWord<DataArrayIt>( m_DataIt, m_DataItEnd, m_buffer, BUFFERSIZE );
value = (float) fast_atof(m_buffer); value = (ai_real) fast_atof(m_buffer);
} }
// ------------------------------------------------------------------- // -------------------------------------------------------------------

View File

@ -41,6 +41,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <vector> #include <vector>
#include <string> #include <string>
#include <assimp/defs.h>
struct aiColor3D; struct aiColor3D;
struct aiString; struct aiString;
@ -85,7 +86,7 @@ private:
/// Get illumination model from loaded data /// Get illumination model from loaded data
void getIlluminationModel( int &illum_model ); void getIlluminationModel( int &illum_model );
/// Gets a float value from data. /// Gets a float value from data.
void getFloatValue( float &value ); void getFloatValue( ai_real &value );
/// Creates a new material from loaded data. /// Creates a new material from loaded data.
void createMaterial(); void createMaterial();
/// Get texture name from loaded data. /// Get texture name from loaded data.

View File

@ -279,23 +279,23 @@ size_t ObjFileParser::getNumComponentsInLine() {
// ------------------------------------------------------------------- // -------------------------------------------------------------------
void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) { void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) {
size_t numComponents = getNumComponentsInLine(); size_t numComponents = getNumComponentsInLine();
float x, y, z; ai_real x, y, z;
if( 2 == numComponents ) { if( 2 == numComponents ) {
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
x = ( float ) fast_atof( m_buffer ); x = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
y = ( float ) fast_atof( m_buffer ); y = ( ai_real ) fast_atof( m_buffer );
z = 0.0; z = 0.0;
} else if( 3 == numComponents ) { } else if( 3 == numComponents ) {
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
x = ( float ) fast_atof( m_buffer ); x = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
y = ( float ) fast_atof( m_buffer ); y = ( ai_real ) fast_atof( m_buffer );
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer ); z = ( ai_real ) fast_atof( m_buffer );
} else { } else {
throw DeadlyImportError( "OBJ: Invalid number of components" ); throw DeadlyImportError( "OBJ: Invalid number of components" );
} }
@ -306,15 +306,15 @@ void ObjFileParser::getVector( std::vector<aiVector3D> &point3d_array ) {
// ------------------------------------------------------------------- // -------------------------------------------------------------------
// Get values for a new 3D vector instance // Get values for a new 3D vector instance
void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) { void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) {
float x, y, z; ai_real x, y, z;
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer); x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer); y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer ); z = ( ai_real ) fast_atof( m_buffer );
point3d_array.push_back( aiVector3D( x, y, z ) ); point3d_array.push_back( aiVector3D( x, y, z ) );
m_DataIt = skipLine<DataArrayIt>( m_DataIt, m_DataItEnd, m_uiLine ); m_DataIt = skipLine<DataArrayIt>( m_DataIt, m_DataItEnd, m_uiLine );
@ -323,26 +323,26 @@ void ObjFileParser::getVector3( std::vector<aiVector3D> &point3d_array ) {
// ------------------------------------------------------------------- // -------------------------------------------------------------------
// Get values for two 3D vectors on the same line // Get values for two 3D vectors on the same line
void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, std::vector<aiVector3D> &point3d_array_b ) { void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, std::vector<aiVector3D> &point3d_array_b ) {
float x, y, z; ai_real x, y, z;
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer); x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer); y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer ); z = ( ai_real ) fast_atof( m_buffer );
point3d_array_a.push_back( aiVector3D( x, y, z ) ); point3d_array_a.push_back( aiVector3D( x, y, z ) );
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer); x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer); y = (ai_real) fast_atof(m_buffer);
copyNextWord( m_buffer, Buffersize ); copyNextWord( m_buffer, Buffersize );
z = ( float ) fast_atof( m_buffer ); z = ( ai_real ) fast_atof( m_buffer );
point3d_array_b.push_back( aiVector3D( x, y, z ) ); point3d_array_b.push_back( aiVector3D( x, y, z ) );
@ -352,12 +352,12 @@ void ObjFileParser::getTwoVectors3( std::vector<aiVector3D> &point3d_array_a, st
// ------------------------------------------------------------------- // -------------------------------------------------------------------
// Get values for a new 2D vector instance // Get values for a new 2D vector instance
void ObjFileParser::getVector2( std::vector<aiVector2D> &point2d_array ) { void ObjFileParser::getVector2( std::vector<aiVector2D> &point2d_array ) {
float x, y; ai_real x, y;
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
x = (float) fast_atof(m_buffer); x = (ai_real) fast_atof(m_buffer);
copyNextWord(m_buffer, Buffersize); copyNextWord(m_buffer, Buffersize);
y = (float) fast_atof(m_buffer); y = (ai_real) fast_atof(m_buffer);
point2d_array.push_back(aiVector2D(x, y)); point2d_array.push_back(aiVector2D(x, y));

View File

@ -196,12 +196,12 @@ inline char_t CopyNextWord( char_t it, char_t end, char *pBuffer, size_t length
* @return Current-iterator with new position * @return Current-iterator with new position
*/ */
template<class char_t> template<class char_t>
inline char_t getFloat( char_t it, char_t end, float &value ) inline char_t getFloat( char_t it, char_t end, ai_real &value )
{ {
static const size_t BUFFERSIZE = 1024; static const size_t BUFFERSIZE = 1024;
char buffer[ BUFFERSIZE ]; char buffer[ BUFFERSIZE ];
it = CopyNextWord<char_t>( it, end, buffer, BUFFERSIZE ); it = CopyNextWord<char_t>( it, end, buffer, BUFFERSIZE );
value = (float) fast_atof( buffer ); value = (ai_real) fast_atof( buffer );
return it; return it;
} }

View File

@ -481,13 +481,13 @@ void PLYImporter::LoadTextureCoordinates(std::vector<aiVector2D>* pvOut)
if (0xFFFFFFFF != aiPositions[0]) if (0xFFFFFFFF != aiPositions[0])
{ {
vOut.x = PLY::PropertyInstance::ConvertTo<float>( vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]); GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]);
} }
if (0xFFFFFFFF != aiPositions[1]) if (0xFFFFFFFF != aiPositions[1])
{ {
vOut.y = PLY::PropertyInstance::ConvertTo<float>( vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]); GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]);
} }
// and add them to our nice list // and add them to our nice list
@ -502,7 +502,7 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
{ {
ai_assert(NULL != pvOut); ai_assert(NULL != pvOut);
unsigned int aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF}; ai_uint aiPositions[3] = {0xFFFFFFFF,0xFFFFFFFF,0xFFFFFFFF};
PLY::EDataType aiTypes[3] = {EDT_Char,EDT_Char,EDT_Char}; PLY::EDataType aiTypes[3] = {EDT_Char,EDT_Char,EDT_Char};
PLY::ElementInstanceList* pcList = NULL; PLY::ElementInstanceList* pcList = NULL;
unsigned int cnt = 0; unsigned int cnt = 0;
@ -591,19 +591,19 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
if (0xFFFFFFFF != aiPositions[0]) if (0xFFFFFFFF != aiPositions[0])
{ {
vOut.x = PLY::PropertyInstance::ConvertTo<float>( vOut.x = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]); GetProperty((*i).alProperties, aiPositions[0]).avList.front(),aiTypes[0]);
} }
if (0xFFFFFFFF != aiPositions[1]) if (0xFFFFFFFF != aiPositions[1])
{ {
vOut.y = PLY::PropertyInstance::ConvertTo<float>( vOut.y = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]); GetProperty((*i).alProperties, aiPositions[1]).avList.front(),aiTypes[1]);
} }
if (0xFFFFFFFF != aiPositions[2]) if (0xFFFFFFFF != aiPositions[2])
{ {
vOut.z = PLY::PropertyInstance::ConvertTo<float>( vOut.z = PLY::PropertyInstance::ConvertTo<ai_real>(
GetProperty((*i).alProperties, aiPositions[2]).avList.front(),aiTypes[2]); GetProperty((*i).alProperties, aiPositions[2]).avList.front(),aiTypes[2]);
} }
@ -615,7 +615,7 @@ void PLYImporter::LoadVertices(std::vector<aiVector3D>* pvOut, bool p_bNormals)
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
// Convert a color component to [0...1] // Convert a color component to [0...1]
float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val, ai_real PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType) PLY::EDataType eType)
{ {
switch (eType) switch (eType)
@ -623,20 +623,20 @@ float PLYImporter::NormalizeColorValue (PLY::PropertyInstance::ValueUnion val,
case EDT_Float: case EDT_Float:
return val.fFloat; return val.fFloat;
case EDT_Double: case EDT_Double:
return (float)val.fDouble; return (ai_real)val.fDouble;
case EDT_UChar: case EDT_UChar:
return (float)val.iUInt / (float)0xFF; return (ai_real)val.iUInt / (ai_real)0xFF;
case EDT_Char: case EDT_Char:
return (float)(val.iInt+(0xFF/2)) / (float)0xFF; return (ai_real)(val.iInt+(0xFF/2)) / (ai_real)0xFF;
case EDT_UShort: case EDT_UShort:
return (float)val.iUInt / (float)0xFFFF; return (ai_real)val.iUInt / (ai_real)0xFFFF;
case EDT_Short: case EDT_Short:
return (float)(val.iInt+(0xFFFF/2)) / (float)0xFFFF; return (ai_real)(val.iInt+(0xFFFF/2)) / (ai_real)0xFFFF;
case EDT_UInt: case EDT_UInt:
return (float)val.iUInt / (float)0xFFFF; return (ai_real)val.iUInt / (ai_real)0xFFFF;
case EDT_Int: case EDT_Int:
return ((float)val.iInt / (float)0xFF) + 0.5f; return ((ai_real)val.iInt / (ai_real)0xFF) + 0.5f;
default: ; default: ;
}; };
return 0.0f; return 0.0f;
@ -727,7 +727,7 @@ void PLYImporter::LoadVertexColor(std::vector<aiColor4D>* pvOut)
} }
// assume 1.0 for the alpha channel ifit is not set // assume 1.0 for the alpha channel ifit is not set
if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0f; if (0xFFFFFFFF == aiPositions[3])vOut.a = 1.0;
else else
{ {
vOut.a = NormalizeColorValue(GetProperty((*i).alProperties, vOut.a = NormalizeColorValue(GetProperty((*i).alProperties,
@ -1076,14 +1076,14 @@ void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut)
// handle phong power and shading mode // handle phong power and shading mode
int iMode; int iMode;
if (0xFFFFFFFF != iPhong) { if (0xFFFFFFFF != iPhong) {
float fSpec = PLY::PropertyInstance::ConvertTo<float>(GetProperty((*i).alProperties, iPhong).avList.front(),ePhong); ai_real fSpec = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(),ePhong);
// if shininess is 0 (and the pow() calculation would therefore always // if shininess is 0 (and the pow() calculation would therefore always
// become 1, not depending on the angle), use gouraud lighting // become 1, not depending on the angle), use gouraud lighting
if (fSpec) { if (fSpec) {
// scale this with 15 ... hopefully this is correct // scale this with 15 ... hopefully this is correct
fSpec *= 15; fSpec *= 15;
pcHelper->AddProperty<float>(&fSpec, 1, AI_MATKEY_SHININESS); pcHelper->AddProperty<ai_real>(&fSpec, 1, AI_MATKEY_SHININESS);
iMode = (int)aiShadingMode_Phong; iMode = (int)aiShadingMode_Phong;
} }
@ -1094,8 +1094,8 @@ void PLYImporter::LoadMaterial(std::vector<aiMaterial*>* pvOut)
// handle opacity // handle opacity
if (0xFFFFFFFF != iOpacity) { if (0xFFFFFFFF != iOpacity) {
float fOpacity = PLY::PropertyInstance::ConvertTo<float>(GetProperty((*i).alProperties, iPhong).avList.front(),eOpacity); ai_real fOpacity = PLY::PropertyInstance::ConvertTo<ai_real>(GetProperty((*i).alProperties, iPhong).avList.front(),eOpacity);
pcHelper->AddProperty<float>(&fOpacity, 1, AI_MATKEY_OPACITY); pcHelper->AddProperty<ai_real>(&fOpacity, 1, AI_MATKEY_OPACITY);
} }
// The face order is absolutely undefined for PLY, so we have to // The face order is absolutely undefined for PLY, so we have to

View File

@ -155,7 +155,7 @@ protected:
/** Static helper to parse a color channel value. The input value /** Static helper to parse a color channel value. The input value
* is normalized to 0-1. * is normalized to 0-1.
*/ */
static float NormalizeColorValue ( static ai_real NormalizeColorValue (
PLY::PropertyInstance::ValueUnion val, PLY::PropertyInstance::ValueUnion val,
PLY::EDataType eType); PLY::EDataType eType);

View File

@ -825,8 +825,8 @@ bool PLY::PropertyInstance::ParseValue(
case EDT_Double: case EDT_Double:
float f; double f;
pCur = fast_atoreal_move<float>(pCur,f); pCur = fast_atoreal_move<double>(pCur,f);
out->fDouble = (double)f; out->fDouble = (double)f;
break; break;

View File

@ -162,12 +162,12 @@ void STLExporter :: WriteMeshBinary(const aiMesh* m)
} }
nor.Normalize(); nor.Normalize();
} }
float nx = nor.x, ny = nor.y, nz = nor.z; ai_real nx = nor.x, ny = nor.y, nz = nor.z;
AI_SWAP4(nx); AI_SWAP4(ny); AI_SWAP4(nz); AI_SWAP4(nx); AI_SWAP4(ny); AI_SWAP4(nz);
mOutput.write((char *)&nx, 4); mOutput.write((char *)&ny, 4); mOutput.write((char *)&nz, 4); mOutput.write((char *)&nx, 4); mOutput.write((char *)&ny, 4); mOutput.write((char *)&nz, 4);
for(unsigned int a = 0; a < f.mNumIndices; ++a) { for(unsigned int a = 0; a < f.mNumIndices; ++a) {
const aiVector3D& v = m->mVertices[f.mIndices[a]]; const aiVector3D& v = m->mVertices[f.mIndices[a]];
float vx = v.x, vy = v.y, vz = v.z; ai_real vx = v.x, vy = v.y, vz = v.z;
AI_SWAP4(vx); AI_SWAP4(vy); AI_SWAP4(vz); AI_SWAP4(vx); AI_SWAP4(vy); AI_SWAP4(vz);
mOutput.write((char *)&vx, 4); mOutput.write((char *)&vy, 4); mOutput.write((char *)&vz, 4); mOutput.write((char *)&vx, 4); mOutput.write((char *)&vy, 4); mOutput.write((char *)&vz, 4);
} }

View File

@ -189,7 +189,7 @@ void STLImporter::InternReadFile( const std::string& pFile,
this->mBuffer = &mBuffer2[0]; this->mBuffer = &mBuffer2[0];
// the default vertex color is light gray. // the default vertex color is light gray.
clrColorDefault.r = clrColorDefault.g = clrColorDefault.b = clrColorDefault.a = 0.6f; clrColorDefault.r = clrColorDefault.g = clrColorDefault.b = clrColorDefault.a = 0.6;
// allocate a single node // allocate a single node
pScene->mRootNode = new aiNode(); pScene->mRootNode = new aiNode();
@ -217,13 +217,13 @@ void STLImporter::InternReadFile( const std::string& pFile,
s.Set(AI_DEFAULT_MATERIAL_NAME); s.Set(AI_DEFAULT_MATERIAL_NAME);
pcMat->AddProperty(&s, AI_MATKEY_NAME); pcMat->AddProperty(&s, AI_MATKEY_NAME);
aiColor4D clrDiffuse(0.6f,0.6f,0.6f,1.0f); aiColor4D clrDiffuse(0.6,0.6,0.6,1.0);
if (bMatClr) { if (bMatClr) {
clrDiffuse = clrColorDefault; clrDiffuse = clrColorDefault;
} }
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_DIFFUSE); pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_DIFFUSE);
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_SPECULAR); pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_SPECULAR);
clrDiffuse = aiColor4D(0.05f,0.05f,0.05f,1.0f); clrDiffuse = aiColor4D(0.05,0.05,0.05,1.0);
pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_AMBIENT); pcMat->AddProperty(&clrDiffuse,1,AI_MATKEY_COLOR_AMBIENT);
pScene->mNumMaterials = 1; pScene->mNumMaterials = 1;
@ -307,11 +307,11 @@ void STLImporter::LoadASCIIFile()
} }
sz += 7; sz += 7;
SkipSpaces(&sz); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->x ); sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->x );
SkipSpaces(&sz); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->y ); sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->y );
SkipSpaces(&sz); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->z ); sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->z );
normalBuffer.push_back(*vn); normalBuffer.push_back(*vn);
normalBuffer.push_back(*vn); normalBuffer.push_back(*vn);
} }
@ -332,11 +332,11 @@ void STLImporter::LoadASCIIFile()
SkipSpaces(&sz); SkipSpaces(&sz);
positionBuffer.push_back(aiVector3D()); positionBuffer.push_back(aiVector3D());
aiVector3D* vn = &positionBuffer.back(); aiVector3D* vn = &positionBuffer.back();
sz = fast_atoreal_move<float>(sz, (float&)vn->x ); sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->x );
SkipSpaces(&sz); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->y ); sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->y );
SkipSpaces(&sz); SkipSpaces(&sz);
sz = fast_atoreal_move<float>(sz, (float&)vn->z ); sz = fast_atoreal_move<ai_real>(sz, (ai_real&)vn->z );
faceVertexCounter++; faceVertexCounter++;
} }
} }
@ -416,10 +416,10 @@ bool STLImporter::LoadBinaryFile()
// read the default vertex color for facets // read the default vertex color for facets
bIsMaterialise = true; bIsMaterialise = true;
DefaultLogger::get()->info("STL: Taking code path for Materialise files"); DefaultLogger::get()->info("STL: Taking code path for Materialise files");
clrColorDefault.r = (*sz2++) / 255.0f; clrColorDefault.r = (*sz2++) / 255.0;
clrColorDefault.g = (*sz2++) / 255.0f; clrColorDefault.g = (*sz2++) / 255.0;
clrColorDefault.b = (*sz2++) / 255.0f; clrColorDefault.b = (*sz2++) / 255.0;
clrColorDefault.a = (*sz2++) / 255.0f; clrColorDefault.a = (*sz2++) / 255.0;
break; break;
} }
} }
@ -480,18 +480,18 @@ bool STLImporter::LoadBinaryFile()
DefaultLogger::get()->info("STL: Mesh has vertex colors"); DefaultLogger::get()->info("STL: Mesh has vertex colors");
} }
aiColor4D* clr = &pMesh->mColors[0][i*3]; aiColor4D* clr = &pMesh->mColors[0][i*3];
clr->a = 1.0f; clr->a = 1.0;
if (bIsMaterialise) // this is reversed if (bIsMaterialise) // this is reversed
{ {
clr->r = (color & 0x31u) / 31.0f; clr->r = (color & 0x31u) / 31.0;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0f; clr->g = ((color & (0x31u<<5))>>5u) / 31.0;
clr->b = ((color & (0x31u<<10))>>10u) / 31.0f; clr->b = ((color & (0x31u<<10))>>10u) / 31.0;
} }
else else
{ {
clr->b = (color & 0x31u) / 31.0f; clr->b = (color & 0x31u) / 31.0;
clr->g = ((color & (0x31u<<5))>>5u) / 31.0f; clr->g = ((color & (0x31u<<5))>>5u) / 31.0;
clr->r = ((color & (0x31u<<10))>>10u) / 31.0f; clr->r = ((color & (0x31u<<10))>>10u) / 31.0;
} }
// assign the color to all vertices of the face // assign the color to all vertices of the face
*(clr+1) = *clr; *(clr+1) = *clr;

View File

@ -82,7 +82,7 @@ struct Material
std::string mName; std::string mName;
bool mIsReference; // if true, mName holds a name by which the actual material can be found in the material list bool mIsReference; // if true, mName holds a name by which the actual material can be found in the material list
aiColor4D mDiffuse; aiColor4D mDiffuse;
float mSpecularExponent; ai_real mSpecularExponent;
aiColor3D mSpecular; aiColor3D mSpecular;
aiColor3D mEmissive; aiColor3D mEmissive;
std::vector<TexEntry> mTextures; std::vector<TexEntry> mTextures;
@ -100,7 +100,7 @@ struct Material
struct BoneWeight struct BoneWeight
{ {
unsigned int mVertex; unsigned int mVertex;
float mWeight; ai_real mWeight;
}; };
/** Helper structure to represent a bone in a mesh */ /** Helper structure to represent a bone in a mesh */

View File

@ -373,7 +373,7 @@ void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vec
{ {
const XFile::Bone& obone = bones[c]; const XFile::Bone& obone = bones[c];
// set up a vertex-linear array of the weights for quick searching if a bone influences a vertex // set up a vertex-linear array of the weights for quick searching if a bone influences a vertex
std::vector<float> oldWeights( sourceMesh->mPositions.size(), 0.0f); std::vector<ai_real> oldWeights( sourceMesh->mPositions.size(), 0.0);
for( unsigned int d = 0; d < obone.mWeights.size(); d++) for( unsigned int d = 0; d < obone.mWeights.size(); d++)
oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight; oldWeights[obone.mWeights[d].mVertex] = obone.mWeights[d].mWeight;
@ -383,8 +383,8 @@ void XFileImporter::CreateMeshes( aiScene* pScene, aiNode* pNode, const std::vec
for( unsigned int d = 0; d < orgPoints.size(); d++) for( unsigned int d = 0; d < orgPoints.size(); d++)
{ {
// does the new vertex stem from an old vertex which was influenced by this bone? // does the new vertex stem from an old vertex which was influenced by this bone?
float w = oldWeights[orgPoints[d]]; ai_real w = oldWeights[orgPoints[d]];
if( w > 0.0f) if( w > 0.0)
newWeights.push_back( aiVertexWeight( d, w)); newWeights.push_back( aiVertexWeight( d, w));
} }
@ -713,4 +713,3 @@ void XFileImporter::ConvertMaterials( aiScene* pScene, std::vector<XFile::Materi
} }
#endif // !! ASSIMP_BUILD_NO_X_IMPORTER #endif // !! ASSIMP_BUILD_NO_X_IMPORTER

View File

@ -1326,7 +1326,7 @@ unsigned int XFileParser::ReadInt()
} }
// ------------------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------------------
float XFileParser::ReadFloat() ai_real XFileParser::ReadFloat()
{ {
if( mIsBinaryFormat) if( mIsBinaryFormat)
{ {
@ -1343,7 +1343,7 @@ float XFileParser::ReadFloat()
if( mBinaryFloatSize == 8) if( mBinaryFloatSize == 8)
{ {
if( End - P >= 8) { if( End - P >= 8) {
float result = (float) (*(double*) P); ai_real result = (ai_real) (*(double*) P);
P += 8; P += 8;
return result; return result;
} else { } else {
@ -1353,7 +1353,7 @@ float XFileParser::ReadFloat()
} else } else
{ {
if( End - P >= 4) { if( End - P >= 4) {
float result = *(float*) P; ai_real result = *(ai_real*) P;
P += 4; P += 4;
return result; return result;
} else { } else {
@ -1372,17 +1372,17 @@ float XFileParser::ReadFloat()
{ {
P += 9; P += 9;
CheckForSeparator(); CheckForSeparator();
return 0.0f; return 0.0;
} else } else
if( strncmp( P, "1.#QNAN0", 8) == 0) if( strncmp( P, "1.#QNAN0", 8) == 0)
{ {
P += 8; P += 8;
CheckForSeparator(); CheckForSeparator();
return 0.0f; return 0.0;
} }
float result = 0.0f; ai_real result = 0.0;
P = fast_atoreal_move<float>( P, result); P = fast_atoreal_move<ai_real>( P, result);
CheckForSeparator(); CheckForSeparator();

View File

@ -127,7 +127,7 @@ protected:
unsigned short ReadBinWord(); unsigned short ReadBinWord();
unsigned int ReadBinDWord(); unsigned int ReadBinDWord();
unsigned int ReadInt(); unsigned int ReadInt();
float ReadFloat(); ai_real ReadFloat();
aiVector2D ReadVector2(); aiVector2D ReadVector2();
aiVector3D ReadVector3(); aiVector3D ReadVector3();
aiColor3D ReadRGB(); aiColor3D ReadRGB();

View File

@ -19,6 +19,7 @@
#include <limits> #include <limits>
#include <stdint.h> #include <stdint.h>
#include <stdexcept> #include <stdexcept>
#include <assimp/defs.h>
#include "StringComparison.h" #include "StringComparison.h"
@ -350,51 +351,26 @@ inline const char* fast_atoreal_move(const char* c, Real& out, bool check_comma
// ------------------------------------------------------------------------------------ // ------------------------------------------------------------------------------------
// The same but more human. // The same but more human.
inline float fast_atof(const char* c) inline ai_real fast_atof(const char* c)
{ {
float ret; ai_real ret;
fast_atoreal_move<float>(c, ret); fast_atoreal_move<ai_real>(c, ret);
return ret; return ret;
} }
inline float fast_atof( const char* c, const char** cout) inline ai_real fast_atof( const char* c, const char** cout)
{ {
float ret; ai_real ret;
*cout = fast_atoreal_move<float>(c, ret); *cout = fast_atoreal_move<ai_real>(c, ret);
return ret; return ret;
} }
inline float fast_atof( const char** inout) inline ai_real fast_atof( const char** inout)
{ {
float ret; ai_real ret;
*inout = fast_atoreal_move<float>(*inout, ret); *inout = fast_atoreal_move<ai_real>(*inout, ret);
return ret;
}
inline double fast_atod(const char* c)
{
double ret;
fast_atoreal_move<double>(c, ret);
return ret;
}
inline double fast_atod( const char* c, const char** cout)
{
double ret;
*cout = fast_atoreal_move<double>(c, ret);
return ret;
}
inline double fast_atod( const char** inout)
{
double ret;
*inout = fast_atoreal_move<double>(*inout, ret);
return ret; return ret;
} }
@ -402,4 +378,3 @@ inline double fast_atod( const char** inout)
} // end of namespace Assimp } // end of namespace Assimp
#endif #endif

View File

@ -228,6 +228,21 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# define ASSIMP_BUILD_DEBUG # define ASSIMP_BUILD_DEBUG
#endif #endif
//////////////////////////////////////////////////////////////////////////
/* Define AI_DOUBLE_PRECISION to compile assimp
* with double precision support (64-bit). */
//////////////////////////////////////////////////////////////////////////
#ifdef AI_DOUBLE_PRECISION
typedef double ai_real;
typedef signed long long int ai_int;
typedef unsigned long long int ai_uint;
#else // AI_DOUBLE_PRECISION
typedef float ai_real;
typedef signed int ai_int;
typedef unsigned int ai_uint;
#endif // AI_DOUBLE_PRECISION
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
/* Useful constants */ /* Useful constants */
////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////
@ -242,6 +257,10 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#define AI_MATH_TWO_PI_F (AI_MATH_PI_F * 2.0f) #define AI_MATH_TWO_PI_F (AI_MATH_PI_F * 2.0f)
#define AI_MATH_HALF_PI_F (AI_MATH_PI_F * 0.5f) #define AI_MATH_HALF_PI_F (AI_MATH_PI_F * 0.5f)
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*(ai_real)0.0174532925)
#define AI_RAD_TO_DEG(x) ((x)*(ai_real)57.2957795)
/* Support for big-endian builds */ /* Support for big-endian builds */
#if defined(__BYTE_ORDER__) #if defined(__BYTE_ORDER__)
# if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) # if (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
@ -265,18 +284,4 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/ */
#define AI_MAX_ALLOC(type) ((256U * 1024 * 1024) / sizeof(type)) #define AI_MAX_ALLOC(type) ((256U * 1024 * 1024) / sizeof(type))
#ifdef AI_DOUBLE_PRECISION
typedef double ai_real;
typedef signed long long int ai_int;
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*0.0174532925)
#define AI_RAD_TO_DEG(x) ((x)*57.2957795)
#else
typedef float ai_real;
typedef signed int ai_int;
/* Tiny macro to convert from radians to degrees and back */
#define AI_DEG_TO_RAD(x) ((x)*0.0174532925f)
#define AI_RAD_TO_DEG(x) ((x)*57.2957795f)
#endif // AI_SINGLEPRECISION
#endif // !! AI_DEFINES_H_INC #endif // !! AI_DEFINES_H_INC

View File

@ -179,19 +179,10 @@ protected:
}; };
struct FastAtofWrapper { struct FastAtofWrapper {
float operator()(const char* str) { return Assimp::fast_atof(str); } ai_real operator()(const char* str) { return Assimp::fast_atof(str); }
};
struct FastAtodWrapper {
double operator()(const char* str) { return Assimp::fast_atod(str); }
}; };
TEST_F(FastAtofTest, FastAtof) TEST_F(FastAtofTest, FastAtof)
{ {
RunTest<float>(FastAtofWrapper()); RunTest<ai_real>(FastAtofWrapper());
}
TEST_F(FastAtofTest, FastAtod)
{
RunTest<double>(FastAtodWrapper());
} }