assimp/include/aiQuaternion.h

121 lines
3.9 KiB
C
Raw Normal View History

/** @file Quaternion structure, including operators when compiling in C++ */
#ifndef AI_QUATERNION_H_INC
#define AI_QUATERNION_H_INC
#include <math.h>
#include "aiTypes.h"
#ifdef __cplusplus
extern "C" {
#endif
// ---------------------------------------------------------------------------
/** Represents a quaternion in a 4D vector. */
struct aiQuaternion
{
#ifdef __cplusplus
aiQuaternion() : w(0.0f), x(0.0f), y(0.0f), z(0.0f) {}
aiQuaternion(float _w, float _x, float _y, float _z) : w(_w), x(_x), y(_y), z(_z) {}
/** Construct from rotation matrix. Result is undefined if the matrix is not orthonormal. */
aiQuaternion( const aiMatrix3x3& pRotMatrix);
/** Construct from euler angles */
aiQuaternion( float rotx, float roty, float rotz);
/** Returns a matrix representation of the quaternion */
aiMatrix3x3 GetMatrix() const;
#endif // __cplusplus
//! w,x,y,z components of the quaternion
float w, x, y, z;
} ;
#ifdef __cplusplus
// ---------------------------------------------------------------------------
// Constructs a quaternion from a rotation matrix
inline aiQuaternion::aiQuaternion( const aiMatrix3x3 &pRotMatrix)
{
float t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
// large enough
if( t > 0.00001f)
{
float s = sqrt( t) * 2.0f;
x = (pRotMatrix.b3 - pRotMatrix.c2) / s;
y = (pRotMatrix.c1 - pRotMatrix.a3) / s;
z = (pRotMatrix.a2 - pRotMatrix.b1) / s;
w = 0.25f * s;
} // else we have to check several cases
else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
{
// Column 0:
float s = sqrt( 1.0f + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * 2.0f;
x = -0.25f * s;
y = (pRotMatrix.a2 + pRotMatrix.b1) / s;
z = (pRotMatrix.c1 + pRotMatrix.a3) / s;
w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
}
else if( pRotMatrix.b2 > pRotMatrix.c3)
{
// Column 1:
float s = sqrt( 1.0f + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * 2.0f;
x = (pRotMatrix.a2 + pRotMatrix.b1) / s;
y = -0.25f * s;
z = (pRotMatrix.b3 + pRotMatrix.c2) / s;
w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
} else
{
// Column 2:
float s = sqrt( 1.0f + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * 2.0f;
x = (pRotMatrix.c1 + pRotMatrix.a3) / s;
y = (pRotMatrix.b3 + pRotMatrix.c2) / s;
z = -0.25f * s;
w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
}
}
// ---------------------------------------------------------------------------
// Construction from euler angles
inline aiQuaternion::aiQuaternion( float fPitch, float fYaw, float fRoll )
{
const float fSinPitch(sin(fPitch*0.5F));
const float fCosPitch(cos(fPitch*0.5F));
const float fSinYaw(sin(fYaw*0.5F));
const float fCosYaw(cos(fYaw*0.5F));
const float fSinRoll(sin(fRoll*0.5F));
const float fCosRoll(cos(fRoll*0.5F));
const float fCosPitchCosYaw(fCosPitch*fCosYaw);
const float fSinPitchSinYaw(fSinPitch*fSinYaw);
x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
}
// ---------------------------------------------------------------------------
// Returns a matrix representation of the quaternion
inline aiMatrix3x3 aiQuaternion::GetMatrix() const
{
aiMatrix3x3 resMatrix;
resMatrix.a1 = 1.0f - 2.0f * (y * y + z * z);
resMatrix.a2 = 2.0f * (x * y + z * w);
resMatrix.a3 = 2.0f * (x * z - y * w);
resMatrix.b1 = 2.0f * (x * y - z * w);
resMatrix.b2 = 1.0f - 2.0f * (x * x + z * z);
resMatrix.b3 = 2.0f * (y * z + x * w);
resMatrix.c1 = 2.0f * (x * z + y * w);
resMatrix.c2 = 2.0f * (y * z - x * w);
resMatrix.c3 = 1.0f - 2.0f * (x * x + y * y);
return resMatrix;
}
} // end extern "C"
#endif // __cplusplus
#endif // AI_QUATERNION_H_INC