308 lines
10 KiB
C++
308 lines
10 KiB
C++
|
/*
|
||
|
Open Asset Import Library (assimp)
|
||
|
----------------------------------------------------------------------
|
||
|
|
||
|
Copyright (c) 2006-2010, assimp team
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use of this software in source and binary forms,
|
||
|
with or without modification, are permitted provided that the
|
||
|
following conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above
|
||
|
copyright notice, this list of conditions and the
|
||
|
following disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
copyright notice, this list of conditions and the
|
||
|
following disclaimer in the documentation and/or other
|
||
|
materials provided with the distribution.
|
||
|
|
||
|
* Neither the name of the assimp team, nor the names of its
|
||
|
contributors may be used to endorse or promote products
|
||
|
derived from this software without specific prior
|
||
|
written permission of the assimp team.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
----------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
/** @file IFCBoolean.cpp
|
||
|
* @brief Implements a subset of Ifc boolean operations
|
||
|
*/
|
||
|
|
||
|
#include "AssimpPCH.h"
|
||
|
|
||
|
#ifndef ASSIMP_BUILD_NO_IFC_IMPORTER
|
||
|
#include "IFCUtil.h"
|
||
|
#include "PolyTools.h"
|
||
|
#include "ProcessHelper.h"
|
||
|
|
||
|
#include <iterator>
|
||
|
|
||
|
namespace Assimp {
|
||
|
namespace IFC {
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
enum Intersect {
|
||
|
Intersect_No,
|
||
|
Intersect_LiesOnPlane,
|
||
|
Intersect_Yes
|
||
|
};
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
Intersect IntersectSegmentPlane(const IfcVector3& p,const IfcVector3& n, const IfcVector3& e0,
|
||
|
const IfcVector3& e1,
|
||
|
IfcVector3& out)
|
||
|
{
|
||
|
const IfcVector3 pdelta = e0 - p, seg = e1-e0;
|
||
|
const IfcFloat dotOne = n*seg, dotTwo = -(n*pdelta);
|
||
|
|
||
|
if (fabs(dotOne) < 1e-6) {
|
||
|
return fabs(dotTwo) < 1e-6f ? Intersect_LiesOnPlane : Intersect_No;
|
||
|
}
|
||
|
|
||
|
const IfcFloat t = dotTwo/dotOne;
|
||
|
// t must be in [0..1] if the intersection point is within the given segment
|
||
|
if (t > 1.f || t < 0.f) {
|
||
|
return Intersect_No;
|
||
|
}
|
||
|
out = e0+t*seg;
|
||
|
return Intersect_Yes;
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void ProcessBooleanHalfSpaceDifference(const IfcHalfSpaceSolid* hs, TempMesh& result,
|
||
|
const TempMesh& first_operand,
|
||
|
ConversionData& conv)
|
||
|
{
|
||
|
ai_assert(hs != NULL);
|
||
|
|
||
|
const IfcPlane* const plane = hs->BaseSurface->ToPtr<IfcPlane>();
|
||
|
if(!plane) {
|
||
|
IFCImporter::LogError("expected IfcPlane as base surface for the IfcHalfSpaceSolid");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// extract plane base position vector and normal vector
|
||
|
IfcVector3 p,n(0.f,0.f,1.f);
|
||
|
if (plane->Position->Axis) {
|
||
|
ConvertDirection(n,plane->Position->Axis.Get());
|
||
|
}
|
||
|
ConvertCartesianPoint(p,plane->Position->Location);
|
||
|
|
||
|
if(!IsTrue(hs->AgreementFlag)) {
|
||
|
n *= -1.f;
|
||
|
}
|
||
|
|
||
|
// clip the current contents of `meshout` against the plane we obtained from the second operand
|
||
|
const std::vector<IfcVector3>& in = first_operand.verts;
|
||
|
std::vector<IfcVector3>& outvert = result.verts;
|
||
|
|
||
|
std::vector<unsigned int>::const_iterator begin = first_operand.vertcnt.begin(),
|
||
|
end = first_operand.vertcnt.end(), iit;
|
||
|
|
||
|
outvert.reserve(in.size());
|
||
|
result.vertcnt.reserve(first_operand.vertcnt.size());
|
||
|
|
||
|
unsigned int vidx = 0;
|
||
|
for(iit = begin; iit != end; vidx += *iit++) {
|
||
|
|
||
|
unsigned int newcount = 0;
|
||
|
for(unsigned int i = 0; i < *iit; ++i) {
|
||
|
const IfcVector3& e0 = in[vidx+i], e1 = in[vidx+(i+1)%*iit];
|
||
|
|
||
|
// does the next segment intersect the plane?
|
||
|
IfcVector3 isectpos;
|
||
|
const Intersect isect = IntersectSegmentPlane(p,n,e0,e1,isectpos);
|
||
|
if (isect == Intersect_No || isect == Intersect_LiesOnPlane) {
|
||
|
if ( (e0-p).Normalize()*n > 0 ) {
|
||
|
outvert.push_back(e0);
|
||
|
++newcount;
|
||
|
}
|
||
|
}
|
||
|
else if (isect == Intersect_Yes) {
|
||
|
if ( (e0-p).Normalize()*n > 0 ) {
|
||
|
// e0 is on the right side, so keep it
|
||
|
outvert.push_back(e0);
|
||
|
outvert.push_back(isectpos);
|
||
|
newcount += 2;
|
||
|
}
|
||
|
else {
|
||
|
// e0 is on the wrong side, so drop it and keep e1 instead
|
||
|
outvert.push_back(isectpos);
|
||
|
++newcount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!newcount) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
IfcVector3 vmin,vmax;
|
||
|
ArrayBounds(&*(outvert.end()-newcount),newcount,vmin,vmax);
|
||
|
|
||
|
// filter our IfcFloat points - those may happen if a point lies
|
||
|
// directly on the intersection line. However, due to IfcFloat
|
||
|
// precision a bitwise comparison is not feasible to detect
|
||
|
// this case.
|
||
|
const IfcFloat epsilon = (vmax-vmin).SquareLength() / 1e6f;
|
||
|
FuzzyVectorCompare fz(epsilon);
|
||
|
|
||
|
std::vector<IfcVector3>::iterator e = std::unique( outvert.end()-newcount, outvert.end(), fz );
|
||
|
|
||
|
if (e != outvert.end()) {
|
||
|
newcount -= static_cast<unsigned int>(std::distance(e,outvert.end()));
|
||
|
outvert.erase(e,outvert.end());
|
||
|
}
|
||
|
if (fz(*( outvert.end()-newcount),outvert.back())) {
|
||
|
outvert.pop_back();
|
||
|
--newcount;
|
||
|
}
|
||
|
if(newcount > 2) {
|
||
|
result.vertcnt.push_back(newcount);
|
||
|
}
|
||
|
else while(newcount-->0) {
|
||
|
result.verts.pop_back();
|
||
|
}
|
||
|
|
||
|
}
|
||
|
IFCImporter::LogDebug("generating CSG geometry by plane clipping (IfcBooleanClippingResult)");
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void ProcessPolygonalBoundedBooleanHalfSpaceDifference(const IfcPolygonalBoundedHalfSpace* hs, TempMesh& result,
|
||
|
const TempMesh& first_operand,
|
||
|
ConversionData& conv)
|
||
|
{
|
||
|
ai_assert(hs != NULL);
|
||
|
|
||
|
return; // niy
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void ProcessBooleanExtrudedAreaSolidDifference(const IfcExtrudedAreaSolid* as, TempMesh& result,
|
||
|
const TempMesh& first_operand,
|
||
|
ConversionData& conv)
|
||
|
{
|
||
|
ai_assert(as != NULL);
|
||
|
|
||
|
// This case is handled by reduction to an instance of the quadrify() algorithm.
|
||
|
// Obviously, this won't work for arbitrarily complex cases. In fact, the first
|
||
|
// operand should be near-planar. Luckily, this is usually the case in Ifc
|
||
|
// buildings.
|
||
|
|
||
|
boost::shared_ptr<TempMesh> meshtmp(new TempMesh());
|
||
|
ProcessExtrudedAreaSolid(*as,*meshtmp,conv,false);
|
||
|
|
||
|
std::vector<TempOpening> openings(1, TempOpening(as,IfcVector3(0,0,0),meshtmp,boost::shared_ptr<TempMesh>(NULL)));
|
||
|
|
||
|
result = first_operand;
|
||
|
|
||
|
TempMesh temp;
|
||
|
|
||
|
std::vector<IfcVector3>::const_iterator vit = first_operand.verts.begin();
|
||
|
BOOST_FOREACH(unsigned int pcount, first_operand.vertcnt) {
|
||
|
temp.Clear();
|
||
|
|
||
|
temp.verts.insert(temp.verts.end(), vit, vit + pcount);
|
||
|
temp.vertcnt.push_back(pcount);
|
||
|
|
||
|
// The algorithms used to generate mesh geometry sometimes
|
||
|
// spit out lines or other degenerates which must be
|
||
|
// filtered to avoid running into assertions later on.
|
||
|
|
||
|
// ComputePolygonNormal returns the Newell normal, so the
|
||
|
// length of the normal is the area of the polygon.
|
||
|
const IfcVector3& normal = temp.ComputeLastPolygonNormal(false);
|
||
|
if (normal.SquareLength() < static_cast<IfcFloat>(1e-5)) {
|
||
|
IFCImporter::LogWarn("skipping degenerate polygon (ProcessBooleanExtrudedAreaSolidDifference)");
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
GenerateOpenings(openings, std::vector<IfcVector3>(1,IfcVector3(1,0,0)), temp, false, true);
|
||
|
result.Append(temp);
|
||
|
|
||
|
vit += pcount;
|
||
|
}
|
||
|
|
||
|
IFCImporter::LogDebug("generating CSG geometry by geometric difference to a solid (IfcExtrudedAreaSolid)");
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void ProcessBoolean(const IfcBooleanResult& boolean, TempMesh& result, ConversionData& conv)
|
||
|
{
|
||
|
// supported CSG operations:
|
||
|
// DIFFERENCE
|
||
|
if(const IfcBooleanResult* const clip = boolean.ToPtr<IfcBooleanResult>()) {
|
||
|
if(clip->Operator != "DIFFERENCE") {
|
||
|
IFCImporter::LogWarn("encountered unsupported boolean operator: " + (std::string)clip->Operator);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// supported cases (1st operand):
|
||
|
// IfcBooleanResult -- call ProcessBoolean recursively
|
||
|
// IfcSweptAreaSolid -- obtain polygonal geometry first
|
||
|
|
||
|
// supported cases (2nd operand):
|
||
|
// IfcHalfSpaceSolid -- easy, clip against plane
|
||
|
// IfcExtrudedAreaSolid -- reduce to an instance of the quadrify() algorithm
|
||
|
|
||
|
|
||
|
const IfcHalfSpaceSolid* const hs = clip->SecondOperand->ResolveSelectPtr<IfcHalfSpaceSolid>(conv.db);
|
||
|
const IfcExtrudedAreaSolid* const as = clip->SecondOperand->ResolveSelectPtr<IfcExtrudedAreaSolid>(conv.db);
|
||
|
if(!hs && !as) {
|
||
|
IFCImporter::LogError("expected IfcHalfSpaceSolid or IfcExtrudedAreaSolid as second clipping operand");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
TempMesh first_operand;
|
||
|
if(const IfcBooleanResult* const op0 = clip->FirstOperand->ResolveSelectPtr<IfcBooleanResult>(conv.db)) {
|
||
|
ProcessBoolean(*op0,first_operand,conv);
|
||
|
}
|
||
|
else if (const IfcSweptAreaSolid* const swept = clip->FirstOperand->ResolveSelectPtr<IfcSweptAreaSolid>(conv.db)) {
|
||
|
ProcessSweptAreaSolid(*swept,first_operand,conv);
|
||
|
}
|
||
|
else {
|
||
|
IFCImporter::LogError("expected IfcSweptAreaSolid or IfcBooleanResult as first clipping operand");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(hs) {
|
||
|
const IfcPolygonalBoundedHalfSpace* const hs_bounded = clip->SecondOperand->ResolveSelectPtr<IfcPolygonalBoundedHalfSpace>(conv.db);
|
||
|
if (hs_bounded) {
|
||
|
ProcessPolygonalBoundedBooleanHalfSpaceDifference(hs_bounded, result, first_operand, conv);
|
||
|
}
|
||
|
else {
|
||
|
ProcessBooleanHalfSpaceDifference(hs, result, first_operand, conv);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
ProcessBooleanExtrudedAreaSolidDifference(as, result, first_operand, conv);
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
IFCImporter::LogWarn("skipping unknown IfcBooleanResult entity, type is " + boolean.GetClassName());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // ! IFC
|
||
|
} // ! Assimp
|
||
|
|
||
|
#endif
|
||
|
|