1388 lines
58 KiB
C++
1388 lines
58 KiB
C++
|
/*
|
||
|
---------------------------------------------------------------------------
|
||
|
Open Asset Import Library (assimp)
|
||
|
---------------------------------------------------------------------------
|
||
|
|
||
|
Copyright (c) 2006-2020, assimp team
|
||
|
|
||
|
|
||
|
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use of this software in source and binary forms,
|
||
|
with or without modification, are permitted provided that the following
|
||
|
conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above
|
||
|
copyright notice, this list of conditions and the
|
||
|
following disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
copyright notice, this list of conditions and the
|
||
|
following disclaimer in the documentation and/or other
|
||
|
materials provided with the distribution.
|
||
|
|
||
|
* Neither the name of the assimp team, nor the names of its
|
||
|
contributors may be used to endorse or promote products
|
||
|
derived from this software without specific prior
|
||
|
written permission of the assimp team.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
---------------------------------------------------------------------------
|
||
|
*/
|
||
|
|
||
|
/** @file IRRLoader.cpp
|
||
|
* @brief Implementation of the Irr importer class
|
||
|
*/
|
||
|
|
||
|
#ifndef ASSIMP_BUILD_NO_IRR_IMPORTER
|
||
|
|
||
|
#include "AssetLib/Irr/IRRLoader.h"
|
||
|
#include "Common/Importer.h"
|
||
|
|
||
|
#include <assimp/GenericProperty.h>
|
||
|
#include <assimp/MathFunctions.h>
|
||
|
#include <assimp/ParsingUtils.h>
|
||
|
#include <assimp/SceneCombiner.h>
|
||
|
#include <assimp/StandardShapes.h>
|
||
|
#include <assimp/fast_atof.h>
|
||
|
#include <assimp/importerdesc.h>
|
||
|
#include <assimp/material.h>
|
||
|
#include <assimp/mesh.h>
|
||
|
#include <assimp/postprocess.h>
|
||
|
#include <assimp/scene.h>
|
||
|
#include <assimp/DefaultLogger.hpp>
|
||
|
#include <assimp/IOSystem.hpp>
|
||
|
|
||
|
#include <memory>
|
||
|
|
||
|
using namespace Assimp;
|
||
|
using namespace irr;
|
||
|
using namespace irr::io;
|
||
|
|
||
|
static const aiImporterDesc desc = {
|
||
|
"Irrlicht Scene Reader",
|
||
|
"",
|
||
|
"",
|
||
|
"http://irrlicht.sourceforge.net/",
|
||
|
aiImporterFlags_SupportTextFlavour,
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
0,
|
||
|
"irr xml"
|
||
|
};
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Constructor to be privately used by Importer
|
||
|
IRRImporter::IRRImporter() :
|
||
|
fps(), configSpeedFlag() {
|
||
|
// empty
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Destructor, private as well
|
||
|
IRRImporter::~IRRImporter() {
|
||
|
// empty
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Returns whether the class can handle the format of the given file.
|
||
|
bool IRRImporter::CanRead(const std::string &pFile, IOSystem *pIOHandler, bool checkSig) const {
|
||
|
const std::string extension = GetExtension(pFile);
|
||
|
if (extension == "irr") {
|
||
|
return true;
|
||
|
} else if (extension == "xml" || checkSig) {
|
||
|
/* If CanRead() is called in order to check whether we
|
||
|
* support a specific file extension in general pIOHandler
|
||
|
* might be nullptr and it's our duty to return true here.
|
||
|
*/
|
||
|
if (nullptr == pIOHandler) {
|
||
|
return true;
|
||
|
}
|
||
|
const char *tokens[] = { "irr_scene" };
|
||
|
return SearchFileHeaderForToken(pIOHandler, pFile, tokens, 1);
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
const aiImporterDesc *IRRImporter::GetInfo() const {
|
||
|
return &desc;
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void IRRImporter::SetupProperties(const Importer *pImp) {
|
||
|
// read the output frame rate of all node animation channels
|
||
|
fps = pImp->GetPropertyInteger(AI_CONFIG_IMPORT_IRR_ANIM_FPS, 100);
|
||
|
if (fps < 10.) {
|
||
|
ASSIMP_LOG_ERROR("IRR: Invalid FPS configuration");
|
||
|
fps = 100;
|
||
|
}
|
||
|
|
||
|
// AI_CONFIG_FAVOUR_SPEED
|
||
|
configSpeedFlag = (0 != pImp->GetPropertyInteger(AI_CONFIG_FAVOUR_SPEED, 0));
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Build a mesh tha consists of a single squad (a side of a skybox)
|
||
|
aiMesh *IRRImporter::BuildSingleQuadMesh(const SkyboxVertex &v1,
|
||
|
const SkyboxVertex &v2,
|
||
|
const SkyboxVertex &v3,
|
||
|
const SkyboxVertex &v4) {
|
||
|
// allocate and prepare the mesh
|
||
|
aiMesh *out = new aiMesh();
|
||
|
|
||
|
out->mPrimitiveTypes = aiPrimitiveType_POLYGON;
|
||
|
out->mNumFaces = 1;
|
||
|
|
||
|
// build the face
|
||
|
out->mFaces = new aiFace[1];
|
||
|
aiFace &face = out->mFaces[0];
|
||
|
|
||
|
face.mNumIndices = 4;
|
||
|
face.mIndices = new unsigned int[4];
|
||
|
for (unsigned int i = 0; i < 4; ++i)
|
||
|
face.mIndices[i] = i;
|
||
|
|
||
|
out->mNumVertices = 4;
|
||
|
|
||
|
// copy vertex positions
|
||
|
aiVector3D *vec = out->mVertices = new aiVector3D[4];
|
||
|
*vec++ = v1.position;
|
||
|
*vec++ = v2.position;
|
||
|
*vec++ = v3.position;
|
||
|
*vec = v4.position;
|
||
|
|
||
|
// copy vertex normals
|
||
|
vec = out->mNormals = new aiVector3D[4];
|
||
|
*vec++ = v1.normal;
|
||
|
*vec++ = v2.normal;
|
||
|
*vec++ = v3.normal;
|
||
|
*vec = v4.normal;
|
||
|
|
||
|
// copy texture coordinates
|
||
|
vec = out->mTextureCoords[0] = new aiVector3D[4];
|
||
|
*vec++ = v1.uv;
|
||
|
*vec++ = v2.uv;
|
||
|
*vec++ = v3.uv;
|
||
|
*vec = v4.uv;
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void IRRImporter::BuildSkybox(std::vector<aiMesh *> &meshes, std::vector<aiMaterial *> materials) {
|
||
|
// Update the material of the skybox - replace the name and disable shading for skyboxes.
|
||
|
for (unsigned int i = 0; i < 6; ++i) {
|
||
|
aiMaterial *out = (aiMaterial *)(*(materials.end() - (6 - i)));
|
||
|
|
||
|
aiString s;
|
||
|
s.length = ::ai_snprintf(s.data, MAXLEN, "SkyboxSide_%u", i);
|
||
|
out->AddProperty(&s, AI_MATKEY_NAME);
|
||
|
|
||
|
int shading = aiShadingMode_NoShading;
|
||
|
out->AddProperty(&shading, 1, AI_MATKEY_SHADING_MODEL);
|
||
|
}
|
||
|
|
||
|
// Skyboxes are much more difficult. They are represented
|
||
|
// by six single planes with different textures, so we'll
|
||
|
// need to build six meshes.
|
||
|
|
||
|
const ai_real l = 10.0; // the size used by Irrlicht
|
||
|
|
||
|
// FRONT SIDE
|
||
|
meshes.push_back(BuildSingleQuadMesh(
|
||
|
SkyboxVertex(-l, -l, -l, 0, 0, 1, 1.0, 1.0),
|
||
|
SkyboxVertex(l, -l, -l, 0, 0, 1, 0.0, 1.0),
|
||
|
SkyboxVertex(l, l, -l, 0, 0, 1, 0.0, 0.0),
|
||
|
SkyboxVertex(-l, l, -l, 0, 0, 1, 1.0, 0.0)));
|
||
|
meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 6u);
|
||
|
|
||
|
// LEFT SIDE
|
||
|
meshes.push_back(BuildSingleQuadMesh(
|
||
|
SkyboxVertex(l, -l, -l, -1, 0, 0, 1.0, 1.0),
|
||
|
SkyboxVertex(l, -l, l, -1, 0, 0, 0.0, 1.0),
|
||
|
SkyboxVertex(l, l, l, -1, 0, 0, 0.0, 0.0),
|
||
|
SkyboxVertex(l, l, -l, -1, 0, 0, 1.0, 0.0)));
|
||
|
meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 5u);
|
||
|
|
||
|
// BACK SIDE
|
||
|
meshes.push_back(BuildSingleQuadMesh(
|
||
|
SkyboxVertex(l, -l, l, 0, 0, -1, 1.0, 1.0),
|
||
|
SkyboxVertex(-l, -l, l, 0, 0, -1, 0.0, 1.0),
|
||
|
SkyboxVertex(-l, l, l, 0, 0, -1, 0.0, 0.0),
|
||
|
SkyboxVertex(l, l, l, 0, 0, -1, 1.0, 0.0)));
|
||
|
meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 4u);
|
||
|
|
||
|
// RIGHT SIDE
|
||
|
meshes.push_back(BuildSingleQuadMesh(
|
||
|
SkyboxVertex(-l, -l, l, 1, 0, 0, 1.0, 1.0),
|
||
|
SkyboxVertex(-l, -l, -l, 1, 0, 0, 0.0, 1.0),
|
||
|
SkyboxVertex(-l, l, -l, 1, 0, 0, 0.0, 0.0),
|
||
|
SkyboxVertex(-l, l, l, 1, 0, 0, 1.0, 0.0)));
|
||
|
meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 3u);
|
||
|
|
||
|
// TOP SIDE
|
||
|
meshes.push_back(BuildSingleQuadMesh(
|
||
|
SkyboxVertex(l, l, -l, 0, -1, 0, 1.0, 1.0),
|
||
|
SkyboxVertex(l, l, l, 0, -1, 0, 0.0, 1.0),
|
||
|
SkyboxVertex(-l, l, l, 0, -1, 0, 0.0, 0.0),
|
||
|
SkyboxVertex(-l, l, -l, 0, -1, 0, 1.0, 0.0)));
|
||
|
meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 2u);
|
||
|
|
||
|
// BOTTOM SIDE
|
||
|
meshes.push_back(BuildSingleQuadMesh(
|
||
|
SkyboxVertex(l, -l, l, 0, 1, 0, 0.0, 0.0),
|
||
|
SkyboxVertex(l, -l, -l, 0, 1, 0, 1.0, 0.0),
|
||
|
SkyboxVertex(-l, -l, -l, 0, 1, 0, 1.0, 1.0),
|
||
|
SkyboxVertex(-l, -l, l, 0, 1, 0, 0.0, 1.0)));
|
||
|
meshes.back()->mMaterialIndex = static_cast<unsigned int>(materials.size() - 1u);
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void IRRImporter::CopyMaterial(std::vector<aiMaterial *> &materials,
|
||
|
std::vector<std::pair<aiMaterial *, unsigned int>> &inmaterials,
|
||
|
unsigned int &defMatIdx,
|
||
|
aiMesh *mesh) {
|
||
|
if (inmaterials.empty()) {
|
||
|
// Do we have a default material? If not we need to create one
|
||
|
if (UINT_MAX == defMatIdx) {
|
||
|
defMatIdx = (unsigned int)materials.size();
|
||
|
//TODO: add this materials to someone?
|
||
|
/*aiMaterial* mat = new aiMaterial();
|
||
|
|
||
|
aiString s;
|
||
|
s.Set(AI_DEFAULT_MATERIAL_NAME);
|
||
|
mat->AddProperty(&s,AI_MATKEY_NAME);
|
||
|
|
||
|
aiColor3D c(0.6f,0.6f,0.6f);
|
||
|
mat->AddProperty(&c,1,AI_MATKEY_COLOR_DIFFUSE);*/
|
||
|
}
|
||
|
mesh->mMaterialIndex = defMatIdx;
|
||
|
return;
|
||
|
} else if (inmaterials.size() > 1) {
|
||
|
ASSIMP_LOG_INFO("IRR: Skipping additional materials");
|
||
|
}
|
||
|
|
||
|
mesh->mMaterialIndex = (unsigned int)materials.size();
|
||
|
materials.push_back(inmaterials[0].first);
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
inline int ClampSpline(int idx, int size) {
|
||
|
return (idx < 0 ? size + idx : (idx >= size ? idx - size : idx));
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
inline void FindSuitableMultiple(int &angle) {
|
||
|
if (angle < 3)
|
||
|
angle = 3;
|
||
|
else if (angle < 10)
|
||
|
angle = 10;
|
||
|
else if (angle < 20)
|
||
|
angle = 20;
|
||
|
else if (angle < 30)
|
||
|
angle = 30;
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void IRRImporter::ComputeAnimations(Node *root, aiNode *real, std::vector<aiNodeAnim *> &anims) {
|
||
|
ai_assert(nullptr != root);
|
||
|
ai_assert(nullptr != real);
|
||
|
|
||
|
// XXX totally WIP - doesn't produce proper results, need to evaluate
|
||
|
// whether there's any use for Irrlicht's proprietary scene format
|
||
|
// outside Irrlicht ...
|
||
|
// This also applies to the above function of FindSuitableMultiple and ClampSpline which are
|
||
|
// solely used in this function
|
||
|
|
||
|
if (root->animators.empty()) {
|
||
|
return;
|
||
|
}
|
||
|
unsigned int total(0);
|
||
|
for (std::list<Animator>::iterator it = root->animators.begin(); it != root->animators.end(); ++it) {
|
||
|
if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) {
|
||
|
ASSIMP_LOG_WARN("IRR: Skipping unknown or unsupported animator");
|
||
|
continue;
|
||
|
}
|
||
|
++total;
|
||
|
}
|
||
|
if (!total) {
|
||
|
return;
|
||
|
} else if (1 == total) {
|
||
|
ASSIMP_LOG_WARN("IRR: Adding dummy nodes to simulate multiple animators");
|
||
|
}
|
||
|
|
||
|
// NOTE: 1 tick == i millisecond
|
||
|
|
||
|
unsigned int cur = 0;
|
||
|
for (std::list<Animator>::iterator it = root->animators.begin();
|
||
|
it != root->animators.end(); ++it) {
|
||
|
if ((*it).type == Animator::UNKNOWN || (*it).type == Animator::OTHER) continue;
|
||
|
|
||
|
Animator &in = *it;
|
||
|
aiNodeAnim *anim = new aiNodeAnim();
|
||
|
|
||
|
if (cur != total - 1) {
|
||
|
// Build a new name - a prefix instead of a suffix because it is
|
||
|
// easier to check against
|
||
|
anim->mNodeName.length = ::ai_snprintf(anim->mNodeName.data, MAXLEN,
|
||
|
"$INST_DUMMY_%i_%s", total - 1,
|
||
|
(root->name.length() ? root->name.c_str() : ""));
|
||
|
|
||
|
// we'll also need to insert a dummy in the node hierarchy.
|
||
|
aiNode *dummy = new aiNode();
|
||
|
|
||
|
for (unsigned int i = 0; i < real->mParent->mNumChildren; ++i)
|
||
|
if (real->mParent->mChildren[i] == real)
|
||
|
real->mParent->mChildren[i] = dummy;
|
||
|
|
||
|
dummy->mParent = real->mParent;
|
||
|
dummy->mName = anim->mNodeName;
|
||
|
|
||
|
dummy->mNumChildren = 1;
|
||
|
dummy->mChildren = new aiNode *[dummy->mNumChildren];
|
||
|
dummy->mChildren[0] = real;
|
||
|
|
||
|
// the transformation matrix of the dummy node is the identity
|
||
|
|
||
|
real->mParent = dummy;
|
||
|
} else
|
||
|
anim->mNodeName.Set(root->name);
|
||
|
++cur;
|
||
|
|
||
|
switch (in.type) {
|
||
|
case Animator::ROTATION: {
|
||
|
// -----------------------------------------------------
|
||
|
// find out how long a full rotation will take
|
||
|
// This is the least common multiple of 360.f and all
|
||
|
// three euler angles. Although we'll surely find a
|
||
|
// possible multiple (haha) it could be somewhat large
|
||
|
// for our purposes. So we need to modify the angles
|
||
|
// here in order to get good results.
|
||
|
// -----------------------------------------------------
|
||
|
int angles[3];
|
||
|
angles[0] = (int)(in.direction.x * 100);
|
||
|
angles[1] = (int)(in.direction.y * 100);
|
||
|
angles[2] = (int)(in.direction.z * 100);
|
||
|
|
||
|
angles[0] %= 360;
|
||
|
angles[1] %= 360;
|
||
|
angles[2] %= 360;
|
||
|
|
||
|
if ((angles[0] * angles[1]) != 0 && (angles[1] * angles[2]) != 0) {
|
||
|
FindSuitableMultiple(angles[0]);
|
||
|
FindSuitableMultiple(angles[1]);
|
||
|
FindSuitableMultiple(angles[2]);
|
||
|
}
|
||
|
|
||
|
int lcm = 360;
|
||
|
|
||
|
if (angles[0])
|
||
|
lcm = Math::lcm(lcm, angles[0]);
|
||
|
|
||
|
if (angles[1])
|
||
|
lcm = Math::lcm(lcm, angles[1]);
|
||
|
|
||
|
if (angles[2])
|
||
|
lcm = Math::lcm(lcm, angles[2]);
|
||
|
|
||
|
if (360 == lcm)
|
||
|
break;
|
||
|
|
||
|
#if 0
|
||
|
// This can be a division through zero, but we don't care
|
||
|
float f1 = (float)lcm / angles[0];
|
||
|
float f2 = (float)lcm / angles[1];
|
||
|
float f3 = (float)lcm / angles[2];
|
||
|
#endif
|
||
|
|
||
|
// find out how many time units we'll need for the finest
|
||
|
// track (in seconds) - this defines the number of output
|
||
|
// keys (fps * seconds)
|
||
|
float max = 0.f;
|
||
|
if (angles[0])
|
||
|
max = (float)lcm / angles[0];
|
||
|
if (angles[1])
|
||
|
max = std::max(max, (float)lcm / angles[1]);
|
||
|
if (angles[2])
|
||
|
max = std::max(max, (float)lcm / angles[2]);
|
||
|
|
||
|
anim->mNumRotationKeys = (unsigned int)(max * fps);
|
||
|
anim->mRotationKeys = new aiQuatKey[anim->mNumRotationKeys];
|
||
|
|
||
|
// begin with a zero angle
|
||
|
aiVector3D angle;
|
||
|
for (unsigned int i = 0; i < anim->mNumRotationKeys; ++i) {
|
||
|
// build the quaternion for the given euler angles
|
||
|
aiQuatKey &q = anim->mRotationKeys[i];
|
||
|
|
||
|
q.mValue = aiQuaternion(angle.x, angle.y, angle.z);
|
||
|
q.mTime = (double)i;
|
||
|
|
||
|
// increase the angle
|
||
|
angle += in.direction;
|
||
|
}
|
||
|
|
||
|
// This animation is repeated and repeated ...
|
||
|
anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
|
||
|
} break;
|
||
|
|
||
|
case Animator::FLY_CIRCLE: {
|
||
|
// -----------------------------------------------------
|
||
|
// Find out how much time we'll need to perform a
|
||
|
// full circle.
|
||
|
// -----------------------------------------------------
|
||
|
const double seconds = (1. / in.speed) / 1000.;
|
||
|
const double tdelta = 1000. / fps;
|
||
|
|
||
|
anim->mNumPositionKeys = (unsigned int)(fps * seconds);
|
||
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
||
|
|
||
|
// from Irrlicht, what else should we do than copying it?
|
||
|
aiVector3D vecU, vecV;
|
||
|
if (in.direction.y) {
|
||
|
vecV = aiVector3D(50, 0, 0) ^ in.direction;
|
||
|
} else
|
||
|
vecV = aiVector3D(0, 50, 00) ^ in.direction;
|
||
|
vecV.Normalize();
|
||
|
vecU = (vecV ^ in.direction).Normalize();
|
||
|
|
||
|
// build the output keys
|
||
|
for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
|
||
|
aiVectorKey &key = anim->mPositionKeys[i];
|
||
|
key.mTime = i * tdelta;
|
||
|
|
||
|
const ai_real t = (ai_real)(in.speed * key.mTime);
|
||
|
key.mValue = in.circleCenter + in.circleRadius * ((vecU * std::cos(t)) + (vecV * std::sin(t)));
|
||
|
}
|
||
|
|
||
|
// This animation is repeated and repeated ...
|
||
|
anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
|
||
|
} break;
|
||
|
|
||
|
case Animator::FLY_STRAIGHT: {
|
||
|
anim->mPostState = anim->mPreState = (in.loop ? aiAnimBehaviour_REPEAT : aiAnimBehaviour_CONSTANT);
|
||
|
const double seconds = in.timeForWay / 1000.;
|
||
|
const double tdelta = 1000. / fps;
|
||
|
|
||
|
anim->mNumPositionKeys = (unsigned int)(fps * seconds);
|
||
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
||
|
|
||
|
aiVector3D diff = in.direction - in.circleCenter;
|
||
|
const ai_real lengthOfWay = diff.Length();
|
||
|
diff.Normalize();
|
||
|
|
||
|
const double timeFactor = lengthOfWay / in.timeForWay;
|
||
|
|
||
|
// build the output keys
|
||
|
for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
|
||
|
aiVectorKey &key = anim->mPositionKeys[i];
|
||
|
key.mTime = i * tdelta;
|
||
|
key.mValue = in.circleCenter + diff * ai_real(timeFactor * key.mTime);
|
||
|
}
|
||
|
} break;
|
||
|
|
||
|
case Animator::FOLLOW_SPLINE: {
|
||
|
// repeat outside the defined time range
|
||
|
anim->mPostState = anim->mPreState = aiAnimBehaviour_REPEAT;
|
||
|
const int size = (int)in.splineKeys.size();
|
||
|
if (!size) {
|
||
|
// We have no point in the spline. That's bad. Really bad.
|
||
|
ASSIMP_LOG_WARN("IRR: Spline animators with no points defined");
|
||
|
|
||
|
delete anim;
|
||
|
anim = nullptr;
|
||
|
break;
|
||
|
} else if (size == 1) {
|
||
|
// We have just one point in the spline so we don't need the full calculation
|
||
|
anim->mNumPositionKeys = 1;
|
||
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
||
|
|
||
|
anim->mPositionKeys[0].mValue = in.splineKeys[0].mValue;
|
||
|
anim->mPositionKeys[0].mTime = 0.f;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
unsigned int ticksPerFull = 15;
|
||
|
anim->mNumPositionKeys = (unsigned int)(ticksPerFull * fps);
|
||
|
anim->mPositionKeys = new aiVectorKey[anim->mNumPositionKeys];
|
||
|
|
||
|
for (unsigned int i = 0; i < anim->mNumPositionKeys; ++i) {
|
||
|
aiVectorKey &key = anim->mPositionKeys[i];
|
||
|
|
||
|
const ai_real dt = (i * in.speed * ai_real(0.001));
|
||
|
const ai_real u = dt - std::floor(dt);
|
||
|
const int idx = (int)std::floor(dt) % size;
|
||
|
|
||
|
// get the 4 current points to evaluate the spline
|
||
|
const aiVector3D &p0 = in.splineKeys[ClampSpline(idx - 1, size)].mValue;
|
||
|
const aiVector3D &p1 = in.splineKeys[ClampSpline(idx + 0, size)].mValue;
|
||
|
const aiVector3D &p2 = in.splineKeys[ClampSpline(idx + 1, size)].mValue;
|
||
|
const aiVector3D &p3 = in.splineKeys[ClampSpline(idx + 2, size)].mValue;
|
||
|
|
||
|
// compute polynomials
|
||
|
const ai_real u2 = u * u;
|
||
|
const ai_real u3 = u2 * 2;
|
||
|
|
||
|
const ai_real h1 = ai_real(2.0) * u3 - ai_real(3.0) * u2 + ai_real(1.0);
|
||
|
const ai_real h2 = ai_real(-2.0) * u3 + ai_real(3.0) * u3;
|
||
|
const ai_real h3 = u3 - ai_real(2.0) * u3;
|
||
|
const ai_real h4 = u3 - u2;
|
||
|
|
||
|
// compute the spline tangents
|
||
|
const aiVector3D t1 = (p2 - p0) * in.tightness;
|
||
|
aiVector3D t2 = (p3 - p1) * in.tightness;
|
||
|
|
||
|
// and use them to get the interpolated point
|
||
|
t2 = (h1 * p1 + p2 * h2 + t1 * h3 + h4 * t2);
|
||
|
|
||
|
// build a simple translation matrix from it
|
||
|
key.mValue = t2;
|
||
|
key.mTime = (double)i;
|
||
|
}
|
||
|
} break;
|
||
|
default:
|
||
|
// UNKNOWN , OTHER
|
||
|
break;
|
||
|
};
|
||
|
if (anim) {
|
||
|
anims.push_back(anim);
|
||
|
++total;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// This function is maybe more generic than we'd need it here
|
||
|
void SetupMapping(aiMaterial *mat, aiTextureMapping mode, const aiVector3D &axis = aiVector3D(0.f, 0.f, -1.f)) {
|
||
|
// Check whether there are texture properties defined - setup
|
||
|
// the desired texture mapping mode for all of them and ignore
|
||
|
// all UV settings we might encounter. WE HAVE NO UVS!
|
||
|
|
||
|
std::vector<aiMaterialProperty *> p;
|
||
|
p.reserve(mat->mNumProperties + 1);
|
||
|
|
||
|
for (unsigned int i = 0; i < mat->mNumProperties; ++i) {
|
||
|
aiMaterialProperty *prop = mat->mProperties[i];
|
||
|
if (!::strcmp(prop->mKey.data, "$tex.file")) {
|
||
|
// Setup the mapping key
|
||
|
aiMaterialProperty *m = new aiMaterialProperty();
|
||
|
m->mKey.Set("$tex.mapping");
|
||
|
m->mIndex = prop->mIndex;
|
||
|
m->mSemantic = prop->mSemantic;
|
||
|
m->mType = aiPTI_Integer;
|
||
|
|
||
|
m->mDataLength = 4;
|
||
|
m->mData = new char[4];
|
||
|
*((int *)m->mData) = mode;
|
||
|
|
||
|
p.push_back(prop);
|
||
|
p.push_back(m);
|
||
|
|
||
|
// Setup the mapping axis
|
||
|
if (mode == aiTextureMapping_CYLINDER || mode == aiTextureMapping_PLANE || mode == aiTextureMapping_SPHERE) {
|
||
|
m = new aiMaterialProperty();
|
||
|
m->mKey.Set("$tex.mapaxis");
|
||
|
m->mIndex = prop->mIndex;
|
||
|
m->mSemantic = prop->mSemantic;
|
||
|
m->mType = aiPTI_Float;
|
||
|
|
||
|
m->mDataLength = 12;
|
||
|
m->mData = new char[12];
|
||
|
*((aiVector3D *)m->mData) = axis;
|
||
|
p.push_back(m);
|
||
|
}
|
||
|
} else if (!::strcmp(prop->mKey.data, "$tex.uvwsrc")) {
|
||
|
delete mat->mProperties[i];
|
||
|
} else
|
||
|
p.push_back(prop);
|
||
|
}
|
||
|
|
||
|
if (p.empty()) return;
|
||
|
|
||
|
// rebuild the output array
|
||
|
if (p.size() > mat->mNumAllocated) {
|
||
|
delete[] mat->mProperties;
|
||
|
mat->mProperties = new aiMaterialProperty *[p.size() * 2];
|
||
|
|
||
|
mat->mNumAllocated = static_cast<unsigned int>(p.size() * 2);
|
||
|
}
|
||
|
mat->mNumProperties = (unsigned int)p.size();
|
||
|
::memcpy(mat->mProperties, &p[0], sizeof(void *) * mat->mNumProperties);
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
void IRRImporter::GenerateGraph(Node *root, aiNode *rootOut, aiScene *scene,
|
||
|
BatchLoader &batch,
|
||
|
std::vector<aiMesh *> &meshes,
|
||
|
std::vector<aiNodeAnim *> &anims,
|
||
|
std::vector<AttachmentInfo> &attach,
|
||
|
std::vector<aiMaterial *> &materials,
|
||
|
unsigned int &defMatIdx) {
|
||
|
unsigned int oldMeshSize = (unsigned int)meshes.size();
|
||
|
//unsigned int meshTrafoAssign = 0;
|
||
|
|
||
|
// Now determine the type of the node
|
||
|
switch (root->type) {
|
||
|
case Node::ANIMMESH:
|
||
|
case Node::MESH: {
|
||
|
if (!root->meshPath.length())
|
||
|
break;
|
||
|
|
||
|
// Get the loaded mesh from the scene and add it to
|
||
|
// the list of all scenes to be attached to the
|
||
|
// graph we're currently building
|
||
|
aiScene *localScene = batch.GetImport(root->id);
|
||
|
if (!localScene) {
|
||
|
ASSIMP_LOG_ERROR("IRR: Unable to load external file: " + root->meshPath);
|
||
|
break;
|
||
|
}
|
||
|
attach.push_back(AttachmentInfo(localScene, rootOut));
|
||
|
|
||
|
// Now combine the material we've loaded for this mesh
|
||
|
// with the real materials we got from the file. As we
|
||
|
// don't execute any pp-steps on the file, the numbers
|
||
|
// should be equal. If they are not, we can impossibly
|
||
|
// do this ...
|
||
|
if (root->materials.size() != (unsigned int)localScene->mNumMaterials) {
|
||
|
ASSIMP_LOG_WARN("IRR: Failed to match imported materials "
|
||
|
"with the materials found in the IRR scene file");
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
for (unsigned int i = 0; i < localScene->mNumMaterials; ++i) {
|
||
|
// Delete the old material, we don't need it anymore
|
||
|
delete localScene->mMaterials[i];
|
||
|
|
||
|
std::pair<aiMaterial *, unsigned int> &src = root->materials[i];
|
||
|
localScene->mMaterials[i] = src.first;
|
||
|
}
|
||
|
|
||
|
// NOTE: Each mesh should have exactly one material assigned,
|
||
|
// but we do it in a separate loop if this behaviour changes
|
||
|
// in future.
|
||
|
for (unsigned int i = 0; i < localScene->mNumMeshes; ++i) {
|
||
|
// Process material flags
|
||
|
aiMesh *mesh = localScene->mMeshes[i];
|
||
|
|
||
|
// If "trans_vertex_alpha" mode is enabled, search all vertex colors
|
||
|
// and check whether they have a common alpha value. This is quite
|
||
|
// often the case so we can simply extract it to a shared oacity
|
||
|
// value.
|
||
|
std::pair<aiMaterial *, unsigned int> &src = root->materials[mesh->mMaterialIndex];
|
||
|
aiMaterial *mat = (aiMaterial *)src.first;
|
||
|
|
||
|
if (mesh->HasVertexColors(0) && src.second & AI_IRRMESH_MAT_trans_vertex_alpha) {
|
||
|
bool bdo = true;
|
||
|
for (unsigned int a = 1; a < mesh->mNumVertices; ++a) {
|
||
|
|
||
|
if (mesh->mColors[0][a].a != mesh->mColors[0][a - 1].a) {
|
||
|
bdo = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if (bdo) {
|
||
|
ASSIMP_LOG_INFO("IRR: Replacing mesh vertex alpha with common opacity");
|
||
|
|
||
|
for (unsigned int a = 0; a < mesh->mNumVertices; ++a)
|
||
|
mesh->mColors[0][a].a = 1.f;
|
||
|
|
||
|
mat->AddProperty(&mesh->mColors[0][0].a, 1, AI_MATKEY_OPACITY);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we have a second texture coordinate set and a second texture
|
||
|
// (either lightmap, normalmap, 2layered material) we need to
|
||
|
// setup the correct UV index for it. The texture can either
|
||
|
// be diffuse (lightmap & 2layer) or a normal map (normal & parallax)
|
||
|
if (mesh->HasTextureCoords(1)) {
|
||
|
|
||
|
int idx = 1;
|
||
|
if (src.second & (AI_IRRMESH_MAT_solid_2layer | AI_IRRMESH_MAT_lightmap)) {
|
||
|
mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_DIFFUSE(0));
|
||
|
} else if (src.second & AI_IRRMESH_MAT_normalmap_solid) {
|
||
|
mat->AddProperty(&idx, 1, AI_MATKEY_UVWSRC_NORMALS(0));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} break;
|
||
|
|
||
|
case Node::LIGHT:
|
||
|
case Node::CAMERA:
|
||
|
|
||
|
// We're already finished with lights and cameras
|
||
|
break;
|
||
|
|
||
|
case Node::SPHERE: {
|
||
|
// Generate the sphere model. Our input parameter to
|
||
|
// the sphere generation algorithm is the number of
|
||
|
// subdivisions of each triangle - but here we have
|
||
|
// the number of poylgons on a specific axis. Just
|
||
|
// use some hardcoded limits to approximate this ...
|
||
|
unsigned int mul = root->spherePolyCountX * root->spherePolyCountY;
|
||
|
if (mul < 100)
|
||
|
mul = 2;
|
||
|
else if (mul < 300)
|
||
|
mul = 3;
|
||
|
else
|
||
|
mul = 4;
|
||
|
|
||
|
meshes.push_back(StandardShapes::MakeMesh(mul,
|
||
|
&StandardShapes::MakeSphere));
|
||
|
|
||
|
// Adjust scaling
|
||
|
root->scaling *= root->sphereRadius / 2;
|
||
|
|
||
|
// Copy one output material
|
||
|
CopyMaterial(materials, root->materials, defMatIdx, meshes.back());
|
||
|
|
||
|
// Now adjust this output material - if there is a first texture
|
||
|
// set, setup spherical UV mapping around the Y axis.
|
||
|
SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_SPHERE);
|
||
|
} break;
|
||
|
|
||
|
case Node::CUBE: {
|
||
|
// Generate an unit cube first
|
||
|
meshes.push_back(StandardShapes::MakeMesh(
|
||
|
&StandardShapes::MakeHexahedron));
|
||
|
|
||
|
// Adjust scaling
|
||
|
root->scaling *= root->sphereRadius;
|
||
|
|
||
|
// Copy one output material
|
||
|
CopyMaterial(materials, root->materials, defMatIdx, meshes.back());
|
||
|
|
||
|
// Now adjust this output material - if there is a first texture
|
||
|
// set, setup cubic UV mapping
|
||
|
SetupMapping((aiMaterial *)materials.back(), aiTextureMapping_BOX);
|
||
|
} break;
|
||
|
|
||
|
case Node::SKYBOX: {
|
||
|
// A skybox is defined by six materials
|
||
|
if (root->materials.size() < 6) {
|
||
|
ASSIMP_LOG_ERROR("IRR: There should be six materials for a skybox");
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// copy those materials and generate 6 meshes for our new skybox
|
||
|
materials.reserve(materials.size() + 6);
|
||
|
for (unsigned int i = 0; i < 6; ++i)
|
||
|
materials.insert(materials.end(), root->materials[i].first);
|
||
|
|
||
|
BuildSkybox(meshes, materials);
|
||
|
|
||
|
// *************************************************************
|
||
|
// Skyboxes will require a different code path for rendering,
|
||
|
// so there must be a way for the user to add special support
|
||
|
// for IRR skyboxes. We add a 'IRR.SkyBox_' prefix to the node.
|
||
|
// *************************************************************
|
||
|
root->name = "IRR.SkyBox_" + root->name;
|
||
|
ASSIMP_LOG_INFO("IRR: Loading skybox, this will "
|
||
|
"require special handling to be displayed correctly");
|
||
|
} break;
|
||
|
|
||
|
case Node::TERRAIN: {
|
||
|
// to support terrains, we'd need to have a texture decoder
|
||
|
ASSIMP_LOG_ERROR("IRR: Unsupported node - TERRAIN");
|
||
|
} break;
|
||
|
default:
|
||
|
// DUMMY
|
||
|
break;
|
||
|
};
|
||
|
|
||
|
// Check whether we added a mesh (or more than one ...). In this case
|
||
|
// we'll also need to attach it to the node
|
||
|
if (oldMeshSize != (unsigned int)meshes.size()) {
|
||
|
|
||
|
rootOut->mNumMeshes = (unsigned int)meshes.size() - oldMeshSize;
|
||
|
rootOut->mMeshes = new unsigned int[rootOut->mNumMeshes];
|
||
|
|
||
|
for (unsigned int a = 0; a < rootOut->mNumMeshes; ++a) {
|
||
|
rootOut->mMeshes[a] = oldMeshSize + a;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Setup the name of this node
|
||
|
rootOut->mName.Set(root->name);
|
||
|
|
||
|
// Now compute the final local transformation matrix of the
|
||
|
// node from the given translation, rotation and scaling values.
|
||
|
// (the rotation is given in Euler angles, XYZ order)
|
||
|
//std::swap((float&)root->rotation.z,(float&)root->rotation.y);
|
||
|
rootOut->mTransformation.FromEulerAnglesXYZ(AI_DEG_TO_RAD(root->rotation));
|
||
|
|
||
|
// apply scaling
|
||
|
aiMatrix4x4 &mat = rootOut->mTransformation;
|
||
|
mat.a1 *= root->scaling.x;
|
||
|
mat.b1 *= root->scaling.x;
|
||
|
mat.c1 *= root->scaling.x;
|
||
|
mat.a2 *= root->scaling.y;
|
||
|
mat.b2 *= root->scaling.y;
|
||
|
mat.c2 *= root->scaling.y;
|
||
|
mat.a3 *= root->scaling.z;
|
||
|
mat.b3 *= root->scaling.z;
|
||
|
mat.c3 *= root->scaling.z;
|
||
|
|
||
|
// apply translation
|
||
|
mat.a4 += root->position.x;
|
||
|
mat.b4 += root->position.y;
|
||
|
mat.c4 += root->position.z;
|
||
|
|
||
|
// now compute animations for the node
|
||
|
ComputeAnimations(root, rootOut, anims);
|
||
|
|
||
|
// Add all children recursively. First allocate enough storage
|
||
|
// for them, then call us again
|
||
|
rootOut->mNumChildren = (unsigned int)root->children.size();
|
||
|
if (rootOut->mNumChildren) {
|
||
|
|
||
|
rootOut->mChildren = new aiNode *[rootOut->mNumChildren];
|
||
|
for (unsigned int i = 0; i < rootOut->mNumChildren; ++i) {
|
||
|
|
||
|
aiNode *node = rootOut->mChildren[i] = new aiNode();
|
||
|
node->mParent = rootOut;
|
||
|
GenerateGraph(root->children[i], node, scene, batch, meshes,
|
||
|
anims, attach, materials, defMatIdx);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// ------------------------------------------------------------------------------------------------
|
||
|
// Imports the given file into the given scene structure.
|
||
|
void IRRImporter::InternReadFile(const std::string &pFile,
|
||
|
aiScene *pScene, IOSystem *pIOHandler) {
|
||
|
std::unique_ptr<IOStream> file(pIOHandler->Open(pFile));
|
||
|
|
||
|
// Check whether we can read from the file
|
||
|
if (file.get() == nullptr) {
|
||
|
throw DeadlyImportError("Failed to open IRR file " + pFile + "");
|
||
|
}
|
||
|
|
||
|
// Construct the irrXML parser
|
||
|
CIrrXML_IOStreamReader st(file.get());
|
||
|
reader = createIrrXMLReader((IFileReadCallBack *)&st);
|
||
|
|
||
|
// The root node of the scene
|
||
|
Node *root = new Node(Node::DUMMY);
|
||
|
root->parent = nullptr;
|
||
|
root->name = "<IRRSceneRoot>";
|
||
|
|
||
|
// Current node parent
|
||
|
Node *curParent = root;
|
||
|
|
||
|
// Scenegraph node we're currently working on
|
||
|
Node *curNode = nullptr;
|
||
|
|
||
|
// List of output cameras
|
||
|
std::vector<aiCamera *> cameras;
|
||
|
|
||
|
// List of output lights
|
||
|
std::vector<aiLight *> lights;
|
||
|
|
||
|
// Batch loader used to load external models
|
||
|
BatchLoader batch(pIOHandler);
|
||
|
// batch.SetBasePath(pFile);
|
||
|
|
||
|
cameras.reserve(5);
|
||
|
lights.reserve(5);
|
||
|
|
||
|
bool inMaterials = false, inAnimator = false;
|
||
|
unsigned int guessedAnimCnt = 0, guessedMeshCnt = 0, guessedMatCnt = 0;
|
||
|
|
||
|
// Parse the XML file
|
||
|
while (reader->read()) {
|
||
|
switch (reader->getNodeType()) {
|
||
|
case EXN_ELEMENT:
|
||
|
|
||
|
if (!ASSIMP_stricmp(reader->getNodeName(), "node")) {
|
||
|
// ***********************************************************************
|
||
|
/* What we're going to do with the node depends
|
||
|
* on its type:
|
||
|
*
|
||
|
* "mesh" - Load a mesh from an external file
|
||
|
* "cube" - Generate a cube
|
||
|
* "skybox" - Generate a skybox
|
||
|
* "light" - A light source
|
||
|
* "sphere" - Generate a sphere mesh
|
||
|
* "animatedMesh" - Load an animated mesh from an external file
|
||
|
* and join its animation channels with ours.
|
||
|
* "empty" - A dummy node
|
||
|
* "camera" - A camera
|
||
|
* "terrain" - a terrain node (data comes from a heightmap)
|
||
|
* "billboard", ""
|
||
|
*
|
||
|
* Each of these nodes can be animated and all can have multiple
|
||
|
* materials assigned (except lights, cameras and dummies, of course).
|
||
|
*/
|
||
|
// ***********************************************************************
|
||
|
const char *sz = reader->getAttributeValueSafe("type");
|
||
|
Node *nd;
|
||
|
if (!ASSIMP_stricmp(sz, "mesh") || !ASSIMP_stricmp(sz, "octTree")) {
|
||
|
// OctTree's and meshes are treated equally
|
||
|
nd = new Node(Node::MESH);
|
||
|
} else if (!ASSIMP_stricmp(sz, "cube")) {
|
||
|
nd = new Node(Node::CUBE);
|
||
|
++guessedMeshCnt;
|
||
|
// meshes.push_back(StandardShapes::MakeMesh(&StandardShapes::MakeHexahedron));
|
||
|
} else if (!ASSIMP_stricmp(sz, "skybox")) {
|
||
|
nd = new Node(Node::SKYBOX);
|
||
|
guessedMeshCnt += 6;
|
||
|
} else if (!ASSIMP_stricmp(sz, "camera")) {
|
||
|
nd = new Node(Node::CAMERA);
|
||
|
|
||
|
// Setup a temporary name for the camera
|
||
|
aiCamera *cam = new aiCamera();
|
||
|
cam->mName.Set(nd->name);
|
||
|
cameras.push_back(cam);
|
||
|
} else if (!ASSIMP_stricmp(sz, "light")) {
|
||
|
nd = new Node(Node::LIGHT);
|
||
|
|
||
|
// Setup a temporary name for the light
|
||
|
aiLight *cam = new aiLight();
|
||
|
cam->mName.Set(nd->name);
|
||
|
lights.push_back(cam);
|
||
|
} else if (!ASSIMP_stricmp(sz, "sphere")) {
|
||
|
nd = new Node(Node::SPHERE);
|
||
|
++guessedMeshCnt;
|
||
|
} else if (!ASSIMP_stricmp(sz, "animatedMesh")) {
|
||
|
nd = new Node(Node::ANIMMESH);
|
||
|
} else if (!ASSIMP_stricmp(sz, "empty")) {
|
||
|
nd = new Node(Node::DUMMY);
|
||
|
} else if (!ASSIMP_stricmp(sz, "terrain")) {
|
||
|
nd = new Node(Node::TERRAIN);
|
||
|
} else if (!ASSIMP_stricmp(sz, "billBoard")) {
|
||
|
// We don't support billboards, so ignore them
|
||
|
ASSIMP_LOG_ERROR("IRR: Billboards are not supported by Assimp");
|
||
|
nd = new Node(Node::DUMMY);
|
||
|
} else {
|
||
|
ASSIMP_LOG_WARN("IRR: Found unknown node: " + std::string(sz));
|
||
|
|
||
|
/* We skip the contents of nodes we don't know.
|
||
|
* We parse the transformation and all animators
|
||
|
* and skip the rest.
|
||
|
*/
|
||
|
nd = new Node(Node::DUMMY);
|
||
|
}
|
||
|
|
||
|
/* Attach the newly created node to the scenegraph
|
||
|
*/
|
||
|
curNode = nd;
|
||
|
nd->parent = curParent;
|
||
|
curParent->children.push_back(nd);
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "materials")) {
|
||
|
inMaterials = true;
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "animators")) {
|
||
|
inAnimator = true;
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "attributes")) {
|
||
|
/* We should have a valid node here
|
||
|
* FIX: no ... the scene root node is also contained in an attributes block
|
||
|
*/
|
||
|
if (!curNode) {
|
||
|
#if 0
|
||
|
ASSIMP_LOG_ERROR("IRR: Encountered <attributes> element, but "
|
||
|
"there is no node active");
|
||
|
#endif
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
Animator *curAnim = nullptr;
|
||
|
|
||
|
// Materials can occur for nearly any type of node
|
||
|
if (inMaterials && curNode->type != Node::DUMMY) {
|
||
|
/* This is a material description - parse it!
|
||
|
*/
|
||
|
curNode->materials.push_back(std::pair<aiMaterial *, unsigned int>());
|
||
|
std::pair<aiMaterial *, unsigned int> &p = curNode->materials.back();
|
||
|
|
||
|
p.first = ParseMaterial(p.second);
|
||
|
|
||
|
++guessedMatCnt;
|
||
|
continue;
|
||
|
} else if (inAnimator) {
|
||
|
/* This is an animation path - add a new animator
|
||
|
* to the list.
|
||
|
*/
|
||
|
curNode->animators.push_back(Animator());
|
||
|
curAnim = &curNode->animators.back();
|
||
|
|
||
|
++guessedAnimCnt;
|
||
|
}
|
||
|
|
||
|
/* Parse all elements in the attributes block
|
||
|
* and process them.
|
||
|
*/
|
||
|
while (reader->read()) {
|
||
|
if (reader->getNodeType() == EXN_ELEMENT) {
|
||
|
if (!ASSIMP_stricmp(reader->getNodeName(), "vector3d")) {
|
||
|
VectorProperty prop;
|
||
|
ReadVectorProperty(prop);
|
||
|
|
||
|
if (inAnimator) {
|
||
|
if (curAnim->type == Animator::ROTATION && prop.name == "Rotation") {
|
||
|
// We store the rotation euler angles in 'direction'
|
||
|
curAnim->direction = prop.value;
|
||
|
} else if (curAnim->type == Animator::FOLLOW_SPLINE) {
|
||
|
// Check whether the vector follows the PointN naming scheme,
|
||
|
// here N is the ONE-based index of the point
|
||
|
if (prop.name.length() >= 6 && prop.name.substr(0, 5) == "Point") {
|
||
|
// Add a new key to the list
|
||
|
curAnim->splineKeys.push_back(aiVectorKey());
|
||
|
aiVectorKey &key = curAnim->splineKeys.back();
|
||
|
|
||
|
// and parse its properties
|
||
|
key.mValue = prop.value;
|
||
|
key.mTime = strtoul10(&prop.name[5]);
|
||
|
}
|
||
|
} else if (curAnim->type == Animator::FLY_CIRCLE) {
|
||
|
if (prop.name == "Center") {
|
||
|
curAnim->circleCenter = prop.value;
|
||
|
} else if (prop.name == "Direction") {
|
||
|
curAnim->direction = prop.value;
|
||
|
|
||
|
// From Irrlicht's source - a workaround for backward compatibility with Irrlicht 1.1
|
||
|
if (curAnim->direction == aiVector3D()) {
|
||
|
curAnim->direction = aiVector3D(0.f, 1.f, 0.f);
|
||
|
} else
|
||
|
curAnim->direction.Normalize();
|
||
|
}
|
||
|
} else if (curAnim->type == Animator::FLY_STRAIGHT) {
|
||
|
if (prop.name == "Start") {
|
||
|
// We reuse the field here
|
||
|
curAnim->circleCenter = prop.value;
|
||
|
} else if (prop.name == "End") {
|
||
|
// We reuse the field here
|
||
|
curAnim->direction = prop.value;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
if (prop.name == "Position") {
|
||
|
curNode->position = prop.value;
|
||
|
} else if (prop.name == "Rotation") {
|
||
|
curNode->rotation = prop.value;
|
||
|
} else if (prop.name == "Scale") {
|
||
|
curNode->scaling = prop.value;
|
||
|
} else if (Node::CAMERA == curNode->type) {
|
||
|
aiCamera *cam = cameras.back();
|
||
|
if (prop.name == "Target") {
|
||
|
cam->mLookAt = prop.value;
|
||
|
} else if (prop.name == "UpVector") {
|
||
|
cam->mUp = prop.value;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "bool")) {
|
||
|
BoolProperty prop;
|
||
|
ReadBoolProperty(prop);
|
||
|
|
||
|
if (inAnimator && curAnim->type == Animator::FLY_CIRCLE && prop.name == "Loop") {
|
||
|
curAnim->loop = prop.value;
|
||
|
}
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "float")) {
|
||
|
FloatProperty prop;
|
||
|
ReadFloatProperty(prop);
|
||
|
|
||
|
if (inAnimator) {
|
||
|
// The speed property exists for several animators
|
||
|
if (prop.name == "Speed") {
|
||
|
curAnim->speed = prop.value;
|
||
|
} else if (curAnim->type == Animator::FLY_CIRCLE && prop.name == "Radius") {
|
||
|
curAnim->circleRadius = prop.value;
|
||
|
} else if (curAnim->type == Animator::FOLLOW_SPLINE && prop.name == "Tightness") {
|
||
|
curAnim->tightness = prop.value;
|
||
|
}
|
||
|
} else {
|
||
|
if (prop.name == "FramesPerSecond" && Node::ANIMMESH == curNode->type) {
|
||
|
curNode->framesPerSecond = prop.value;
|
||
|
} else if (Node::CAMERA == curNode->type) {
|
||
|
/* This is the vertical, not the horizontal FOV.
|
||
|
* We need to compute the right FOV from the
|
||
|
* screen aspect which we don't know yet.
|
||
|
*/
|
||
|
if (prop.name == "Fovy") {
|
||
|
cameras.back()->mHorizontalFOV = prop.value;
|
||
|
} else if (prop.name == "Aspect") {
|
||
|
cameras.back()->mAspect = prop.value;
|
||
|
} else if (prop.name == "ZNear") {
|
||
|
cameras.back()->mClipPlaneNear = prop.value;
|
||
|
} else if (prop.name == "ZFar") {
|
||
|
cameras.back()->mClipPlaneFar = prop.value;
|
||
|
}
|
||
|
} else if (Node::LIGHT == curNode->type) {
|
||
|
/* Additional light information
|
||
|
*/
|
||
|
if (prop.name == "Attenuation") {
|
||
|
lights.back()->mAttenuationLinear = prop.value;
|
||
|
} else if (prop.name == "OuterCone") {
|
||
|
lights.back()->mAngleOuterCone = AI_DEG_TO_RAD(prop.value);
|
||
|
} else if (prop.name == "InnerCone") {
|
||
|
lights.back()->mAngleInnerCone = AI_DEG_TO_RAD(prop.value);
|
||
|
}
|
||
|
}
|
||
|
// radius of the sphere to be generated -
|
||
|
// or alternatively, size of the cube
|
||
|
else if ((Node::SPHERE == curNode->type && prop.name == "Radius") || (Node::CUBE == curNode->type && prop.name == "Size")) {
|
||
|
|
||
|
curNode->sphereRadius = prop.value;
|
||
|
}
|
||
|
}
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "int")) {
|
||
|
IntProperty prop;
|
||
|
ReadIntProperty(prop);
|
||
|
|
||
|
if (inAnimator) {
|
||
|
if (curAnim->type == Animator::FLY_STRAIGHT && prop.name == "TimeForWay") {
|
||
|
curAnim->timeForWay = prop.value;
|
||
|
}
|
||
|
} else {
|
||
|
// sphere polgon numbers in each direction
|
||
|
if (Node::SPHERE == curNode->type) {
|
||
|
|
||
|
if (prop.name == "PolyCountX") {
|
||
|
curNode->spherePolyCountX = prop.value;
|
||
|
} else if (prop.name == "PolyCountY") {
|
||
|
curNode->spherePolyCountY = prop.value;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "string") || !ASSIMP_stricmp(reader->getNodeName(), "enum")) {
|
||
|
StringProperty prop;
|
||
|
ReadStringProperty(prop);
|
||
|
if (prop.value.length()) {
|
||
|
if (prop.name == "Name") {
|
||
|
curNode->name = prop.value;
|
||
|
|
||
|
/* If we're either a camera or a light source
|
||
|
* we need to update the name in the aiLight/
|
||
|
* aiCamera structure, too.
|
||
|
*/
|
||
|
if (Node::CAMERA == curNode->type) {
|
||
|
cameras.back()->mName.Set(prop.value);
|
||
|
} else if (Node::LIGHT == curNode->type) {
|
||
|
lights.back()->mName.Set(prop.value);
|
||
|
}
|
||
|
} else if (Node::LIGHT == curNode->type && "LightType" == prop.name) {
|
||
|
if (prop.value == "Spot")
|
||
|
lights.back()->mType = aiLightSource_SPOT;
|
||
|
else if (prop.value == "Point")
|
||
|
lights.back()->mType = aiLightSource_POINT;
|
||
|
else if (prop.value == "Directional")
|
||
|
lights.back()->mType = aiLightSource_DIRECTIONAL;
|
||
|
else {
|
||
|
// We won't pass the validation with aiLightSourceType_UNDEFINED,
|
||
|
// so we remove the light and replace it with a silly dummy node
|
||
|
delete lights.back();
|
||
|
lights.pop_back();
|
||
|
curNode->type = Node::DUMMY;
|
||
|
|
||
|
ASSIMP_LOG_ERROR("Ignoring light of unknown type: " + prop.value);
|
||
|
}
|
||
|
} else if ((prop.name == "Mesh" && Node::MESH == curNode->type) ||
|
||
|
Node::ANIMMESH == curNode->type) {
|
||
|
/* This is the file name of the mesh - either
|
||
|
* animated or not. We need to make sure we setup
|
||
|
* the correct post-processing settings here.
|
||
|
*/
|
||
|
unsigned int pp = 0;
|
||
|
BatchLoader::PropertyMap map;
|
||
|
|
||
|
/* If the mesh is a static one remove all animations from the impor data
|
||
|
*/
|
||
|
if (Node::ANIMMESH != curNode->type) {
|
||
|
pp |= aiProcess_RemoveComponent;
|
||
|
SetGenericProperty<int>(map.ints, AI_CONFIG_PP_RVC_FLAGS,
|
||
|
aiComponent_ANIMATIONS | aiComponent_BONEWEIGHTS);
|
||
|
}
|
||
|
|
||
|
/* TODO: maybe implement the protection against recursive
|
||
|
* loading calls directly in BatchLoader? The current
|
||
|
* implementation is not absolutely safe. A LWS and an IRR
|
||
|
* file referencing each other *could* cause the system to
|
||
|
* recurse forever.
|
||
|
*/
|
||
|
|
||
|
const std::string extension = GetExtension(prop.value);
|
||
|
if ("irr" == extension) {
|
||
|
ASSIMP_LOG_ERROR("IRR: Can't load another IRR file recursively");
|
||
|
} else {
|
||
|
curNode->id = batch.AddLoadRequest(prop.value, pp, &map);
|
||
|
curNode->meshPath = prop.value;
|
||
|
}
|
||
|
} else if (inAnimator && prop.name == "Type") {
|
||
|
// type of the animator
|
||
|
if (prop.value == "rotation") {
|
||
|
curAnim->type = Animator::ROTATION;
|
||
|
} else if (prop.value == "flyCircle") {
|
||
|
curAnim->type = Animator::FLY_CIRCLE;
|
||
|
} else if (prop.value == "flyStraight") {
|
||
|
curAnim->type = Animator::FLY_CIRCLE;
|
||
|
} else if (prop.value == "followSpline") {
|
||
|
curAnim->type = Animator::FOLLOW_SPLINE;
|
||
|
} else {
|
||
|
ASSIMP_LOG_WARN("IRR: Ignoring unknown animator: " + prop.value);
|
||
|
|
||
|
curAnim->type = Animator::UNKNOWN;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else if (reader->getNodeType() == EXN_ELEMENT_END && !ASSIMP_stricmp(reader->getNodeName(), "attributes")) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case EXN_ELEMENT_END:
|
||
|
|
||
|
// If we reached the end of a node, we need to continue processing its parent
|
||
|
if (!ASSIMP_stricmp(reader->getNodeName(), "node")) {
|
||
|
if (!curNode) {
|
||
|
// currently is no node set. We need to go
|
||
|
// back in the node hierarchy
|
||
|
if (!curParent) {
|
||
|
curParent = root;
|
||
|
ASSIMP_LOG_ERROR("IRR: Too many closing <node> elements");
|
||
|
} else
|
||
|
curParent = curParent->parent;
|
||
|
} else
|
||
|
curNode = nullptr;
|
||
|
}
|
||
|
// clear all flags
|
||
|
else if (!ASSIMP_stricmp(reader->getNodeName(), "materials")) {
|
||
|
inMaterials = false;
|
||
|
} else if (!ASSIMP_stricmp(reader->getNodeName(), "animators")) {
|
||
|
inAnimator = false;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
// GCC complains that not all enumeration values are handled
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now iterate through all cameras and compute their final (horizontal) FOV
|
||
|
for (aiCamera *cam : cameras) {
|
||
|
// screen aspect could be missing
|
||
|
if (cam->mAspect) {
|
||
|
cam->mHorizontalFOV *= cam->mAspect;
|
||
|
} else {
|
||
|
ASSIMP_LOG_WARN("IRR: Camera aspect is not given, can't compute horizontal FOV");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
batch.LoadAll();
|
||
|
|
||
|
/* Allocate a tempoary scene data structure
|
||
|
*/
|
||
|
aiScene *tempScene = new aiScene();
|
||
|
tempScene->mRootNode = new aiNode();
|
||
|
tempScene->mRootNode->mName.Set("<IRRRoot>");
|
||
|
|
||
|
/* Copy the cameras to the output array
|
||
|
*/
|
||
|
if (!cameras.empty()) {
|
||
|
tempScene->mNumCameras = (unsigned int)cameras.size();
|
||
|
tempScene->mCameras = new aiCamera *[tempScene->mNumCameras];
|
||
|
::memcpy(tempScene->mCameras, &cameras[0], sizeof(void *) * tempScene->mNumCameras);
|
||
|
}
|
||
|
|
||
|
/* Copy the light sources to the output array
|
||
|
*/
|
||
|
if (!lights.empty()) {
|
||
|
tempScene->mNumLights = (unsigned int)lights.size();
|
||
|
tempScene->mLights = new aiLight *[tempScene->mNumLights];
|
||
|
::memcpy(tempScene->mLights, &lights[0], sizeof(void *) * tempScene->mNumLights);
|
||
|
}
|
||
|
|
||
|
// temporary data
|
||
|
std::vector<aiNodeAnim *> anims;
|
||
|
std::vector<aiMaterial *> materials;
|
||
|
std::vector<AttachmentInfo> attach;
|
||
|
std::vector<aiMesh *> meshes;
|
||
|
|
||
|
// try to guess how much storage we'll need
|
||
|
anims.reserve(guessedAnimCnt + (guessedAnimCnt >> 2));
|
||
|
meshes.reserve(guessedMeshCnt + (guessedMeshCnt >> 2));
|
||
|
materials.reserve(guessedMatCnt + (guessedMatCnt >> 2));
|
||
|
|
||
|
/* Now process our scenegraph recursively: generate final
|
||
|
* meshes and generate animation channels for all nodes.
|
||
|
*/
|
||
|
unsigned int defMatIdx = UINT_MAX;
|
||
|
GenerateGraph(root, tempScene->mRootNode, tempScene,
|
||
|
batch, meshes, anims, attach, materials, defMatIdx);
|
||
|
|
||
|
if (!anims.empty()) {
|
||
|
tempScene->mNumAnimations = 1;
|
||
|
tempScene->mAnimations = new aiAnimation *[tempScene->mNumAnimations];
|
||
|
aiAnimation *an = tempScene->mAnimations[0] = new aiAnimation();
|
||
|
|
||
|
// ***********************************************************
|
||
|
// This is only the global animation channel of the scene.
|
||
|
// If there are animated models, they will have separate
|
||
|
// animation channels in the scene. To display IRR scenes
|
||
|
// correctly, users will need to combine the global anim
|
||
|
// channel with all the local animations they want to play
|
||
|
// ***********************************************************
|
||
|
an->mName.Set("Irr_GlobalAnimChannel");
|
||
|
|
||
|
// copy all node animation channels to the global channel
|
||
|
an->mNumChannels = (unsigned int)anims.size();
|
||
|
an->mChannels = new aiNodeAnim *[an->mNumChannels];
|
||
|
::memcpy(an->mChannels, &anims[0], sizeof(void *) * an->mNumChannels);
|
||
|
}
|
||
|
if (!meshes.empty()) {
|
||
|
// copy all meshes to the temporary scene
|
||
|
tempScene->mNumMeshes = (unsigned int)meshes.size();
|
||
|
tempScene->mMeshes = new aiMesh *[tempScene->mNumMeshes];
|
||
|
::memcpy(tempScene->mMeshes, &meshes[0], tempScene->mNumMeshes * sizeof(void *));
|
||
|
}
|
||
|
|
||
|
/* Copy all materials to the output array
|
||
|
*/
|
||
|
if (!materials.empty()) {
|
||
|
tempScene->mNumMaterials = (unsigned int)materials.size();
|
||
|
tempScene->mMaterials = new aiMaterial *[tempScene->mNumMaterials];
|
||
|
::memcpy(tempScene->mMaterials, &materials[0], sizeof(void *) * tempScene->mNumMaterials);
|
||
|
}
|
||
|
|
||
|
/* Now merge all sub scenes and attach them to the correct
|
||
|
* attachment points in the scenegraph.
|
||
|
*/
|
||
|
SceneCombiner::MergeScenes(&pScene, tempScene, attach,
|
||
|
AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES | (!configSpeedFlag ? (
|
||
|
AI_INT_MERGE_SCENE_GEN_UNIQUE_NAMES_IF_NECESSARY | AI_INT_MERGE_SCENE_GEN_UNIQUE_MATNAMES) :
|
||
|
0));
|
||
|
|
||
|
/* If we have no meshes | no materials now set the INCOMPLETE
|
||
|
* scene flag. This is necessary if we failed to load all
|
||
|
* models from external files
|
||
|
*/
|
||
|
if (!pScene->mNumMeshes || !pScene->mNumMaterials) {
|
||
|
ASSIMP_LOG_WARN("IRR: No meshes loaded, setting AI_SCENE_FLAGS_INCOMPLETE");
|
||
|
pScene->mFlags |= AI_SCENE_FLAGS_INCOMPLETE;
|
||
|
}
|
||
|
|
||
|
/* Finished ... everything destructs automatically and all
|
||
|
* temporary scenes have already been deleted by MergeScenes()
|
||
|
*/
|
||
|
|
||
|
delete root;
|
||
|
delete reader;
|
||
|
}
|
||
|
|
||
|
#endif // !! ASSIMP_BUILD_NO_IRR_IMPORTER
|