xml-migration amf - next steps.

pull/2966/head
Kim Kulling 2020-02-26 22:19:42 +01:00
parent 979153522c
commit 03182c21b8
10 changed files with 787 additions and 1451 deletions

View File

@ -79,7 +79,7 @@ void AMFImporter::Clear() {
mTexture_Converted.clear();
// Delete all elements
if (!mNodeElement_List.empty()) {
for (CAMFImporter_NodeElement *ne : mNodeElement_List) {
for (AMFNodeElementBase *ne : mNodeElement_List) {
delete ne;
}
@ -97,237 +97,6 @@ AMFImporter::~AMFImporter() {
Clear();
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: find set ************************************************************/
/*********************************************************************************************************************************************/
bool AMFImporter::Find_NodeElement(const std::string &pID, const CAMFImporter_NodeElement::EType pType, CAMFImporter_NodeElement **pNodeElement) const {
for (CAMFImporter_NodeElement *ne : mNodeElement_List) {
if ((ne->ID == pID) && (ne->Type == pType)) {
if (pNodeElement != nullptr) {
*pNodeElement = ne;
}
return true;
}
} // for(CAMFImporter_NodeElement* ne: mNodeElement_List)
return false;
}
bool AMFImporter::Find_ConvertedNode(const std::string &id, std::list<aiNode *> &nodeList, aiNode **pNode) const {
aiString node_name(id.c_str());
for (aiNode *node : nodeList) {
if (node->mName == node_name) {
if (pNode != nullptr) {
*pNode = node;
}
return true;
}
} // for(aiNode* node: pNodeList)
return false;
}
bool AMFImporter::Find_ConvertedMaterial(const std::string &id, const SPP_Material **pConvertedMaterial) const {
for (const SPP_Material &mat : mMaterial_Converted) {
if (mat.ID == id) {
if (pConvertedMaterial != nullptr) {
*pConvertedMaterial = &mat;
}
return true;
}
} // for(const SPP_Material& mat: mMaterial_Converted)
return false;
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: throw set ***********************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::Throw_CloseNotFound(const std::string &pNode) {
throw DeadlyImportError("Close tag for node <" + pNode + "> not found. Seems file is corrupt.");
}
void AMFImporter::Throw_IncorrectAttr(const std::string &nodeName, const std::string &pAttrName) {
throw DeadlyImportError("Node <" + nodeName + "> has incorrect attribute \"" + pAttrName + "\".");
}
void AMFImporter::Throw_IncorrectAttrValue(const std::string &nodeName, const std::string &pAttrName) {
throw DeadlyImportError("Attribute \"" + pAttrName + "\" in node <" + nodeName + "> has incorrect value.");
}
void AMFImporter::Throw_MoreThanOnceDefined(const std::string &nodeType, const std::string &nodeName, const std::string &pDescription) {
throw DeadlyImportError("\"" + nodeType + "\" node can be used only once in " + nodeName + ". Description: " + pDescription);
}
void AMFImporter::Throw_ID_NotFound(const std::string &pID) const {
throw DeadlyImportError("Not found node with name \"" + pID + "\".");
}
/*********************************************************************************************************************************************/
/************************************************************* Functions: XML set ************************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::XML_CheckNode_MustHaveChildren( XmlNode &node ) {
if (node.children().begin() == node.children().end()) {
throw DeadlyImportError(std::string("Node <") + std::string(node.name()) + "> must have children.");
}
}
/*void AMFImporter::XML_CheckNode_SkipUnsupported(XmlNode *node, const std::string &pParentNodeName) {
static const size_t Uns_Skip_Len = 3;
const char *Uns_Skip[Uns_Skip_Len] = { "composite", "edge", "normal" };
static bool skipped_before[Uns_Skip_Len] = { false, false, false };
std::string nn(mReader->getNodeName());
bool found = false;
bool close_found = false;
size_t sk_idx;
for (sk_idx = 0; sk_idx < Uns_Skip_Len; sk_idx++) {
if (nn != Uns_Skip[sk_idx]) continue;
found = true;
if (mReader->isEmptyElement()) {
close_found = true;
goto casu_cres;
}
while (mReader->read()) {
if ((mReader->getNodeType() == irr::io::EXN_ELEMENT_END) && (nn == mReader->getNodeName())) {
close_found = true;
goto casu_cres;
}
}
} // for(sk_idx = 0; sk_idx < Uns_Skip_Len; sk_idx++)
casu_cres:
if (!found) throw DeadlyImportError("Unknown node \"" + nn + "\" in " + pParentNodeName + ".");
if (!close_found) Throw_CloseNotFound(nn);
if (!skipped_before[sk_idx]) {
skipped_before[sk_idx] = true;
ASSIMP_LOG_WARN_F("Skipping node \"", nn, "\" in ", pParentNodeName, ".");
}
}
*/
bool AMFImporter::XML_SearchNode(const std::string &nodeName) {
XmlNode *root = mXmlParser->getRootNode();
if (nullptr == root) {
return false;
}
find_node_by_name_predicate predicate(nodeName);
XmlNode node = root->find_node(predicate);
if (node.empty()) {
return false;
}
return true;
}
bool AMFImporter::XML_ReadNode_GetAttrVal_AsBool (const int pAttrIdx) {
std::string val(mXmlParser->getAttributeValue(pAttrIdx));
if ((val == "false") || (val == "0"))
return false;
else if ((val == "true") || (val == "1"))
return true;
else
throw DeadlyImportError("Bool attribute value can contain \"false\"/\"0\" or \"true\"/\"1\" not the \"" + val + "\"");
}
float AMFImporter::XML_ReadNode_GetAttrVal_AsFloat(const int pAttrIdx) {
std::string val;
float tvalf;
ParseHelper_FixTruncatedFloatString(mXmlParser->getAttributeValue(pAttrIdx), val);
fast_atoreal_move(val.c_str(), tvalf, false);
return tvalf;
}
uint32_t AMFImporter::XML_ReadNode_GetAttrVal_AsU32(const int pAttrIdx) {
return strtoul10(mXmlParser->getAttributeValue(pAttrIdx));
}
float AMFImporter::XML_ReadNode_GetVal_AsFloat() {
std::string val;
float tvalf;
if (!mXmlParser->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsFloat. No data, seems file is corrupt.");
if (mXmlParser->getNodeType() != irr::io::EXN_TEXT) throw DeadlyImportError("XML_ReadNode_GetVal_AsFloat. Invalid type of XML element, seems file is corrupt.");
ParseHelper_FixTruncatedFloatString(mXmlParser->getNodeData(), val);
fast_atoreal_move(val.c_str(), tvalf, false);
return tvalf;
}
uint32_t AMFImporter::XML_ReadNode_GetVal_AsU32() {
if (!mXmlParser->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsU32. No data, seems file is corrupt.");
if (mXmlParser->getNodeType() != irr::io::EXN_TEXT) throw DeadlyImportError("XML_ReadNode_GetVal_AsU32. Invalid type of XML element, seems file is corrupt.");
return strtoul10(mXmlParser->getNodeData());
}
void AMFImporter::XML_ReadNode_GetVal_AsString(std::string &pValue) {
if (!mXmlParser->read()) throw DeadlyImportError("XML_ReadNode_GetVal_AsString. No data, seems file is corrupt.");
if (mXmlParser->getNodeType() != irr::io::EXN_TEXT)
throw DeadlyImportError("XML_ReadNode_GetVal_AsString. Invalid type of XML element, seems file is corrupt.");
pValue = mXmlParser->getNodeData();
}
/*********************************************************************************************************************************************/
/************************************************************ Functions: parse set ***********************************************************/
/*********************************************************************************************************************************************/
void AMFImporter::ParseHelper_Node_Enter(CAMFImporter_NodeElement *pNode) {
mNodeElement_Cur->Child.push_back(pNode); // add new element to current element child list.
mNodeElement_Cur = pNode; // switch current element to new one.
}
void AMFImporter::ParseHelper_Node_Exit() {
// check if we can walk up.
if (mNodeElement_Cur != nullptr) mNodeElement_Cur = mNodeElement_Cur->Parent;
}
void AMFImporter::ParseHelper_FixTruncatedFloatString(const char *pInStr, std::string &pOutString) {
size_t instr_len;
pOutString.clear();
instr_len = strlen(pInStr);
if (!instr_len) return;
pOutString.reserve(instr_len * 3 / 2);
// check and correct floats in format ".x". Must be "x.y".
if (pInStr[0] == '.') pOutString.push_back('0');
pOutString.push_back(pInStr[0]);
for (size_t ci = 1; ci < instr_len; ci++) {
if ((pInStr[ci] == '.') && ((pInStr[ci - 1] == ' ') || (pInStr[ci - 1] == '-') || (pInStr[ci - 1] == '+') || (pInStr[ci - 1] == '\t'))) {
pOutString.push_back('0');
pOutString.push_back('.');
} else {
pOutString.push_back(pInStr[ci]);
}
}
}
static bool ParseHelper_Decode_Base64_IsBase64(const char pChar) {
return (isalnum(pChar) || (pChar == '+') || (pChar == '/'));
}
void AMFImporter::ParseHelper_Decode_Base64(const std::string &pInputBase64, std::vector<uint8_t> &pOutputData) const {
// With help from
// René Nyffenegger http://www.adp-gmbh.ch/cpp/common/base64.html
@ -394,11 +163,11 @@ void AMFImporter::ParseFile(const std::string &pFile, IOSystem *pIOHandler) {
// start reading
// search for root tag <amf>
if (!root->getNode()->find_child("amf")) {
if (!root->find_child("amf")) {
throw DeadlyImportError("Root node \"amf\" not found.");
}
ParseNode_Root(root);
ParseNode_Root(*root);
delete mXmlParser;
mXmlParser = nullptr;
@ -411,13 +180,12 @@ void AMFImporter::ParseFile(const std::string &pFile, IOSystem *pIOHandler) {
// </amf>
// Root XML element.
// Multi elements - No.
void AMFImporter::ParseNode_Root(XmlNode *root) {
void AMFImporter::ParseNode_Root(XmlNode &root) {
std::string unit, version;
CAMFImporter_NodeElement *ne(nullptr);
AMFNodeElementBase *ne(nullptr);
// Read attributes for node <amf>.
pugi::xml_node *node(root->getNode());
for (pugi::xml_attribute_iterator ait = node->attributes_begin(); ait != node->attributes_end(); ++ait) {
for (pugi::xml_attribute_iterator ait = root.attributes_begin(); ait != root.attributes_end(); ++ait) {
if (ait->name() == "unit") {
unit = ait->as_string();
} else if (ait->name() == "version") {
@ -425,69 +193,37 @@ void AMFImporter::ParseNode_Root(XmlNode *root) {
}
}
/*MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("unit", unit, mReader->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("version", version, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND_WSKIP;*/
// Check attributes
if (!mUnit.empty()) {
if ((mUnit != "inch") && (mUnit != "millimeter") && (mUnit != "meter") && (mUnit != "feet") && (mUnit != "micron")) {
Throw_IncorrectAttrValue("unit");
throw DeadlyImportError("Root node does not contain any units.");
}
}
// create root node element.
ne = new CAMFImporter_NodeElement_Root(nullptr);
ne = new AMFRoot(nullptr);
// set first "current" element
mNodeElement_Cur = ne;
// and assign attributes values
((CAMFImporter_NodeElement_Root *)ne)->Unit = unit;
((CAMFImporter_NodeElement_Root *)ne)->Version = version;
((AMFRoot *)ne)->Unit = unit;
((AMFRoot *)ne)->Version = version;
// Check for child nodes
for (pugi::xml_node child : node->children()) {
if (child.name() == "object") {
ParseNode_Object(&child);
ParseNode_Object(child);
} else if (child.name() == "material") {
ParseNode_Material();
ParseNode_Material(child);
} else if (child.name() == "texture") {
ParseNode_Texture();
ParseNode_Texture(child);
} else if (child.name() == "constellation") {
ParseNode_Constellation();
ParseNode_Constellation(child);
} else if (child.name() == "metadata") {
ParseNode_Metadata();
ParseNode_Metadata(child);
}
}
/*if (!mReader->isEmptyElement()) {
MACRO_NODECHECK_LOOPBEGIN("amf");
if (XML_CheckNode_NameEqual("object")) {
ParseNode_Object();
continue;
}
if (XML_CheckNode_NameEqual("material")) {
ParseNode_Material();
continue;
}
if (XML_CheckNode_NameEqual("texture")) {
ParseNode_Texture();
continue;
}
if (XML_CheckNode_NameEqual("constellation")) {
ParseNode_Constellation();
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("amf");
mNodeElement_Cur = ne; // force restore "current" element
} // if(!mReader->isEmptyElement())*/
mNodeElement_List.push_back(ne); // add to node element list because its a new object in graph.
}
@ -498,39 +234,21 @@ void AMFImporter::ParseNode_Root(XmlNode *root) {
// A collection of objects or constellations with specific relative locations.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Constellation() {
std::string id;
CAMFImporter_NodeElement *ne(nullptr);
// Read attributes for node <constellation>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
void AMFImporter::ParseNode_Constellation(XmlNode &root) {
std::string id = root.attribute("id").as_string();
// create and if needed - define new grouping object.
ne = new CAMFImporter_NodeElement_Constellation(mNodeElement_Cur);
AMFNodeElementBase *ne = new AMFConstellation(mNodeElement_Cur);
CAMFImporter_NodeElement_Constellation &als = *((CAMFImporter_NodeElement_Constellation *)ne); // alias for convenience
AMFConstellation &als = *((AMFConstellation *)ne); // alias for convenience
if (!id.empty()) als.ID = id;
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("constellation");
if (XML_CheckNode_NameEqual("instance")) {
ParseNode_Instance();
continue;
for (pugi::xml_node &child : root.children()) {
if (child.name() == "instance") {
ParseNode_Instance(child);
} else if (child.name() == "metadata") {
ParseNode_Metadata(child);
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("constellation");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
}
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
@ -542,21 +260,17 @@ void AMFImporter::ParseNode_Constellation() {
// A collection of objects or constellations with specific relative locations.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Instance() {
std::string objectid;
CAMFImporter_NodeElement *ne(nullptr);
void AMFImporter::ParseNode_Instance(XmlNode &root) {
std::string objectid = root.attribute("objectid").as_string();
// Read attributes for node <constellation>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("objectid", objectid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// used object id must be defined, check that.
if (objectid.empty()) throw DeadlyImportError("\"objectid\" in <instance> must be defined.");
// used object id must be defined, check that.
if (objectid.empty()) {
throw DeadlyImportError("\"objectid\" in <instance> must be defined.");
}
// create and define new grouping object.
ne = new CAMFImporter_NodeElement_Instance(mNodeElement_Cur);
AMFNodeElementBase *ne = new AMFInstance(mNodeElement_Cur);
CAMFImporter_NodeElement_Instance &als = *((CAMFImporter_NodeElement_Instance *)ne); // alias for convenience
AMFInstance &als = *((AMFInstance *)ne); // alias for convenience
als.ObjectID = objectid;
// Check for child nodes
@ -594,70 +308,38 @@ void AMFImporter::ParseNode_Instance() {
// An object definition.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Object(XmlNode *nodeInst) {
void AMFImporter::ParseNode_Object(XmlNode &node) {
std::string id;
CAMFImporter_NodeElement *ne(nullptr);
pugi::xml_node *node = nodeInst->getNode();
for (pugi::xml_attribute_iterator ait = node->attributes_begin(); ait != node->attributes_end(); ++ait) {
for (pugi::xml_attribute_iterator ait = node.attributes_begin(); ait != node.attributes_end(); ++ait) {
if (ait->name() == "id") {
id = ait->as_string();
}
}
// Read attributes for node <object>.
/*MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mReader->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;*/
// create and if needed - define new geometry object.
ne = new CAMFImporter_NodeElement_Object(mNodeElement_Cur);
AMFNodeElementBase *ne = new AMFObject(mNodeElement_Cur);
CAMFImporter_NodeElement_Object &als = *((CAMFImporter_NodeElement_Object *)ne); // alias for convenience
AMFObject &als = *((AMFObject *)ne); // alias for convenience
if (!id.empty()) {
als.ID = id;
}
// Check for child nodes
for (pugi::xml_node_iterator it = node->children().begin(); it != node->children->end(); ++it) {
for (pugi::xml_node_iterator it = node.children().begin(); it != node.children->end(); ++it) {
bool col_read = false;
if (it->name() == "mesh") {
ParseNode_Mesh(*it);
} else if (it->name() == "metadata") {
ParseNode_Metadata(*it);
}
} else if (it->name() == "color") {
ParseNode_Color(*it);
}
}
if (!mXmlParser->isEmptyElement()) {
bool col_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("object");
if (XML_CheckNode_NameEqual("color")) {
// Check if color already defined for object.
if (col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <object>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if (XML_CheckNode_NameEqual("mesh")) {
ParseNode_Mesh();
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("object");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
}
// <metadata
@ -680,7 +362,7 @@ void AMFImporter::ParseNode_Object(XmlNode *nodeInst) {
// "Volume" - specifies the total volume of the entity, in the entity's unit system, to be used for verification (object and volume only)
void AMFImporter::ParseNode_Metadata() {
std::string type, value;
CAMFImporter_NodeElement *ne(nullptr);
AMFNodeElementBase *ne(nullptr);
// read attribute
MACRO_ATTRREAD_LOOPBEG;
@ -689,9 +371,9 @@ void AMFImporter::ParseNode_Metadata() {
// and value of node.
value = mXmlParser->getNodeData();
// Create node element and assign read data.
ne = new CAMFImporter_NodeElement_Metadata(mNodeElement_Cur);
((CAMFImporter_NodeElement_Metadata *)ne)->Type = type;
((CAMFImporter_NodeElement_Metadata *)ne)->Value = value;
ne = new AMFMetadata(mNodeElement_Cur);
((AMFMetadata *)ne)->Type = type;
((AMFMetadata *)ne)->Value = value;
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
@ -716,8 +398,8 @@ bool AMFImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool p
return false;
}
void AMFImporter::GetExtensionList(std::set<std::string> &pExtensionList) {
pExtensionList.insert("amf");
void AMFImporter::GetExtensionList(std::set<std::string> &extensionList) {
extensionList.insert("amf");
}
const aiImporterDesc *AMFImporter::GetInfo() const {
@ -725,10 +407,293 @@ const aiImporterDesc *AMFImporter::GetInfo() const {
}
void AMFImporter::InternReadFile(const std::string &pFile, aiScene *pScene, IOSystem *pIOHandler) {
Clear(); // delete old graph.
Clear();
ParseFile(pFile, pIOHandler);
Postprocess_BuildScene(pScene);
// scene graph is ready, exit.
}
void AMFImporter::ParseNode_Mesh(XmlNode &node) {
AMFNodeElementBase *ne;
if (node.empty()) {
return;
}
for (pugi::xml_node &child : node.children()) {
if (child.name() == "vertices") {
ParseNode_Vertices(child);
}
}
// create new mesh object.
ne = new AMFMesh(mNodeElement_Cur);
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
bool vert_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("mesh");
if (XML_CheckNode_NameEqual("vertices")) {
// Check if data already defined.
if (vert_read) Throw_MoreThanOnceDefined("vertices", "Only one vertices set can be defined for <mesh>.");
// read data and set flag about it
vert_read = true;
continue;
}
if (XML_CheckNode_NameEqual("volume")) {
ParseNode_Volume();
continue;
}
MACRO_NODECHECK_LOOPEND("mesh");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <vertices>
// </vertices>
// The list of vertices to be used in defining triangles.
// Multi elements - No.
// Parent element - <mesh>.
void AMFImporter::ParseNode_Vertices(XmlNode &node) {
AMFNodeElementBase *ne = new AMFVertices(mNodeElement_Cur);
for (pugi::xml_node &child : node.children()) {
if (child.name() == "vertices") {
ParseNode_Vertex(child);
}
}
// Check for child nodes
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <vertex>
// </vertex>
// A vertex to be referenced in triangles.
// Multi elements - Yes.
// Parent element - <vertices>.
void AMFImporter::ParseNode_Vertex() {
AMFNodeElementBase *ne;
// create new mesh object.
ne = new AMFVertex(mNodeElement_Cur);
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
bool col_read = false;
bool coord_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("vertex");
if (XML_CheckNode_NameEqual("color")) {
// Check if data already defined.
if (col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <vertex>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if (XML_CheckNode_NameEqual("coordinates")) {
// Check if data already defined.
if (coord_read) Throw_MoreThanOnceDefined("coordinates", "Only one coordinates set can be defined for <vertex>.");
// read data and set flag about it
ParseNode_Coordinates();
coord_read = true;
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("vertex");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <coordinates>
// </coordinates>
// Specifies the 3D location of this vertex.
// Multi elements - No.
// Parent element - <vertex>.
//
// Children elements:
// <x>, <y>, <z>
// Multi elements - No.
// X, Y, or Z coordinate, respectively, of a vertex position in space.
void AMFImporter::ParseNode_Coordinates() {
AMFNodeElementBase *ne;
// create new color object.
ne = new AMFCoordinates(mNodeElement_Cur);
AMFCoordinates &als = *((AMFCoordinates *)ne); // alias for convenience
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
bool read_flag[3] = { false, false, false };
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("coordinates");
MACRO_NODECHECK_READCOMP_F("x", read_flag[0], als.Coordinate.x);
MACRO_NODECHECK_READCOMP_F("y", read_flag[1], als.Coordinate.y);
MACRO_NODECHECK_READCOMP_F("z", read_flag[2], als.Coordinate.z);
MACRO_NODECHECK_LOOPEND("coordinates");
ParseHelper_Node_Exit();
// check that all components was defined
if ((read_flag[0] && read_flag[1] && read_flag[2]) == 0) throw DeadlyImportError("Not all coordinate's components are defined.");
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <volume
// materialid="" - Which material to use.
// type="" - What this volume describes can be “region” or “support”. If none specified, “object” is assumed. If support, then the geometric
// requirements 1-8 listed in section 5 do not need to be maintained.
// >
// </volume>
// Defines a volume from the established vertex list.
// Multi elements - Yes.
// Parent element - <mesh>.
void AMFImporter::ParseNode_Volume() {
std::string materialid;
std::string type;
AMFNodeElementBase *ne;
// Read attributes for node <color>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("materialid", materialid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("type", type, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create new object.
ne = new AMFVolume(mNodeElement_Cur);
// and assign read data
((AMFVolume *)ne)->MaterialID = materialid;
((AMFVolume *)ne)->Type = type;
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
bool col_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("volume");
if (XML_CheckNode_NameEqual("color")) {
// Check if data already defined.
if (col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <volume>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if (XML_CheckNode_NameEqual("triangle")) {
ParseNode_Triangle();
continue;
}
if (XML_CheckNode_NameEqual("metadata")) {
ParseNode_Metadata();
continue;
}
MACRO_NODECHECK_LOOPEND("volume");
ParseHelper_Node_Exit();
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
// <triangle>
// </triangle>
// Defines a 3D triangle from three vertices, according to the right-hand rule (counter-clockwise when looking from the outside).
// Multi elements - Yes.
// Parent element - <volume>.
//
// Children elements:
// <v1>, <v2>, <v3>
// Multi elements - No.
// Index of the desired vertices in a triangle or edge.
void AMFImporter::ParseNode_Triangle() {
AMFNodeElementBase *ne;
// create new color object.
ne = new AMFTriangle(mNodeElement_Cur);
AMFTriangle &als = *((AMFTriangle *)ne); // alias for convenience
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
bool col_read = false, tex_read = false;
bool read_flag[3] = { false, false, false };
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("triangle");
if (XML_CheckNode_NameEqual("color")) {
// Check if data already defined.
if (col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <triangle>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if (XML_CheckNode_NameEqual("texmap")) // new name of node: "texmap".
{
// Check if data already defined.
if (tex_read) Throw_MoreThanOnceDefined("texmap", "Only one texture coordinate can be defined for <triangle>.");
// read data and set flag about it
ParseNode_TexMap();
tex_read = true;
continue;
} else if (XML_CheckNode_NameEqual("map")) // old name of node: "map".
{
// Check if data already defined.
if (tex_read) Throw_MoreThanOnceDefined("map", "Only one texture coordinate can be defined for <triangle>.");
// read data and set flag about it
ParseNode_TexMap(true);
tex_read = true;
continue;
}
// MACRO_NODECHECK_READCOMP_U32("v1", read_flag[0], als.V[0]);
// MACRO_NODECHECK_READCOMP_U32("v2", read_flag[1], als.V[1]);
// MACRO_NODECHECK_READCOMP_U32("v3", read_flag[2], als.V[2]);
// MACRO_NODECHECK_LOOPEND("triangle");
ParseHelper_Node_Exit();
// check that all components was defined
if ((read_flag[0] && read_flag[1] && read_flag[2]) == 0) throw DeadlyImportError("Not all vertices of the triangle are defined.");
} // if(!mReader->isEmptyElement())
else {
mNodeElement_Cur->Child.push_back(ne); // Add element to child list of current element
} // if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne); // and to node element list because its a new object in graph.
}
} // namespace Assimp

View File

@ -112,8 +112,8 @@ private:
/// Data type for post-processing step. More suitable container for material.
struct SPP_Material {
std::string ID;///< Material ID.
std::list<CAMFImporter_NodeElement_Metadata*> Metadata;///< Metadata of material.
CAMFImporter_NodeElement_Color* Color;///< Color of material.
std::list<AMFMetadata*> Metadata;///< Metadata of material.
AMFColor* Color;///< Color of material.
std::list<SPP_Composite> Composition;///< List of child materials if current material is composition of few another.
/// Return color calculated for specified coordinate.
@ -136,56 +136,20 @@ private:
/// Data type for post-processing step. Contain face data.
struct SComplexFace {
aiFace Face;///< Face vertices.
const CAMFImporter_NodeElement_Color* Color;///< Face color. Equal to nullptr if color is not set for the face.
const CAMFImporter_NodeElement_TexMap* TexMap;///< Face texture mapping data. Equal to nullptr if texture mapping is not set for the face.
const AMFColor* Color;///< Face color. Equal to nullptr if color is not set for the face.
const AMFTexMap* TexMap;///< Face texture mapping data. Equal to nullptr if texture mapping is not set for the face.
};
/// Clear all temporary data.
void Clear();
/***********************************************/
/************* Functions: find set *************/
/***********************************************/
/// Find specified node element in node elements list ( \ref mNodeElement_List).
/// \param [in] pID - ID(name) of requested node element.
/// \param [in] pType - type of node element.
/// \param [out] pNode - pointer to pointer to item found.
/// \return true - if the node element is found, else - false.
bool Find_NodeElement(const std::string& pID, const CAMFImporter_NodeElement::EType pType, CAMFImporter_NodeElement** pNodeElement) const;
/// Find requested aiNode in node list.
/// \param [in] pID - ID(name) of requested node.
/// \param [in] pNodeList - list of nodes where to find the node.
/// \param [out] pNode - pointer to pointer to item found.
/// \return true - if the node is found, else - false.
bool Find_ConvertedNode(const std::string& pID, std::list<aiNode*>& pNodeList, aiNode** pNode) const;
/// Find material in list for converted materials. Use at postprocessing step.
/// \param [in] pID - material ID.
/// \param [out] pConvertedMaterial - pointer to found converted material (\ref SPP_Material).
/// \return true - if the material is found, else - false.
bool Find_ConvertedMaterial(const std::string& pID, const SPP_Material** pConvertedMaterial) const;
/// Find texture in list of converted textures. Use at postprocessing step,
/// \param [in] pID_R - ID of source "red" texture.
/// \param [in] pID_G - ID of source "green" texture.
/// \param [in] pID_B - ID of source "blue" texture.
/// \param [in] pID_A - ID of source "alpha" texture. Use empty string to find RGB-texture.
/// \param [out] pConvertedTextureIndex - pointer where index in list of found texture will be written. If equivalent to nullptr then nothing will be
/// written.
/// \return true - if the texture is found, else - false.
bool Find_ConvertedTexture(const std::string& pID_R, const std::string& pID_G, const std::string& pID_B, const std::string& pID_A,
uint32_t* pConvertedTextureIndex = nullptr) const;
/// Get data stored in <vertices> and place it to arrays.
/// \param [in] pNodeElement - reference to node element which kept <object> data.
/// \param [in] pVertexCoordinateArray - reference to vertices coordinates kept in <vertices>.
/// \param [in] pVertexColorArray - reference to vertices colors for all <vertex's. If color for vertex is not set then corresponding member of array
/// contain nullptr.
void PostprocessHelper_CreateMeshDataArray(const CAMFImporter_NodeElement_Mesh& pNodeElement, std::vector<aiVector3D>& pVertexCoordinateArray,
std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray) const;
void PostprocessHelper_CreateMeshDataArray(const AMFMesh& pNodeElement, std::vector<aiVector3D>& pVertexCoordinateArray,
std::vector<AMFColor*>& pVertexColorArray) const;
/// Return converted texture ID which related to specified source textures ID's. If converted texture does not exist then it will be created and ID on new
/// converted texture will be returned. Conversion: set of textures from \ref CAMFImporter_NodeElement_Texture to one \ref SPP_Texture and place it
@ -207,13 +171,13 @@ private:
/// Check if child elements of node element is metadata and add it to scene node.
/// \param [in] pMetadataList - reference to list with collected metadata.
/// \param [out] pSceneNode - scene node in which metadata will be added.
void Postprocess_AddMetadata(const std::list<CAMFImporter_NodeElement_Metadata*>& pMetadataList, aiNode& pSceneNode) const;
void Postprocess_AddMetadata(const std::list<AMFMetadata*>& pMetadataList, aiNode& pSceneNode) const;
/// To create aiMesh and aiNode for it from <object>.
/// \param [in] pNodeElement - reference to node element which kept <object> data.
/// \param [out] pMeshList - reference to a list with all aiMesh of the scene.
/// \param [out] pSceneNode - pointer to place where new aiNode will be created.
void Postprocess_BuildNodeAndObject(const CAMFImporter_NodeElement_Object& pNodeElement, std::list<aiMesh*>& pMeshList, aiNode** pSceneNode);
void Postprocess_BuildNodeAndObject(const AMFObject& pNodeElement, std::list<aiMesh*>& pMeshList, aiNode** pSceneNode);
/// Create mesh for every <volume> in <mesh>.
/// \param [in] pNodeElement - reference to node element which kept <mesh> data.
@ -224,119 +188,23 @@ private:
/// \param [in] pMaterialList - reference to a list with defined materials.
/// \param [out] pMeshList - reference to a list with all aiMesh of the scene.
/// \param [out] pSceneNode - reference to aiNode which will own new aiMesh's.
void Postprocess_BuildMeshSet(const CAMFImporter_NodeElement_Mesh& pNodeElement, const std::vector<aiVector3D>& pVertexCoordinateArray,
const std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray, const CAMFImporter_NodeElement_Color* pObjectColor,
void Postprocess_BuildMeshSet(const AMFMesh& pNodeElement, const std::vector<aiVector3D>& pVertexCoordinateArray,
const std::vector<AMFColor*>& pVertexColorArray, const AMFColor* pObjectColor,
std::list<aiMesh*>& pMeshList, aiNode& pSceneNode);
/// Convert material from \ref CAMFImporter_NodeElement_Material to \ref SPP_Material.
/// \param [in] pMaterial - source CAMFImporter_NodeElement_Material.
void Postprocess_BuildMaterial(const CAMFImporter_NodeElement_Material& pMaterial);
void Postprocess_BuildMaterial(const AMFMaterial& pMaterial);
/// Create and add to aiNode's list new part of scene graph defined by <constellation>.
/// \param [in] pConstellation - reference to <constellation> node.
/// \param [out] pNodeList - reference to aiNode's list.
void Postprocess_BuildConstellation(CAMFImporter_NodeElement_Constellation& pConstellation, std::list<aiNode*>& pNodeList) const;
void Postprocess_BuildConstellation(AMFConstellation& pConstellation, std::list<aiNode*>& pNodeList) const;
/// Build Assimp scene graph in aiScene from collected data.
/// \param [out] pScene - pointer to aiScene where tree will be built.
void Postprocess_BuildScene(aiScene* pScene);
/// Call that function when close tag of node not found and exception must be raised.
/// E.g.:
/// <amf>
/// <object>
/// </amf> <!--- object not closed --->
/// \throw DeadlyImportError.
/// \param [in] pNode - node name in which exception happened.
void Throw_CloseNotFound(const std::string& pNode);
/// Call that function when attribute name is incorrect and exception must be raised.
/// \param [in] pAttrName - attribute name.
/// \throw DeadlyImportError.
void Throw_IncorrectAttr(const std::string &nodeName, const std::string& pAttrName);
/// Call that function when attribute value is incorrect and exception must be raised.
/// \param [in] pAttrName - attribute name.
/// \throw DeadlyImportError.
void Throw_IncorrectAttrValue(const std::string &nodeName, const std::string &pAttrName);
/// Call that function when some type of nodes are defined twice or more when must be used only once and exception must be raised.
/// E.g.:
/// <object>
/// <color>... <!--- color defined --->
/// <color>... <!--- color defined again --->
/// </object>
/// \throw DeadlyImportError.
/// \param [in] pNodeType - type of node which defined one more time.
/// \param [in] pDescription - message about error. E.g. what the node defined while exception raised.
void Throw_MoreThanOnceDefined(const std::string &nodeType, const std::string &nodeName, const std::string &pDescription);
/// Call that function when referenced element ID are not found in graph and exception must be raised.
/// \param [in] pID - ID of of element which not found.
/// \throw DeadlyImportError.
void Throw_ID_NotFound(const std::string& pID) const;
/// Check if current node have children: <node>...</node>. If not then exception will thrown.
void XML_CheckNode_MustHaveChildren( XmlNode &node);
/// Check if current node name is equal to pNodeName.
/// \param [in] pNodeName - name for checking.
/// return true if current node name is equal to pNodeName, else - false.
//bool XML_CheckNode_NameEqual(const std::string& pNodeName){
// return mReader->getNodeName() == pNodeName;
//mReader->mDoc.
//}
/// Skip unsupported node and report about that. Depend on node name can be skipped begin tag of node all whole node.
/// \param [in] pParentNodeName - parent node name. Used for reporting.
//void XML_CheckNode_SkipUnsupported(XmlNode *node, const std::string &pParentNodeName);
/// Search for specified node in file. XML file read pointer(mReader) will point to found node or file end after search is end.
/// \param [in] pNodeName - requested node name.
/// return true - if node is found, else - false.
bool XML_SearchNode(const std::string& pNodeName);
/// Read attribute value.
/// \param [in] pAttrIdx - attribute index (\ref mReader->getAttribute* set).
/// \return read data.
bool XML_ReadNode_GetAttrVal_AsBool(const int pAttrIdx);
/// Read attribute value.
/// \param [in] pAttrIdx - attribute index (\ref mReader->getAttribute* set).
/// \return read data.
float XML_ReadNode_GetAttrVal_AsFloat(const int pAttrIdx);
/// Read attribute value.
/// \param [in] pAttrIdx - attribute index (\ref mReader->getAttribute* set).
/// \return read data.
uint32_t XML_ReadNode_GetAttrVal_AsU32(const int pAttrIdx);
/// Read node value.
/// \return read data.
float XML_ReadNode_GetVal_AsFloat();
/// Read node value.
/// \return read data.
uint32_t XML_ReadNode_GetVal_AsU32();
/// Read node value.
/// \return read data.
void XML_ReadNode_GetVal_AsString(std::string& pValue);
/// Make pNode as current and enter deeper for parsing child nodes. At end \ref ParseHelper_Node_Exit must be called.
/// \param [in] pNode - new current node.
void ParseHelper_Node_Enter(CAMFImporter_NodeElement* pNode);
/// This function must be called when exiting from grouping node. \ref ParseHelper_Group_Begin.
void ParseHelper_Node_Exit();
/// Attribute values of floating point types can take form ".x"(without leading zero). irrXMLReader can not read this form of values and it
/// must be converted to right form - "0.xxx".
/// \param [in] pInStr - pointer to input string which can contain incorrect form of values.
/// \param [out[ pOutString - output string with right form of values.
void ParseHelper_FixTruncatedFloatString(const char* pInStr, std::string& pOutString);
/// Decode Base64-encoded data.
/// \param [in] pInputBase64 - reference to input Base64-encoded string.
/// \param [out] pOutputData - reference to output array for decoded data.
@ -389,7 +257,7 @@ private:
/// Parse <texmap> of <map> node of the file.
/// \param [in] pUseOldName - if true then use old name of node(and children) - <map>, instead of new name - <texmap>.
void ParseNode_TexMap(const bool pUseOldName = false);
void ParseNode_TexMap(XmlNode &node, const bool pUseOldName = false);
public:
/// Default constructor.
@ -419,8 +287,8 @@ public:
private:
static const aiImporterDesc Description;
CAMFImporter_NodeElement* mNodeElement_Cur;///< Current element.
std::list<CAMFImporter_NodeElement*> mNodeElement_List;///< All elements of scene graph.
AMFNodeElementBase* mNodeElement_Cur;///< Current element.
std::list<AMFNodeElementBase*> mNodeElement_List;///< All elements of scene graph.
XmlParser *mXmlParser;
//irr::io::IrrXMLReader* mReader;///< Pointer to XML-reader object
std::string mUnit;

View File

@ -1,357 +0,0 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/// \file AMFImporter_Geometry.cpp
/// \brief Parsing data from geometry nodes.
/// \date 2016
/// \author smal.root@gmail.com
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
#include "AMFImporter.hpp"
#include "AMFImporter_Macro.hpp"
namespace Assimp
{
// <mesh>
// </mesh>
// A 3D mesh hull.
// Multi elements - Yes.
// Parent element - <object>.
void AMFImporter::ParseNode_Mesh()
{
CAMFImporter_NodeElement* ne;
// create new mesh object.
ne = new CAMFImporter_NodeElement_Mesh(mNodeElement_Cur);
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
bool vert_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("mesh");
if(XML_CheckNode_NameEqual("vertices"))
{
// Check if data already defined.
if(vert_read) Throw_MoreThanOnceDefined("vertices", "Only one vertices set can be defined for <mesh>.");
// read data and set flag about it
ParseNode_Vertices();
vert_read = true;
continue;
}
if(XML_CheckNode_NameEqual("volume")) { ParseNode_Volume(); continue; }
MACRO_NODECHECK_LOOPEND("mesh");
ParseHelper_Node_Exit();
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <vertices>
// </vertices>
// The list of vertices to be used in defining triangles.
// Multi elements - No.
// Parent element - <mesh>.
void AMFImporter::ParseNode_Vertices()
{
CAMFImporter_NodeElement* ne;
// create new mesh object.
ne = new CAMFImporter_NodeElement_Vertices(mNodeElement_Cur);
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("vertices");
if(XML_CheckNode_NameEqual("vertex")) { ParseNode_Vertex(); continue; }
MACRO_NODECHECK_LOOPEND("vertices");
ParseHelper_Node_Exit();
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <vertex>
// </vertex>
// A vertex to be referenced in triangles.
// Multi elements - Yes.
// Parent element - <vertices>.
void AMFImporter::ParseNode_Vertex()
{
CAMFImporter_NodeElement* ne;
// create new mesh object.
ne = new CAMFImporter_NodeElement_Vertex(mNodeElement_Cur);
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
bool col_read = false;
bool coord_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("vertex");
if(XML_CheckNode_NameEqual("color"))
{
// Check if data already defined.
if(col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <vertex>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if(XML_CheckNode_NameEqual("coordinates"))
{
// Check if data already defined.
if(coord_read) Throw_MoreThanOnceDefined("coordinates", "Only one coordinates set can be defined for <vertex>.");
// read data and set flag about it
ParseNode_Coordinates();
coord_read = true;
continue;
}
if(XML_CheckNode_NameEqual("metadata")) { ParseNode_Metadata(); continue; }
MACRO_NODECHECK_LOOPEND("vertex");
ParseHelper_Node_Exit();
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <coordinates>
// </coordinates>
// Specifies the 3D location of this vertex.
// Multi elements - No.
// Parent element - <vertex>.
//
// Children elements:
// <x>, <y>, <z>
// Multi elements - No.
// X, Y, or Z coordinate, respectively, of a vertex position in space.
void AMFImporter::ParseNode_Coordinates()
{
CAMFImporter_NodeElement* ne;
// create new color object.
ne = new CAMFImporter_NodeElement_Coordinates(mNodeElement_Cur);
CAMFImporter_NodeElement_Coordinates& als = *((CAMFImporter_NodeElement_Coordinates*)ne);// alias for convenience
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
bool read_flag[3] = { false, false, false };
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("coordinates");
MACRO_NODECHECK_READCOMP_F("x", read_flag[0], als.Coordinate.x);
MACRO_NODECHECK_READCOMP_F("y", read_flag[1], als.Coordinate.y);
MACRO_NODECHECK_READCOMP_F("z", read_flag[2], als.Coordinate.z);
MACRO_NODECHECK_LOOPEND("coordinates");
ParseHelper_Node_Exit();
// check that all components was defined
if((read_flag[0] && read_flag[1] && read_flag[2]) == 0) throw DeadlyImportError("Not all coordinate's components are defined.");
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <volume
// materialid="" - Which material to use.
// type="" - What this volume describes can be “region” or “support”. If none specified, “object” is assumed. If support, then the geometric
// requirements 1-8 listed in section 5 do not need to be maintained.
// >
// </volume>
// Defines a volume from the established vertex list.
// Multi elements - Yes.
// Parent element - <mesh>.
void AMFImporter::ParseNode_Volume()
{
std::string materialid;
std::string type;
CAMFImporter_NodeElement* ne;
// Read attributes for node <color>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("materialid", materialid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("type", type, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create new object.
ne = new CAMFImporter_NodeElement_Volume(mNodeElement_Cur);
// and assign read data
((CAMFImporter_NodeElement_Volume*)ne)->MaterialID = materialid;
((CAMFImporter_NodeElement_Volume*)ne)->Type = type;
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
bool col_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("volume");
if(XML_CheckNode_NameEqual("color"))
{
// Check if data already defined.
if(col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <volume>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if(XML_CheckNode_NameEqual("triangle")) { ParseNode_Triangle(); continue; }
if(XML_CheckNode_NameEqual("metadata")) { ParseNode_Metadata(); continue; }
MACRO_NODECHECK_LOOPEND("volume");
ParseHelper_Node_Exit();
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
// <triangle>
// </triangle>
// Defines a 3D triangle from three vertices, according to the right-hand rule (counter-clockwise when looking from the outside).
// Multi elements - Yes.
// Parent element - <volume>.
//
// Children elements:
// <v1>, <v2>, <v3>
// Multi elements - No.
// Index of the desired vertices in a triangle or edge.
void AMFImporter::ParseNode_Triangle()
{
CAMFImporter_NodeElement* ne;
// create new color object.
ne = new CAMFImporter_NodeElement_Triangle(mNodeElement_Cur);
CAMFImporter_NodeElement_Triangle& als = *((CAMFImporter_NodeElement_Triangle*)ne);// alias for convenience
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
bool col_read = false, tex_read = false;
bool read_flag[3] = { false, false, false };
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("triangle");
if(XML_CheckNode_NameEqual("color"))
{
// Check if data already defined.
if(col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <triangle>.");
// read data and set flag about it
ParseNode_Color();
col_read = true;
continue;
}
if(XML_CheckNode_NameEqual("texmap"))// new name of node: "texmap".
{
// Check if data already defined.
if(tex_read) Throw_MoreThanOnceDefined("texmap", "Only one texture coordinate can be defined for <triangle>.");
// read data and set flag about it
ParseNode_TexMap();
tex_read = true;
continue;
}
else if(XML_CheckNode_NameEqual("map"))// old name of node: "map".
{
// Check if data already defined.
if(tex_read) Throw_MoreThanOnceDefined("map", "Only one texture coordinate can be defined for <triangle>.");
// read data and set flag about it
ParseNode_TexMap(true);
tex_read = true;
continue;
}
MACRO_NODECHECK_READCOMP_U32("v1", read_flag[0], als.V[0]);
MACRO_NODECHECK_READCOMP_U32("v2", read_flag[1], als.V[1]);
MACRO_NODECHECK_READCOMP_U32("v3", read_flag[2], als.V[2]);
MACRO_NODECHECK_LOOPEND("triangle");
ParseHelper_Node_Exit();
// check that all components was defined
if((read_flag[0] && read_flag[1] && read_flag[2]) == 0) throw DeadlyImportError("Not all vertices of the triangle are defined.");
}// if(!mReader->isEmptyElement())
else
{
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}// if(!mReader->isEmptyElement()) else
mNodeElement_List.push_back(ne);// and to node element list because its a new object in graph.
}
}// namespace Assimp
#endif // !ASSIMP_BUILD_NO_AMF_IMPORTER

View File

@ -1,166 +0,0 @@
/*
---------------------------------------------------------------------------
Open Asset Import Library (assimp)
---------------------------------------------------------------------------
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
with or without modification, are permitted provided that the following
conditions are met:
* Redistributions of source code must retain the above
copyright notice, this list of conditions and the
following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other
materials provided with the distribution.
* Neither the name of the assimp team, nor the names of its
contributors may be used to endorse or promote products
derived from this software without specific prior
written permission of the assimp team.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------
*/
/// \file AMFImporter_Macro.hpp
/// \brief Useful macrodefines.
/// \date 2016
/// \author smal.root@gmail.com
#pragma once
#ifndef AMFIMPORTER_MACRO_HPP_INCLUDED
#define AMFIMPORTER_MACRO_HPP_INCLUDED
/// \def MACRO_ATTRREAD_LOOPBEG
/// Begin of loop that read attributes values.
#define MACRO_ATTRREAD_LOOPBEG \
for(int idx = 0, idx_end = mReader->getAttributeCount(); idx < idx_end; idx++) \
{ \
std::string an(mReader->getAttributeName(idx));
/// \def MACRO_ATTRREAD_LOOPEND
/// End of loop that read attributes values.
#define MACRO_ATTRREAD_LOOPEND \
Throw_IncorrectAttr(an); \
}
/// \def MACRO_ATTRREAD_LOOPEND_WSKIP
/// End of loop that read attributes values. Difference from \ref MACRO_ATTRREAD_LOOPEND in that: current macro skip unknown attributes, but
/// \ref MACRO_ATTRREAD_LOOPEND throw an exception.
#define MACRO_ATTRREAD_LOOPEND_WSKIP \
continue; \
}
/// \def MACRO_ATTRREAD_CHECK_REF
/// Check current attribute name and if it equal to requested then read value. Result write to output variable by reference. If result was read then
/// "continue" will called.
/// \param [in] pAttrName - attribute name.
/// \param [out] pVarName - output variable name.
/// \param [in] pFunction - function which read attribute value and write it to pVarName.
#define MACRO_ATTRREAD_CHECK_REF(pAttrName, pVarName, pFunction) \
if(an == pAttrName) \
{ \
pFunction(idx, pVarName); \
continue; \
}
/// \def MACRO_ATTRREAD_CHECK_RET
/// Check current attribute name and if it equal to requested then read value. Result write to output variable using return value of \ref pFunction.
/// If result was read then "continue" will called.
/// \param [in] pAttrName - attribute name.
/// \param [out] pVarName - output variable name.
/// \param [in] pFunction - function which read attribute value and write it to pVarName.
#define MACRO_ATTRREAD_CHECK_RET(pAttrName, pVarName, pFunction) \
if(an == pAttrName) \
{ \
pVarName = pFunction(idx); \
continue; \
}
/// \def MACRO_NODECHECK_LOOPBEGIN(pNodeName)
/// Begin of loop of parsing child nodes. Do not add ';' at end.
/// \param [in] pNodeName - current node name.
#define MACRO_NODECHECK_LOOPBEGIN(pNodeName) \
do { \
bool close_found = false; \
\
while(mReader->read()) \
{ \
if(mReader->getNodeType() == irr::io::EXN_ELEMENT) \
{
/// \def MACRO_NODECHECK_LOOPEND(pNodeName)
/// End of loop of parsing child nodes.
/// \param [in] pNodeName - current node name.
#define MACRO_NODECHECK_LOOPEND(pNodeName) \
XML_CheckNode_SkipUnsupported(pNodeName); \
}/* if(mReader->getNodeType() == irr::io::EXN_ELEMENT) */ \
else if(mReader->getNodeType() == irr::io::EXN_ELEMENT_END) \
{ \
if(XML_CheckNode_NameEqual(pNodeName)) \
{ \
close_found = true; \
\
break; \
} \
}/* else if(mReader->getNodeType() == irr::io::EXN_ELEMENT_END) */ \
}/* while(mReader->read()) */ \
\
if(!close_found) Throw_CloseNotFound(pNodeName); \
\
} while(false)
/// \def MACRO_NODECHECK_READCOMP_F
/// Check current node name and if it equal to requested then read value. Result write to output variable of type "float".
/// If result was read then "continue" will called. Also check if node data already read then raise exception.
/// \param [in] pNodeName - node name.
/// \param [in, out] pReadFlag - read flag.
/// \param [out] pVarName - output variable name.
#define MACRO_NODECHECK_READCOMP_F(pNodeName, pReadFlag, pVarName) \
if(XML_CheckNode_NameEqual(pNodeName)) \
{ \
/* Check if field already read before. */ \
if(pReadFlag) Throw_MoreThanOnceDefined(pNodeName, "Only one component can be defined."); \
/* Read color component and assign it to object. */ \
pVarName = XML_ReadNode_GetVal_AsFloat(); \
pReadFlag = true; \
continue; \
}
/// \def MACRO_NODECHECK_READCOMP_U32
/// Check current node name and if it equal to requested then read value. Result write to output variable of type "uint32_t".
/// If result was read then "continue" will called. Also check if node data already read then raise exception.
/// \param [in] pNodeName - node name.
/// \param [in, out] pReadFlag - read flag.
/// \param [out] pVarName - output variable name.
#define MACRO_NODECHECK_READCOMP_U32(pNodeName, pReadFlag, pVarName) \
if(XML_CheckNode_NameEqual(pNodeName)) \
{ \
/* Check if field already read before. */ \
if(pReadFlag) Throw_MoreThanOnceDefined(pNodeName, "Only one component can be defined."); \
/* Read color component and assign it to object. */ \
pVarName = XML_ReadNode_GetVal_AsU32(); \
pReadFlag = true; \
continue; \
}
#endif // AMFIMPORTER_MACRO_HPP_INCLUDED

View File

@ -49,7 +49,7 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_AMF_IMPORTER
#include "AMFImporter.hpp"
#include "AMFImporter_Macro.hpp"
//#include "AMFImporter_Macro.hpp"
namespace Assimp
{
@ -68,46 +68,41 @@ namespace Assimp
// Multi elements - No.
// Red, Greed, Blue and Alpha (transparency) component of a color in sRGB space, values ranging from 0 to 1. The
// values can be specified as constants, or as a formula depending on the coordinates.
void AMFImporter::ParseNode_Color() {
std::string profile;
CAMFImporter_NodeElement* ne;
// Read attributes for node <color>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("profile", profile, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
void AMFImporter::ParseNode_Color(XmlNode &node) {
std::string profile = node.attribute("profile").as_string();
// create new color object.
ne = new CAMFImporter_NodeElement_Color(mNodeElement_Cur);
CAMFImporter_NodeElement_Color& als = *((CAMFImporter_NodeElement_Color*)ne);// alias for convenience
AMFNodeElementBase *ne = new AMFColor(mNodeElement_Cur);
AMFColor& als = *((AMFColor*)ne);// alias for convenience
als.Profile = profile;
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
if (!node.empty()) {
bool read_flag[4] = { false, false, false, false };
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("color");
MACRO_NODECHECK_READCOMP_F("r", read_flag[0], als.Color.r);
MACRO_NODECHECK_READCOMP_F("g", read_flag[1], als.Color.g);
MACRO_NODECHECK_READCOMP_F("b", read_flag[2], als.Color.b);
MACRO_NODECHECK_READCOMP_F("a", read_flag[3], als.Color.a);
MACRO_NODECHECK_LOOPEND("color");
ParseHelper_Node_Exit();
for (pugi::xml_node &child : node.children()) {
if (child.name() == "r") {
read_flag[0] = true;
als.Color.r = atof(child.value());
} else if (child.name() == "g") {
read_flag[1] = true;
als.Color.g = atof(child.value());
} else if (child.name() == "b") {
read_flag[2] = true;
als.Color.b = atof(child.value());
} else if (child.name() == "g") {
read_flag[3] = true;
als.Color.a = atof(child.value());
}
}
// check that all components was defined
if (!(read_flag[0] && read_flag[1] && read_flag[2])) {
throw DeadlyImportError("Not all color components are defined.");
}
if (!(read_flag[0] && read_flag[1] && read_flag[2])) {
throw DeadlyImportError("Not all color components are defined.");
}
// check if <a> is absent. Then manually add "a == 1".
if (!read_flag[3]) {
als.Color.a = 1;
}
}
else
{
// check if <a> is absent. Then manually add "a == 1".
if (!read_flag[3]) {
als.Color.a = 1;
}
} else {
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}
@ -122,45 +117,24 @@ void AMFImporter::ParseNode_Color() {
// An available material.
// Multi elements - Yes.
// Parent element - <amf>.
void AMFImporter::ParseNode_Material() {
std::string id;
CAMFImporter_NodeElement* ne;
// Read attributes for node <color>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("id", id, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
// create new object.
ne = new CAMFImporter_NodeElement_Material(mNodeElement_Cur);
// and assign read data
((CAMFImporter_NodeElement_Material*)ne)->ID = id;
void AMFImporter::ParseNode_Material(XmlNode &node) {
// create new object and assign read data
std::string id = node.attribute("id").as_string();
AMFNodeElementBase *ne = new AMFMaterial(mNodeElement_Cur);
((AMFMaterial*)ne)->ID = id;
// Check for child nodes
if(!mXmlParser->isEmptyElement())
{
if (!node.empty()) {
bool col_read = false;
ParseHelper_Node_Enter(ne);
MACRO_NODECHECK_LOOPBEGIN("material");
if(XML_CheckNode_NameEqual("color"))
{
// Check if data already defined.
if(col_read) Throw_MoreThanOnceDefined("color", "Only one color can be defined for <material>.");
// read data and set flag about it
ParseNode_Color();
for (pugi::xml_node &child : node.children()) {
if (child.name() == "color") {
col_read = true;
continue;
ParseNode_Color(child);
} else if (child.name() == "metadata") {
ParseNode_Metadata(child);
}
if(XML_CheckNode_NameEqual("metadata")) { ParseNode_Metadata(); continue; }
MACRO_NODECHECK_LOOPEND("material");
ParseHelper_Node_Exit();
}
else
{
}
} else {
mNodeElement_Cur->Child.push_back(ne);// Add element to child list of current element
}
@ -192,30 +166,35 @@ void AMFImporter::ParseNode_Texture(XmlNode &node) {
bool tiled = node.attribute("tiled").as_bool();
// create new texture object.
CAMFImporter_NodeElement *ne = new CAMFImporter_NodeElement_Texture(mNodeElement_Cur);
AMFNodeElementBase *ne = new AMFTexture(mNodeElement_Cur);
CAMFImporter_NodeElement_Texture& als = *((CAMFImporter_NodeElement_Texture*)ne);// alias for convenience
AMFTexture& als = *((AMFTexture*)ne);// alias for convenience
// Check for child nodes
if (!mXmlParser->isEmptyElement()) {
XML_ReadNode_GetVal_AsString(enc64_data);
if (node.empty()) {
return;
}
std::string enc64_data = node.value();
// Check for child nodes
//if (!mXmlParser->isEmptyElement()) {
// XML_ReadNode_GetVal_AsString(enc64_data);
//}
// check that all components was defined
if (id.empty()) {
throw DeadlyImportError("ID for texture must be defined.");
throw DeadlyImportError("ID for texture must be defined.");
}
if (width < 1) {
Throw_IncorrectAttrValue("width");
throw DeadlyImportError("INvalid width for texture.");
}
if (height < 1) {
Throw_IncorrectAttrValue("height");
}
throw DeadlyImportError("Invalid height for texture.");
}
if (depth < 1) {
Throw_IncorrectAttrValue("depth");
throw DeadlyImportError("Invalid depth for texture.");
}
if (type != "grayscale") {
Throw_IncorrectAttrValue("type");
throw DeadlyImportError("Invalid type for texture.");
}
if (enc64_data.empty()) {
throw DeadlyImportError("Texture data not defined.");
@ -251,57 +230,80 @@ void AMFImporter::ParseNode_Texture(XmlNode &node) {
// <utex1>, <utex2>, <utex3>, <vtex1>, <vtex2>, <vtex3>. Old name: <u1>, <u2>, <u3>, <v1>, <v2>, <v3>.
// Multi elements - No.
// Texture coordinates for every vertex of triangle.
void AMFImporter::ParseNode_TexMap(const bool pUseOldName) {
std::string rtexid, gtexid, btexid, atexid;
void AMFImporter::ParseNode_TexMap(XmlNode &node, const bool pUseOldName) {
// Read attributes for node <color>.
MACRO_ATTRREAD_LOOPBEG;
MACRO_ATTRREAD_CHECK_RET("rtexid", rtexid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("gtexid", gtexid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("btexid", btexid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_CHECK_RET("atexid", atexid, mXmlParser->getAttributeValue);
MACRO_ATTRREAD_LOOPEND;
std::string rtexid = node.attribute("rtexid").as_string();
std::string gtexid = node.attribute("gtexid").as_string();
std::string btexid = node.attribute("btexid").as_string();
std::string atexid = node.attribute("atexid").as_string();
// create new texture coordinates object.
CAMFImporter_NodeElement *ne = new CAMFImporter_NodeElement_TexMap(mNodeElement_Cur);
CAMFImporter_NodeElement_TexMap& als = *((CAMFImporter_NodeElement_TexMap*)ne);// alias for convenience
// create new texture coordinates object, alias for convenience
AMFNodeElementBase *ne = new AMFTexMap(mNodeElement_Cur);
AMFTexMap& als = *((AMFTexMap*)ne);//
// check data
if(rtexid.empty() && gtexid.empty() && btexid.empty()) throw DeadlyImportError("ParseNode_TexMap. At least one texture ID must be defined.");
if (rtexid.empty() && gtexid.empty() && btexid.empty()) {
throw DeadlyImportError("ParseNode_TexMap. At least one texture ID must be defined.");
}
// Check for children nodes
XML_CheckNode_MustHaveChildren();
//XML_CheckNode_MustHaveChildren();
if (node.children().begin() == node.children().end()) {
throw DeadlyImportError("Invalid children definition.");
}
// read children nodes
bool read_flag[6] = { false, false, false, false, false, false };
ParseHelper_Node_Enter(ne);
if(!pUseOldName)
{
MACRO_NODECHECK_LOOPBEGIN("texmap");
MACRO_NODECHECK_READCOMP_F("utex1", read_flag[0], als.TextureCoordinate[0].x);
MACRO_NODECHECK_READCOMP_F("utex2", read_flag[1], als.TextureCoordinate[1].x);
MACRO_NODECHECK_READCOMP_F("utex3", read_flag[2], als.TextureCoordinate[2].x);
MACRO_NODECHECK_READCOMP_F("vtex1", read_flag[3], als.TextureCoordinate[0].y);
MACRO_NODECHECK_READCOMP_F("vtex2", read_flag[4], als.TextureCoordinate[1].y);
MACRO_NODECHECK_READCOMP_F("vtex3", read_flag[5], als.TextureCoordinate[2].y);
MACRO_NODECHECK_LOOPEND("texmap");
if (!pUseOldName) {
for (pugi::xml_attribute &attr : node.attributes()) {
if (attr.name() == "utex1") {
read_flag[0] = true;
als.TextureCoordinate[0].x = attr.as_float();
} else if (attr.name() == "utex2") {
read_flag[1] = true;
als.TextureCoordinate[1].x = attr.as_float();
} else if (attr.name() == "utex3") {
read_flag[2] = true;
als.TextureCoordinate[2].x = attr.as_float();
} else if (attr.name() == "vtex1") {
read_flag[3] = true;
als.TextureCoordinate[0].y = attr.as_float();
} else if (attr.name() == "vtex2") {
read_flag[4] = true;
als.TextureCoordinate[1].y = attr.as_float();
} else if (attr.name() == "vtex3") {
read_flag[5] = true;
als.TextureCoordinate[0].y = attr.as_float();
}
}
} else {
for (pugi::xml_attribute &attr : node.attributes()) {
if (attr.name() == "u") {
read_flag[0] = true;
als.TextureCoordinate[0].x = attr.as_float();
} else if (attr.name() == "u2") {
read_flag[1] = true;
als.TextureCoordinate[1].x = attr.as_float();
} else if (attr.name() == "u3") {
read_flag[2] = true;
als.TextureCoordinate[2].x = attr.as_float();
} else if (attr.name() == "v1") {
read_flag[3] = true;
als.TextureCoordinate[0].y = attr.as_float();
} else if (attr.name() == "v2") {
read_flag[4] = true;
als.TextureCoordinate[1].y = attr.as_float();
} else if (attr.name() == "v3") {
read_flag[5] = true;
als.TextureCoordinate[0].y = attr.as_float();
}
}
}
else
{
MACRO_NODECHECK_LOOPBEGIN("map");
MACRO_NODECHECK_READCOMP_F("u1", read_flag[0], als.TextureCoordinate[0].x);
MACRO_NODECHECK_READCOMP_F("u2", read_flag[1], als.TextureCoordinate[1].x);
MACRO_NODECHECK_READCOMP_F("u3", read_flag[2], als.TextureCoordinate[2].x);
MACRO_NODECHECK_READCOMP_F("v1", read_flag[3], als.TextureCoordinate[0].y);
MACRO_NODECHECK_READCOMP_F("v2", read_flag[4], als.TextureCoordinate[1].y);
MACRO_NODECHECK_READCOMP_F("v3", read_flag[5], als.TextureCoordinate[2].y);
MACRO_NODECHECK_LOOPEND("map");
}// if(!pUseOldName) else
ParseHelper_Node_Exit();
// check that all components was defined
if(!(read_flag[0] && read_flag[1] && read_flag[2] && read_flag[3] && read_flag[4] && read_flag[5]))
if (!(read_flag[0] && read_flag[1] && read_flag[2] && read_flag[3] && read_flag[4] && read_flag[5])) {
throw DeadlyImportError("Not all texture coordinates are defined.");
}
// copy attributes data
als.TextureID_R = rtexid;
@ -309,7 +311,7 @@ void AMFImporter::ParseNode_TexMap(const bool pUseOldName) {
als.TextureID_B = btexid;
als.TextureID_A = atexid;
mNodeElement_List.push_back(ne);// add to node element list because its a new object in graph.
mNodeElement_List.push_back(ne);
}
}// namespace Assimp

View File

@ -56,80 +56,76 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <vector>
// Header files, Assimp.
#include "assimp/types.h"
#include "assimp/scene.h"
#include "assimp/types.h"
/// \class CAMFImporter_NodeElement
/// Base class for elements of nodes.
class CAMFImporter_NodeElement {
class AMFNodeElementBase {
public:
/// Define what data type contain node element.
enum EType {
ENET_Color, ///< Color element: <color>.
ENET_Constellation,///< Grouping element: <constellation>.
ENET_Coordinates, ///< Coordinates element: <coordinates>.
ENET_Edge, ///< Edge element: <edge>.
ENET_Instance, ///< Grouping element: <constellation>.
ENET_Material, ///< Material element: <material>.
ENET_Metadata, ///< Metadata element: <metadata>.
ENET_Mesh, ///< Metadata element: <mesh>.
ENET_Object, ///< Element which hold object: <object>.
ENET_Root, ///< Root element: <amf>.
ENET_Triangle, ///< Triangle element: <triangle>.
ENET_TexMap, ///< Texture coordinates element: <texmap> or <map>.
ENET_Texture, ///< Texture element: <texture>.
ENET_Vertex, ///< Vertex element: <vertex>.
ENET_Vertices, ///< Vertex element: <vertices>.
ENET_Volume, ///< Volume element: <volume>.
ENET_Color, ///< Color element: <color>.
ENET_Constellation, ///< Grouping element: <constellation>.
ENET_Coordinates, ///< Coordinates element: <coordinates>.
ENET_Edge, ///< Edge element: <edge>.
ENET_Instance, ///< Grouping element: <constellation>.
ENET_Material, ///< Material element: <material>.
ENET_Metadata, ///< Metadata element: <metadata>.
ENET_Mesh, ///< Metadata element: <mesh>.
ENET_Object, ///< Element which hold object: <object>.
ENET_Root, ///< Root element: <amf>.
ENET_Triangle, ///< Triangle element: <triangle>.
ENET_TexMap, ///< Texture coordinates element: <texmap> or <map>.
ENET_Texture, ///< Texture element: <texture>.
ENET_Vertex, ///< Vertex element: <vertex>.
ENET_Vertices, ///< Vertex element: <vertices>.
ENET_Volume, ///< Volume element: <volume>.
ENET_Invalid ///< Element has invalid type and possible contain invalid data.
ENET_Invalid ///< Element has invalid type and possible contain invalid data.
};
const EType Type;///< Type of element.
std::string ID;///< ID of element.
CAMFImporter_NodeElement* Parent;///< Parent element. If nullptr then this node is root.
std::list<CAMFImporter_NodeElement*> Child;///< Child elements.
const EType Type; ///< Type of element.
std::string ID; ///< ID of element.
AMFNodeElementBase *Parent; ///< Parent element. If nullptr then this node is root.
std::list<AMFNodeElementBase *> Child; ///< Child elements.
public: /// Destructor, virtual..
virtual ~CAMFImporter_NodeElement() {
// empty
}
public: /// Destructor, virtual..
virtual ~AMFNodeElementBase() {
// empty
}
/// Disabled copy constructor and co.
CAMFImporter_NodeElement(const CAMFImporter_NodeElement& pNodeElement) = delete;
CAMFImporter_NodeElement(CAMFImporter_NodeElement&&) = delete;
CAMFImporter_NodeElement& operator=(const CAMFImporter_NodeElement& pNodeElement) = delete;
CAMFImporter_NodeElement() = delete;
AMFNodeElementBase(const AMFNodeElementBase &pNodeElement) = delete;
AMFNodeElementBase(AMFNodeElementBase &&) = delete;
AMFNodeElementBase &operator=(const AMFNodeElementBase &pNodeElement) = delete;
AMFNodeElementBase() = delete;
protected:
/// In constructor inheritor must set element type.
/// \param [in] pType - element type.
/// \param [in] pParent - parent element.
CAMFImporter_NodeElement(const EType pType, CAMFImporter_NodeElement* pParent)
: Type(pType)
, ID()
, Parent(pParent)
, Child() {
// empty
}
};// class IAMFImporter_NodeElement
AMFNodeElementBase(const EType pType, AMFNodeElementBase *pParent) :
Type(pType), ID(), Parent(pParent), Child() {
// empty
}
}; // class IAMFImporter_NodeElement
/// \struct CAMFImporter_NodeElement_Constellation
/// A collection of objects or constellations with specific relative locations.
struct CAMFImporter_NodeElement_Constellation : public CAMFImporter_NodeElement {
struct AMFConstellation : public AMFNodeElementBase {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Constellation(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Constellation, pParent)
{}
AMFConstellation(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Constellation, pParent) {}
};// struct CAMFImporter_NodeElement_Constellation
}; // struct CAMFImporter_NodeElement_Constellation
/// \struct CAMFImporter_NodeElement_Instance
/// Part of constellation.
struct CAMFImporter_NodeElement_Instance : public CAMFImporter_NodeElement {
struct AMFInstance : public AMFNodeElementBase {
std::string ObjectID;///< ID of object for instantiation.
std::string ObjectID; ///< ID of object for instantiation.
/// \var Delta - The distance of translation in the x, y, or z direction, respectively, in the referenced object's coordinate system, to
/// create an instance of the object in the current constellation.
aiVector3D Delta;
@ -140,201 +136,173 @@ struct CAMFImporter_NodeElement_Instance : public CAMFImporter_NodeElement {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Instance(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Instance, pParent)
{}
AMFInstance(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Instance, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Metadata
/// Structure that define metadata node.
struct CAMFImporter_NodeElement_Metadata : public CAMFImporter_NodeElement {
struct AMFMetadata : public AMFNodeElementBase {
std::string Type;///< Type of "Value".
std::string Value;///< Value.
std::string Type; ///< Type of "Value".
std::string Value; ///< Value.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Metadata(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Metadata, pParent)
{}
AMFMetadata(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Metadata, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Root
/// Structure that define root node.
struct CAMFImporter_NodeElement_Root : public CAMFImporter_NodeElement {
struct AMFRoot : public AMFNodeElementBase {
std::string Unit;///< The units to be used. May be "inch", "millimeter", "meter", "feet", or "micron".
std::string Version;///< Version of format.
std::string Unit; ///< The units to be used. May be "inch", "millimeter", "meter", "feet", or "micron".
std::string Version; ///< Version of format.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Root(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Root, pParent)
{}
AMFRoot(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Root, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Color
/// Structure that define object node.
struct CAMFImporter_NodeElement_Color : public CAMFImporter_NodeElement {
bool Composed; ///< Type of color stored: if true then look for formula in \ref Color_Composed[4], else - in \ref Color.
std::string Color_Composed[4]; ///< By components formulas of composed color. [0..3] - RGBA.
aiColor4D Color; ///< Constant color.
std::string Profile; ///< The ICC color space used to interpret the three color channels r, g and b..
struct AMFColor : public AMFNodeElementBase {
bool Composed; ///< Type of color stored: if true then look for formula in \ref Color_Composed[4], else - in \ref Color.
std::string Color_Composed[4]; ///< By components formulas of composed color. [0..3] - RGBA.
aiColor4D Color; ///< Constant color.
std::string Profile; ///< The ICC color space used to interpret the three color channels r, g and b..
/// @brief Constructor.
/// @param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Color(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Color, pParent)
, Composed( false )
, Color()
, Profile() {
// empty
}
AMFColor(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Color, pParent), Composed(false), Color(), Profile() {
// empty
}
};
/// \struct CAMFImporter_NodeElement_Material
/// Structure that define material node.
struct CAMFImporter_NodeElement_Material : public CAMFImporter_NodeElement {
struct AMFMaterial : public AMFNodeElementBase {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Material(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Material, pParent)
{}
AMFMaterial(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Material, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Object
/// Structure that define object node.
struct CAMFImporter_NodeElement_Object : public CAMFImporter_NodeElement {
struct AMFObject : public AMFNodeElementBase {
/// Constructor.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Object(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Object, pParent)
{}
AMFObject(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Object, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Mesh
/// Structure that define mesh node.
struct CAMFImporter_NodeElement_Mesh : public CAMFImporter_NodeElement {
struct AMFMesh : public AMFNodeElementBase {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Mesh(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Mesh, pParent)
{}
AMFMesh(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Mesh, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Vertex
/// Structure that define vertex node.
struct CAMFImporter_NodeElement_Vertex : public CAMFImporter_NodeElement {
struct AMFVertex : public AMFNodeElementBase {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Vertex(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Vertex, pParent)
{}
AMFVertex(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Vertex, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Edge
/// Structure that define edge node.
struct CAMFImporter_NodeElement_Edge : public CAMFImporter_NodeElement {
struct AMFEdge : public AMFNodeElementBase {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Edge(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Edge, pParent)
{}
AMFEdge(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Edge, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Vertices
/// Structure that define vertices node.
struct CAMFImporter_NodeElement_Vertices : public CAMFImporter_NodeElement {
struct AMFVertices : public AMFNodeElementBase {
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Vertices(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Vertices, pParent)
{}
AMFVertices(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Vertices, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Volume
/// Structure that define volume node.
struct CAMFImporter_NodeElement_Volume : public CAMFImporter_NodeElement {
std::string MaterialID;///< Which material to use.
std::string Type;///< What this volume describes can be “region” or “support”. If none specified, “object” is assumed.
struct AMFVolume : public AMFNodeElementBase {
std::string MaterialID; ///< Which material to use.
std::string Type; ///< What this volume describes can be “region” or “support”. If none specified, “object” is assumed.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Volume(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Volume, pParent)
{}
AMFVolume(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Volume, pParent) {}
};
/// \struct CAMFImporter_NodeElement_Coordinates
/// Structure that define coordinates node.
struct CAMFImporter_NodeElement_Coordinates : public CAMFImporter_NodeElement
{
aiVector3D Coordinate;///< Coordinate.
struct AMFCoordinates : public AMFNodeElementBase {
aiVector3D Coordinate; ///< Coordinate.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Coordinates(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Coordinates, pParent)
{}
AMFCoordinates(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Coordinates, pParent) {}
};
/// \struct CAMFImporter_NodeElement_TexMap
/// Structure that define texture coordinates node.
struct CAMFImporter_NodeElement_TexMap : public CAMFImporter_NodeElement {
aiVector3D TextureCoordinate[3];///< Texture coordinates.
std::string TextureID_R;///< Texture ID for red color component.
std::string TextureID_G;///< Texture ID for green color component.
std::string TextureID_B;///< Texture ID for blue color component.
std::string TextureID_A;///< Texture ID for alpha color component.
struct AMFTexMap : public AMFNodeElementBase {
aiVector3D TextureCoordinate[3]; ///< Texture coordinates.
std::string TextureID_R; ///< Texture ID for red color component.
std::string TextureID_G; ///< Texture ID for green color component.
std::string TextureID_B; ///< Texture ID for blue color component.
std::string TextureID_A; ///< Texture ID for alpha color component.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_TexMap(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_TexMap, pParent)
, TextureCoordinate{}
, TextureID_R()
, TextureID_G()
, TextureID_B()
, TextureID_A() {
// empty
}
AMFTexMap(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_TexMap, pParent), TextureCoordinate{}, TextureID_R(), TextureID_G(), TextureID_B(), TextureID_A() {
// empty
}
};
/// \struct CAMFImporter_NodeElement_Triangle
/// Structure that define triangle node.
struct CAMFImporter_NodeElement_Triangle : public CAMFImporter_NodeElement {
size_t V[3];///< Triangle vertices.
struct AMFTriangle : public AMFNodeElementBase {
size_t V[3]; ///< Triangle vertices.
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Triangle(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Triangle, pParent) {
// empty
}
AMFTriangle(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Triangle, pParent) {
// empty
}
};
/// Structure that define texture node.
struct CAMFImporter_NodeElement_Texture : public CAMFImporter_NodeElement {
size_t Width, Height, Depth;///< Size of the texture.
std::vector<uint8_t> Data;///< Data of the texture.
struct AMFTexture : public AMFNodeElementBase {
size_t Width, Height, Depth; ///< Size of the texture.
std::vector<uint8_t> Data; ///< Data of the texture.
bool Tiled;
/// Constructor.
/// \param [in] pParent - pointer to parent node.
CAMFImporter_NodeElement_Texture(CAMFImporter_NodeElement* pParent)
: CAMFImporter_NodeElement(ENET_Texture, pParent)
, Width( 0 )
, Height( 0 )
, Depth( 0 )
, Data()
, Tiled( false ){
// empty
}
AMFTexture(AMFNodeElementBase *pParent) :
AMFNodeElementBase(ENET_Texture, pParent), Width(0), Height(0), Depth(0), Data(), Tiled(false) {
// empty
}
};
#endif // INCLUDED_AI_AMF_IMPORTER_NODE_H

View File

@ -91,16 +91,16 @@ aiColor4D AMFImporter::SPP_Material::GetColor(const float /*pX*/, const float /*
return tcol;
}
void AMFImporter::PostprocessHelper_CreateMeshDataArray(const CAMFImporter_NodeElement_Mesh& pNodeElement, std::vector<aiVector3D>& pVertexCoordinateArray,
std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray) const
void AMFImporter::PostprocessHelper_CreateMeshDataArray(const AMFMesh& pNodeElement, std::vector<aiVector3D>& pVertexCoordinateArray,
std::vector<AMFColor*>& pVertexColorArray) const
{
CAMFImporter_NodeElement_Vertices* vn = nullptr;
AMFVertices* vn = nullptr;
size_t col_idx;
// All data stored in "vertices", search for it.
for(CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
for(AMFNodeElementBase* ne_child: pNodeElement.Child)
{
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Vertices) vn = (CAMFImporter_NodeElement_Vertices*)ne_child;
if(ne_child->Type == AMFNodeElementBase::ENET_Vertices) vn = (AMFVertices*)ne_child;
}
// If "vertices" not found then no work for us.
@ -110,26 +110,26 @@ void AMFImporter::PostprocessHelper_CreateMeshDataArray(const CAMFImporter_NodeE
pVertexColorArray.resize(vn->Child.size());// colors count equal vertices count.
col_idx = 0;
// Inside vertices collect all data and place to arrays
for(CAMFImporter_NodeElement* vn_child: vn->Child)
for(AMFNodeElementBase* vn_child: vn->Child)
{
// vertices, colors
if(vn_child->Type == CAMFImporter_NodeElement::ENET_Vertex)
if(vn_child->Type == AMFNodeElementBase::ENET_Vertex)
{
// by default clear color for current vertex
pVertexColorArray[col_idx] = nullptr;
for(CAMFImporter_NodeElement* vtx: vn_child->Child)
for(AMFNodeElementBase* vtx: vn_child->Child)
{
if(vtx->Type == CAMFImporter_NodeElement::ENET_Coordinates)
if(vtx->Type == AMFNodeElementBase::ENET_Coordinates)
{
pVertexCoordinateArray.push_back(((CAMFImporter_NodeElement_Coordinates*)vtx)->Coordinate);
pVertexCoordinateArray.push_back(((AMFCoordinates*)vtx)->Coordinate);
continue;
}
if(vtx->Type == CAMFImporter_NodeElement::ENET_Color)
if(vtx->Type == AMFNodeElementBase::ENET_Color)
{
pVertexColorArray[col_idx] = (CAMFImporter_NodeElement_Color*)vtx;
pVertexColorArray[col_idx] = (AMFColor*)vtx;
continue;
}
@ -166,20 +166,20 @@ size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string&
//
// Converted texture not found, create it.
//
CAMFImporter_NodeElement_Texture* src_texture[4]{nullptr};
std::vector<CAMFImporter_NodeElement_Texture*> src_texture_4check;
AMFTexture* src_texture[4]{nullptr};
std::vector<AMFTexture*> src_texture_4check;
SPP_Texture converted_texture;
{// find all specified source textures
CAMFImporter_NodeElement* t_tex;
AMFNodeElementBase* t_tex;
// R
if(!pID_R.empty())
{
if(!Find_NodeElement(pID_R, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_R);
if(!Find_NodeElement(pID_R, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_R);
src_texture[0] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
src_texture[0] = (AMFTexture*)t_tex;
src_texture_4check.push_back((AMFTexture*)t_tex);
}
else
{
@ -189,10 +189,10 @@ size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string&
// G
if(!pID_G.empty())
{
if(!Find_NodeElement(pID_G, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_G);
if(!Find_NodeElement(pID_G, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_G);
src_texture[1] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
src_texture[1] = (AMFTexture*)t_tex;
src_texture_4check.push_back((AMFTexture*)t_tex);
}
else
{
@ -202,10 +202,10 @@ size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string&
// B
if(!pID_B.empty())
{
if(!Find_NodeElement(pID_B, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_B);
if(!Find_NodeElement(pID_B, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_B);
src_texture[2] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
src_texture[2] = (AMFTexture*)t_tex;
src_texture_4check.push_back((AMFTexture*)t_tex);
}
else
{
@ -215,10 +215,10 @@ size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string&
// A
if(!pID_A.empty())
{
if(!Find_NodeElement(pID_A, CAMFImporter_NodeElement::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_A);
if(!Find_NodeElement(pID_A, AMFNodeElementBase::ENET_Texture, &t_tex)) Throw_ID_NotFound(pID_A);
src_texture[3] = (CAMFImporter_NodeElement_Texture*)t_tex;
src_texture_4check.push_back((CAMFImporter_NodeElement_Texture*)t_tex);
src_texture[3] = (AMFTexture*)t_tex;
src_texture_4check.push_back((AMFTexture*)t_tex);
}
else
{
@ -284,7 +284,7 @@ size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string&
if(!pID.empty())
{
for(size_t idx_target = pOffset, idx_src = 0; idx_target < tex_size; idx_target += pStep, idx_src++) {
CAMFImporter_NodeElement_Texture* tex = src_texture[pSrcTexNum];
AMFTexture* tex = src_texture[pSrcTexNum];
ai_assert(tex);
converted_texture.Data[idx_target] = tex->Data.at(idx_src);
}
@ -306,7 +306,7 @@ size_t AMFImporter::PostprocessHelper_GetTextureID_Or_Create(const std::string&
void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace>& pInputList, std::list<std::list<SComplexFace> >& pOutputList_Separated)
{
auto texmap_is_equal = [](const CAMFImporter_NodeElement_TexMap* pTexMap1, const CAMFImporter_NodeElement_TexMap* pTexMap2) -> bool
auto texmap_is_equal = [](const AMFTexMap* pTexMap1, const AMFTexMap* pTexMap2) -> bool
{
if((pTexMap1 == nullptr) && (pTexMap2 == nullptr)) return true;
if(pTexMap1 == nullptr) return false;
@ -349,7 +349,7 @@ void AMFImporter::PostprocessHelper_SplitFacesByTextureID(std::list<SComplexFace
} while(!pInputList.empty());
}
void AMFImporter::Postprocess_AddMetadata(const std::list<CAMFImporter_NodeElement_Metadata*>& metadataList, aiNode& sceneNode) const
void AMFImporter::Postprocess_AddMetadata(const std::list<AMFMetadata*>& metadataList, aiNode& sceneNode) const
{
if ( !metadataList.empty() )
{
@ -359,55 +359,55 @@ void AMFImporter::Postprocess_AddMetadata(const std::list<CAMFImporter_NodeEleme
sceneNode.mMetaData = aiMetadata::Alloc( static_cast<unsigned int>(metadataList.size()) );
size_t meta_idx( 0 );
for(const CAMFImporter_NodeElement_Metadata& metadata: metadataList)
for(const AMFMetadata& metadata: metadataList)
{
sceneNode.mMetaData->Set(static_cast<unsigned int>(meta_idx++), metadata.Type, aiString(metadata.Value));
}
}// if(!metadataList.empty())
}
void AMFImporter::Postprocess_BuildNodeAndObject(const CAMFImporter_NodeElement_Object& pNodeElement, std::list<aiMesh*>& pMeshList, aiNode** pSceneNode)
void AMFImporter::Postprocess_BuildNodeAndObject(const AMFObject& pNodeElement, std::list<aiMesh*>& pMeshList, aiNode** pSceneNode)
{
CAMFImporter_NodeElement_Color* object_color = nullptr;
AMFColor* object_color = nullptr;
// create new aiNode and set name as <object> has.
*pSceneNode = new aiNode;
(*pSceneNode)->mName = pNodeElement.ID;
// read mesh and color
for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
for(const AMFNodeElementBase* ne_child: pNodeElement.Child)
{
std::vector<aiVector3D> vertex_arr;
std::vector<CAMFImporter_NodeElement_Color*> color_arr;
std::vector<AMFColor*> color_arr;
// color for object
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Color) object_color = (CAMFImporter_NodeElement_Color*)ne_child;
if(ne_child->Type == AMFNodeElementBase::ENET_Color) object_color = (AMFColor*)ne_child;
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Mesh)
if(ne_child->Type == AMFNodeElementBase::ENET_Mesh)
{
// Create arrays from children of mesh: vertices.
PostprocessHelper_CreateMeshDataArray(*((CAMFImporter_NodeElement_Mesh*)ne_child), vertex_arr, color_arr);
PostprocessHelper_CreateMeshDataArray(*((AMFMesh*)ne_child), vertex_arr, color_arr);
// Use this arrays as a source when creating every aiMesh
Postprocess_BuildMeshSet(*((CAMFImporter_NodeElement_Mesh*)ne_child), vertex_arr, color_arr, object_color, pMeshList, **pSceneNode);
Postprocess_BuildMeshSet(*((AMFMesh*)ne_child), vertex_arr, color_arr, object_color, pMeshList, **pSceneNode);
}
}// for(const CAMFImporter_NodeElement* ne_child: pNodeElement)
}
void AMFImporter::Postprocess_BuildMeshSet(const CAMFImporter_NodeElement_Mesh& pNodeElement, const std::vector<aiVector3D>& pVertexCoordinateArray,
const std::vector<CAMFImporter_NodeElement_Color*>& pVertexColorArray,
const CAMFImporter_NodeElement_Color* pObjectColor, std::list<aiMesh*>& pMeshList, aiNode& pSceneNode)
void AMFImporter::Postprocess_BuildMeshSet(const AMFMesh& pNodeElement, const std::vector<aiVector3D>& pVertexCoordinateArray,
const std::vector<AMFColor*>& pVertexColorArray,
const AMFColor* pObjectColor, std::list<aiMesh*>& pMeshList, aiNode& pSceneNode)
{
std::list<unsigned int> mesh_idx;
// all data stored in "volume", search for it.
for(const CAMFImporter_NodeElement* ne_child: pNodeElement.Child)
for(const AMFNodeElementBase* ne_child: pNodeElement.Child)
{
const CAMFImporter_NodeElement_Color* ne_volume_color = nullptr;
const AMFColor* ne_volume_color = nullptr;
const SPP_Material* cur_mat = nullptr;
if(ne_child->Type == CAMFImporter_NodeElement::ENET_Volume)
if(ne_child->Type == AMFNodeElementBase::ENET_Volume)
{
/******************* Get faces *******************/
const CAMFImporter_NodeElement_Volume* ne_volume = reinterpret_cast<const CAMFImporter_NodeElement_Volume*>(ne_child);
const AMFVolume* ne_volume = reinterpret_cast<const AMFVolume*>(ne_child);
std::list<SComplexFace> complex_faces_list;// List of the faces of the volume.
std::list<std::list<SComplexFace> > complex_faces_toplist;// List of the face list for every mesh.
@ -419,16 +419,16 @@ std::list<unsigned int> mesh_idx;
}
// inside "volume" collect all data and place to arrays or create new objects
for(const CAMFImporter_NodeElement* ne_volume_child: ne_volume->Child)
for(const AMFNodeElementBase* ne_volume_child: ne_volume->Child)
{
// color for volume
if(ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Color)
if(ne_volume_child->Type == AMFNodeElementBase::ENET_Color)
{
ne_volume_color = reinterpret_cast<const CAMFImporter_NodeElement_Color*>(ne_volume_child);
ne_volume_color = reinterpret_cast<const AMFColor*>(ne_volume_child);
}
else if(ne_volume_child->Type == CAMFImporter_NodeElement::ENET_Triangle)// triangles, triangles colors
else if(ne_volume_child->Type == AMFNodeElementBase::ENET_Triangle)// triangles, triangles colors
{
const CAMFImporter_NodeElement_Triangle& tri_al = *reinterpret_cast<const CAMFImporter_NodeElement_Triangle*>(ne_volume_child);
const AMFTriangle& tri_al = *reinterpret_cast<const AMFTriangle*>(ne_volume_child);
SComplexFace complex_face;
@ -438,12 +438,12 @@ std::list<unsigned int> mesh_idx;
// get data from triangle children: color, texture coordinates.
if(tri_al.Child.size())
{
for(const CAMFImporter_NodeElement* ne_triangle_child: tri_al.Child)
for(const AMFNodeElementBase* ne_triangle_child: tri_al.Child)
{
if(ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_Color)
complex_face.Color = reinterpret_cast<const CAMFImporter_NodeElement_Color*>(ne_triangle_child);
else if(ne_triangle_child->Type == CAMFImporter_NodeElement::ENET_TexMap)
complex_face.TexMap = reinterpret_cast<const CAMFImporter_NodeElement_TexMap*>(ne_triangle_child);
if(ne_triangle_child->Type == AMFNodeElementBase::ENET_Color)
complex_face.Color = reinterpret_cast<const AMFColor*>(ne_triangle_child);
else if(ne_triangle_child->Type == AMFNodeElementBase::ENET_TexMap)
complex_face.TexMap = reinterpret_cast<const AMFTexMap*>(ne_triangle_child);
}
}// if(tri_al.Child.size())
@ -722,20 +722,20 @@ std::list<unsigned int> mesh_idx;
}// if(mesh_idx.size() > 0)
}
void AMFImporter::Postprocess_BuildMaterial(const CAMFImporter_NodeElement_Material& pMaterial)
void AMFImporter::Postprocess_BuildMaterial(const AMFMaterial& pMaterial)
{
SPP_Material new_mat;
new_mat.ID = pMaterial.ID;
for(const CAMFImporter_NodeElement* mat_child: pMaterial.Child)
for(const AMFNodeElementBase* mat_child: pMaterial.Child)
{
if(mat_child->Type == CAMFImporter_NodeElement::ENET_Color)
if(mat_child->Type == AMFNodeElementBase::ENET_Color)
{
new_mat.Color = (CAMFImporter_NodeElement_Color*)mat_child;
new_mat.Color = (AMFColor*)mat_child;
}
else if(mat_child->Type == CAMFImporter_NodeElement::ENET_Metadata)
else if(mat_child->Type == AMFNodeElementBase::ENET_Metadata)
{
new_mat.Metadata.push_back((CAMFImporter_NodeElement_Metadata*)mat_child);
new_mat.Metadata.push_back((AMFMetadata*)mat_child);
}
}// for(const CAMFImporter_NodeElement* mat_child; pMaterial.Child)
@ -743,7 +743,7 @@ SPP_Material new_mat;
mMaterial_Converted.push_back(new_mat);
}
void AMFImporter::Postprocess_BuildConstellation(CAMFImporter_NodeElement_Constellation& pConstellation, std::list<aiNode*>& pNodeList) const
void AMFImporter::Postprocess_BuildConstellation(AMFConstellation& pConstellation, std::list<aiNode*>& pNodeList) const
{
aiNode* con_node;
std::list<aiNode*> ch_node;
@ -756,17 +756,17 @@ std::list<aiNode*> ch_node;
con_node = new aiNode;
con_node->mName = pConstellation.ID;
// Walk through children and search for instances of another objects, constellations.
for(const CAMFImporter_NodeElement* ne: pConstellation.Child)
for(const AMFNodeElementBase* ne: pConstellation.Child)
{
aiMatrix4x4 tmat;
aiNode* t_node;
aiNode* found_node;
if(ne->Type == CAMFImporter_NodeElement::ENET_Metadata) continue;
if(ne->Type != CAMFImporter_NodeElement::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");
if(ne->Type == AMFNodeElementBase::ENET_Metadata) continue;
if(ne->Type != AMFNodeElementBase::ENET_Instance) throw DeadlyImportError("Only <instance> nodes can be in <constellation>.");
// create alias for conveniance
CAMFImporter_NodeElement_Instance& als = *((CAMFImporter_NodeElement_Instance*)ne);
AMFInstance& als = *((AMFInstance*)ne);
// find referenced object
if(!Find_ConvertedNode(als.ObjectID, pNodeList, &found_node)) Throw_ID_NotFound(als.ObjectID);
@ -803,7 +803,7 @@ void AMFImporter::Postprocess_BuildScene(aiScene* pScene)
{
std::list<aiNode*> node_list;
std::list<aiMesh*> mesh_list;
std::list<CAMFImporter_NodeElement_Metadata*> meta_list;
std::list<AMFMetadata*> meta_list;
//
// Because for AMF "material" is just complex colors mixing so aiMaterial will not be used.
@ -813,11 +813,11 @@ std::list<CAMFImporter_NodeElement_Metadata*> meta_list;
pScene->mRootNode->mParent = nullptr;
pScene->mFlags |= AI_SCENE_FLAGS_ALLOW_SHARED;
// search for root(<amf>) element
CAMFImporter_NodeElement* root_el = nullptr;
AMFNodeElementBase* root_el = nullptr;
for(CAMFImporter_NodeElement* ne: mNodeElement_List)
for(AMFNodeElementBase* ne: mNodeElement_List)
{
if(ne->Type != CAMFImporter_NodeElement::ENET_Root) continue;
if(ne->Type != AMFNodeElementBase::ENET_Root) continue;
root_el = ne;
@ -833,22 +833,22 @@ std::list<CAMFImporter_NodeElement_Metadata*> meta_list;
//
// 1. <material>
// 2. <texture> will be converted later when processing triangles list. \sa Postprocess_BuildMeshSet
for(const CAMFImporter_NodeElement* root_child: root_el->Child)
for(const AMFNodeElementBase* root_child: root_el->Child)
{
if(root_child->Type == CAMFImporter_NodeElement::ENET_Material) Postprocess_BuildMaterial(*((CAMFImporter_NodeElement_Material*)root_child));
if(root_child->Type == AMFNodeElementBase::ENET_Material) Postprocess_BuildMaterial(*((AMFMaterial*)root_child));
}
// After "appearance" nodes we must read <object> because it will be used in <constellation> -> <instance>.
//
// 3. <object>
for(const CAMFImporter_NodeElement* root_child: root_el->Child)
for(const AMFNodeElementBase* root_child: root_el->Child)
{
if(root_child->Type == CAMFImporter_NodeElement::ENET_Object)
if(root_child->Type == AMFNodeElementBase::ENET_Object)
{
aiNode* tnode = nullptr;
// for <object> mesh and node must be built: object ID assigned to aiNode name and will be used in future for <instance>
Postprocess_BuildNodeAndObject(*((CAMFImporter_NodeElement_Object*)root_child), mesh_list, &tnode);
Postprocess_BuildNodeAndObject(*((AMFObject*)root_child), mesh_list, &tnode);
if(tnode != nullptr) node_list.push_back(tnode);
}
@ -856,17 +856,17 @@ std::list<CAMFImporter_NodeElement_Metadata*> meta_list;
// And finally read rest of nodes.
//
for(const CAMFImporter_NodeElement* root_child: root_el->Child)
for(const AMFNodeElementBase* root_child: root_el->Child)
{
// 4. <constellation>
if(root_child->Type == CAMFImporter_NodeElement::ENET_Constellation)
if(root_child->Type == AMFNodeElementBase::ENET_Constellation)
{
// <object> and <constellation> at top of self abstraction use aiNode. So we can use only aiNode list for creating new aiNode's.
Postprocess_BuildConstellation(*((CAMFImporter_NodeElement_Constellation*)root_child), node_list);
Postprocess_BuildConstellation(*((AMFConstellation*)root_child), node_list);
}
// 5, <metadata>
if(root_child->Type == CAMFImporter_NodeElement::ENET_Metadata) meta_list.push_back((CAMFImporter_NodeElement_Metadata*)root_child);
if(root_child->Type == AMFNodeElementBase::ENET_Metadata) meta_list.push_back((AMFMetadata*)root_child);
}// for(const CAMFImporter_NodeElement* root_child: root_el->Child)
// at now we can add collected metadata to root node

View File

@ -291,10 +291,8 @@ SET(ASSIMP_EXPORTERS_DISABLED "") # disabled exporters list (used to print)
ADD_ASSIMP_IMPORTER( AMF
AMF/AMFImporter.hpp
AMF/AMFImporter_Macro.hpp
AMF/AMFImporter_Node.hpp
AMF/AMFImporter.cpp
AMF/AMFImporter_Geometry.cpp
AMF/AMFImporter_Material.cpp
AMF/AMFImporter_Postprocess.cpp
)

View File

@ -4,7 +4,6 @@ Open Asset Import Library (assimp)
Copyright (c) 2006-2020, assimp team
All rights reserved.
Redistribution and use of this software in source and binary forms,
@ -59,7 +58,6 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <assimp/IOStream.hpp>
#include <assimp/types.h>
#include <assimp/MemoryIOWrapper.h>
#include <assimp/irrXMLWrapper.h>
#ifdef ASSIMP_USE_HUNTER
# include <utf8/utf8.h>
#else
@ -140,8 +138,13 @@ static std::string parseUTF16String(const uint8_t *data, size_t len) {
}
struct FIStringValueImpl: public FIStringValue {
inline FIStringValueImpl(std::string &&value_) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ { return value; }
FIStringValueImpl(std::string &&value_) {
value = std::move(value_);
}
const std::string &toString() const override {
return value;
}
};
std::shared_ptr<FIStringValue> FIStringValue::create(std::string &&value) {
@ -151,8 +154,13 @@ std::shared_ptr<FIStringValue> FIStringValue::create(std::string &&value) {
struct FIHexValueImpl: public FIHexValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIHexValueImpl(std::vector<uint8_t> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIHexValueImpl(std::vector<uint8_t> &&value_)
: strValueValid( false ) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -160,8 +168,9 @@ struct FIHexValueImpl: public FIHexValue {
std::for_each(value.begin(), value.end(), [&](uint8_t c) { os << std::setw(2) << static_cast<int>(c); });
strValue = os.str();
}
return strValue;
};
}
};
std::shared_ptr<FIHexValue> FIHexValue::create(std::vector<uint8_t> &&value) {
@ -171,8 +180,13 @@ std::shared_ptr<FIHexValue> FIHexValue::create(std::vector<uint8_t> &&value) {
struct FIBase64ValueImpl: public FIBase64Value {
mutable std::string strValue;
mutable bool strValueValid;
inline FIBase64ValueImpl(std::vector<uint8_t> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIBase64ValueImpl(std::vector<uint8_t> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -182,33 +196,35 @@ struct FIBase64ValueImpl: public FIBase64Value {
for (std::vector<uint8_t>::size_type i = 0; i < valueSize; ++i) {
c2 = value[i];
switch (imod3) {
case 0:
os << basis_64[c2 >> 2];
imod3 = 1;
break;
case 1:
os << basis_64[((c1 & 0x03) << 4) | ((c2 & 0xf0) >> 4)];
imod3 = 2;
break;
case 2:
os << basis_64[((c1 & 0x0f) << 2) | ((c2 & 0xc0) >> 6)] << basis_64[c2 & 0x3f];
imod3 = 0;
break;
}
c1 = c2;
case 0:
os << basis_64[c2 >> 2];
imod3 = 1;
break;
case 1:
os << basis_64[((c1 & 0x03) << 4) | ((c2 & 0xf0) >> 4)];
imod3 = 2;
break;
case 2:
os << basis_64[((c1 & 0x0f) << 2) | ((c2 & 0xc0) >> 6)] << basis_64[c2 & 0x3f];
imod3 = 0;
break;
}
c1 = c2;
}
switch (imod3) {
case 1:
os << basis_64[(c1 & 0x03) << 4] << "==";
break;
case 2:
os << basis_64[(c1 & 0x0f) << 2] << '=';
break;
case 1:
os << basis_64[(c1 & 0x03) << 4] << "==";
break;
case 2:
os << basis_64[(c1 & 0x0f) << 2] << '=';
break;
}
strValue = os.str();
}
return strValue;
};
static const char basis_64[];
};
@ -221,8 +237,13 @@ std::shared_ptr<FIBase64Value> FIBase64Value::create(std::vector<uint8_t> &&valu
struct FIShortValueImpl: public FIShortValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIShortValueImpl(std::vector<int16_t> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIShortValueImpl(std::vector<int16_t> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -230,6 +251,7 @@ struct FIShortValueImpl: public FIShortValue {
std::for_each(value.begin(), value.end(), [&](int16_t s) { if (++n > 1) os << ' '; os << s; });
strValue = os.str();
}
return strValue;
}
};
@ -241,8 +263,13 @@ std::shared_ptr<FIShortValue> FIShortValue::create(std::vector<int16_t> &&value)
struct FIIntValueImpl: public FIIntValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIIntValueImpl(std::vector<int32_t> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIIntValueImpl(std::vector<int32_t> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -250,8 +277,9 @@ struct FIIntValueImpl: public FIIntValue {
std::for_each(value.begin(), value.end(), [&](int32_t i) { if (++n > 1) os << ' '; os << i; });
strValue = os.str();
}
return strValue;
};
}
};
std::shared_ptr<FIIntValue> FIIntValue::create(std::vector<int32_t> &&value) {
@ -261,8 +289,13 @@ std::shared_ptr<FIIntValue> FIIntValue::create(std::vector<int32_t> &&value) {
struct FILongValueImpl: public FILongValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FILongValueImpl(std::vector<int64_t> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FILongValueImpl(std::vector<int64_t> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -270,8 +303,9 @@ struct FILongValueImpl: public FILongValue {
std::for_each(value.begin(), value.end(), [&](int64_t l) { if (++n > 1) os << ' '; os << l; });
strValue = os.str();
}
return strValue;
};
}
};
std::shared_ptr<FILongValue> FILongValue::create(std::vector<int64_t> &&value) {
@ -281,16 +315,24 @@ std::shared_ptr<FILongValue> FILongValue::create(std::vector<int64_t> &&value) {
struct FIBoolValueImpl: public FIBoolValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIBoolValueImpl(std::vector<bool> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIBoolValueImpl(std::vector<bool> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
os << std::boolalpha;
int n = 0;
std::for_each(value.begin(), value.end(), [&](bool b) { if (++n > 1) os << ' '; os << b; });
std::for_each(value.begin(), value.end(), [&](bool b) {
if (++n > 1) os << ' '; os << b;
});
strValue = os.str();
}
return strValue;
};
};
@ -302,8 +344,13 @@ std::shared_ptr<FIBoolValue> FIBoolValue::create(std::vector<bool> &&value) {
struct FIFloatValueImpl: public FIFloatValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIFloatValueImpl(std::vector<float> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIFloatValueImpl(std::vector<float> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -311,6 +358,7 @@ struct FIFloatValueImpl: public FIFloatValue {
std::for_each(value.begin(), value.end(), [&](float f) { if (++n > 1) os << ' '; os << f; });
strValue = os.str();
}
return strValue;
}
};
@ -322,8 +370,13 @@ std::shared_ptr<FIFloatValue> FIFloatValue::create(std::vector<float> &&value) {
struct FIDoubleValueImpl: public FIDoubleValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIDoubleValueImpl(std::vector<double> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIDoubleValueImpl(std::vector<double> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -342,8 +395,13 @@ std::shared_ptr<FIDoubleValue> FIDoubleValue::create(std::vector<double> &&value
struct FIUUIDValueImpl: public FIUUIDValue {
mutable std::string strValue;
mutable bool strValueValid;
inline FIUUIDValueImpl(std::vector<uint8_t> &&value_): strValueValid(false) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ {
FIUUIDValueImpl(std::vector<uint8_t> &&value_)
: strValueValid(false) {
value = std::move(value_);
}
const std::string &toString() const override {
if (!strValueValid) {
strValueValid = true;
std::ostringstream os;
@ -381,7 +439,7 @@ struct FIUUIDValueImpl: public FIUUIDValue {
strValue = os.str();
}
return strValue;
};
}
};
std::shared_ptr<FIUUIDValue> FIUUIDValue::create(std::vector<uint8_t> &&value) {
@ -389,8 +447,13 @@ std::shared_ptr<FIUUIDValue> FIUUIDValue::create(std::vector<uint8_t> &&value) {
}
struct FICDATAValueImpl: public FICDATAValue {
inline FICDATAValueImpl(std::string &&value_) { value = std::move(value_); }
virtual const std::string &toString() const /*override*/ { return value; }
FICDATAValueImpl(std::string &&value_){
value = std::move(value_);
}
const std::string &toString() const override {
return value;
}
};
std::shared_ptr<FICDATAValue> FICDATAValue::create(std::string &&value) {
@ -398,19 +461,19 @@ std::shared_ptr<FICDATAValue> FICDATAValue::create(std::string &&value) {
}
struct FIHexDecoder: public FIDecoder {
virtual std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) /*override*/ {
std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) override {
return FIHexValue::create(std::vector<uint8_t>(data, data + len));
}
};
struct FIBase64Decoder: public FIDecoder {
virtual std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) /*override*/ {
std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) override {
return FIBase64Value::create(std::vector<uint8_t>(data, data + len));
}
};
struct FIShortDecoder: public FIDecoder {
virtual std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) /*override*/ {
std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) override {
if (len & 1) {
throw DeadlyImportError(parseErrorMessage);
}
@ -427,7 +490,7 @@ struct FIShortDecoder: public FIDecoder {
};
struct FIIntDecoder: public FIDecoder {
virtual std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) /*override*/ {
std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) override {
if (len & 3) {
throw DeadlyImportError(parseErrorMessage);
}
@ -444,7 +507,7 @@ struct FIIntDecoder: public FIDecoder {
};
struct FILongDecoder: public FIDecoder {
virtual std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) /*override*/ {
std::shared_ptr<const FIValue> decode(const uint8_t *data, size_t len) override {
if (len & 7) {
throw DeadlyImportError(parseErrorMessage);
}

View File

@ -49,19 +49,13 @@ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef ASSIMP_BUILD_NO_X3D_IMPORTER
//#include <wchar.h>
#include <string>
#include <memory>
#include <cerrno>
#include <cwchar>
#include <vector>
//#include <stdio.h>
//#include <cstdint>
#ifdef ASSIMP_USE_HUNTER
# include <irrXML/irrXML.h>
#else
# include <assimp/XmlParser.h>
#endif
#include <assimp/XmlParser.h>
namespace Assimp {
@ -165,9 +159,10 @@ struct FIVocabulary {
class IOStream;
class FIReader: public irr::io::IIrrXMLReader<char, irr::io::IXMLBase> {
class FIReader {
public:
virtual ~FIReader();
virtual std::shared_ptr<const FIValue> getAttributeEncodedValue(int idx) const = 0;
virtual std::shared_ptr<const FIValue> getAttributeEncodedValue(const char *name) const = 0;