2012-06-26 16:31:19 +00:00
|
|
|
/*
|
|
|
|
Open Asset Import Library (assimp)
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
|
|
|
|
Copyright (c) 2006-2012, assimp team
|
|
|
|
All rights reserved.
|
|
|
|
|
|
|
|
Redistribution and use of this software in source and binary forms,
|
|
|
|
with or without modification, are permitted provided that the
|
|
|
|
following conditions are met:
|
|
|
|
|
|
|
|
* Redistributions of source code must retain the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer.
|
|
|
|
|
|
|
|
* Redistributions in binary form must reproduce the above
|
|
|
|
copyright notice, this list of conditions and the
|
|
|
|
following disclaimer in the documentation and/or other
|
|
|
|
materials provided with the distribution.
|
|
|
|
|
|
|
|
* Neither the name of the assimp team, nor the names of its
|
|
|
|
contributors may be used to endorse or promote products
|
|
|
|
derived from this software without specific prior
|
|
|
|
written permission of the assimp team.
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
----------------------------------------------------------------------
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** @file FBXDocument.h
|
|
|
|
* @brief FBX DOM
|
|
|
|
*/
|
|
|
|
#ifndef INCLUDED_AI_FBX_DOCUMENT_H
|
|
|
|
#define INCLUDED_AI_FBX_DOCUMENT_H
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
#include <map>
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
namespace Assimp {
|
|
|
|
namespace FBX {
|
|
|
|
|
|
|
|
class Parser;
|
|
|
|
class Object;
|
|
|
|
|
|
|
|
|
|
|
|
/** Represents a delay-parsed FBX objects. Many objects in the scene
|
|
|
|
* are not needed by assimp, so it makes no sense to parse them
|
|
|
|
* upfront. */
|
|
|
|
class LazyObject
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
LazyObject(const Element& element);
|
|
|
|
~LazyObject();
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
const Object* Get();
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
T* Get() {
|
|
|
|
const Object* const ob = Get();
|
|
|
|
return ob ? dynamic_cast<T*>(ob) : NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
const Element& element;
|
|
|
|
boost::scoped_ptr<const Object> object;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/** Base class for in-memory (DOM) representations of FBX objects */
|
|
|
|
class Object
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
2012-06-26 17:19:13 +00:00
|
|
|
Object(const Element& element, const std::string& name);
|
2012-06-26 16:31:19 +00:00
|
|
|
~Object();
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
protected:
|
|
|
|
const Element& element;
|
2012-06-26 17:19:13 +00:00
|
|
|
const std::string name;
|
2012-06-26 16:31:19 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/** DOM base class for all kinds of FBX geometry */
|
|
|
|
class Geometry : public Object
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
2012-06-26 17:19:13 +00:00
|
|
|
Geometry(const Element& element, const std::string& name);
|
2012-06-26 16:31:19 +00:00
|
|
|
~Geometry();
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/** DOM class for FBX geometry of type "Mesh"*/
|
|
|
|
class MeshGeometry : public Geometry
|
|
|
|
{
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
2012-06-26 17:19:13 +00:00
|
|
|
MeshGeometry(const Element& element, const std::string& name);
|
2012-06-26 16:31:19 +00:00
|
|
|
~MeshGeometry();
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
/** Get a list of all vertex points, non-unique*/
|
|
|
|
const std::vector<aiVector3D>& GetVertices() const {
|
|
|
|
return vertices;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get a list of all vertex normals or an empty array if
|
|
|
|
* no normals are specified. */
|
|
|
|
const std::vector<aiVector3D>& GetNormals() const {
|
|
|
|
return normals;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get a list of all vertex tangents or an empty array
|
|
|
|
* if no tangents are specified */
|
|
|
|
const std::vector<aiVector3D>& GetTangents() const {
|
|
|
|
return tangents;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Return list of faces - each entry denotes a face and specifies
|
|
|
|
* how many vertices it has. Vertices are taken from the
|
|
|
|
* vertex data arrays in sequential order. */
|
|
|
|
const std::vector<unsigned int>& GetFaceIndexCounts() const {
|
|
|
|
return faces;
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get a UV coordinate slot, returns an empty array if
|
|
|
|
* the requested slot does not exist. */
|
|
|
|
const std::vector<aiVector3D>& GetTextureCoords(unsigned int index) const {
|
|
|
|
static const std::vector<aiVector3D> empty;
|
|
|
|
return index >= AI_MAX_NUMBER_OF_TEXTURECOORDS ? empty : uvs[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
/** Get a vertex color coordinate slot, returns an empty array if
|
|
|
|
* the requested slot does not exist. */
|
|
|
|
const std::vector<aiColor4D>& GetVertexColors(unsigned int index) const {
|
|
|
|
static const std::vector<aiColor4D> empty;
|
|
|
|
return index >= AI_MAX_NUMBER_OF_COLOR_SETS ? empty : colors[index];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** Get per-face-vertex material assignments */
|
|
|
|
const std::vector<unsigned int>& GetMaterialIndices() const {
|
|
|
|
return materials;
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
// cached data arrays
|
|
|
|
std::vector<unsigned int> materials;
|
|
|
|
std::vector<aiVector3D> vertices;
|
|
|
|
std::vector<unsigned int> faces;
|
|
|
|
std::vector<aiVector3D> tangents;
|
|
|
|
std::vector<aiVector3D> normals;
|
|
|
|
std::vector<aiVector3D> uvs[AI_MAX_NUMBER_OF_TEXTURECOORDS];
|
|
|
|
std::vector<aiColor4D> colors[AI_MAX_NUMBER_OF_COLOR_SETS];
|
|
|
|
};
|
|
|
|
|
|
|
|
// XXX again, unique_ptr would be useful. shared_ptr is too
|
|
|
|
// bloated since the objects have a well-defined single owner
|
|
|
|
// during their entire lifetime (Document). FBX files have
|
|
|
|
// up to many thousands of objects (most of which we never use),
|
|
|
|
// so the memory overhead for them should be kept at a minimum.
|
|
|
|
typedef std::map<uint64_t, LazyObject*> ObjectMap;
|
|
|
|
|
|
|
|
|
|
|
|
/** DOM root for a FBX file */
|
|
|
|
class Document
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
Document(const Parser& parser);
|
|
|
|
~Document();
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
const ObjectMap& Objects() const {
|
|
|
|
return objects;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
|
|
|
|
ObjectMap objects;
|
|
|
|
const Parser& parser;
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|